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INTRODUCTION

This manual is a collection of various applications notes and conference papers written
to describe the behavior and use of the 32-bit family of RISController™ devices and 64-
bit ORION™ family of devices.

The application notes include descriptions of design techniques, development environ-
ments, and software development tools. The reader is encouraged to review the
introduction of the various application notes as a brief summary of the topic of that
paper.

This manual is complemented by other documentation, also available from your IDT
sales representative. These documents include:

.

.

The RISC data book, which contains data sheets for these devices. Also in-
cluded are the electrical specifications, pinout, current speed grades, and pack-
age dimensions.

The R3041 Hardware User's Manual, which contains a detailed description of the
hardware and software interface of the R3041.

The R36100 Hardware User's Manual, which contains a detailed description of
the hardware and software interface of the R36100.

The R3051 Hardware User's Manual, which contains a detailed description of the
hardware and software interface of the R3051 and R3052.

The R3071/R3081 Hardware User's Manual, which contains a detailed descrip-
tion of the hardware and software interface of the R3071 and R3081.

The R4650 Hardware User’s Manual, which contains a detailed description of the
hardware and software interface of the R4650.

The R4600/R4700 Hardware User's Manual, which contains a detailed descrip-
tion of the hardware and software interface of the R4600 and R4700.

The various user’s manuals on the IDT software tools, and the user's manual for
the IDT79S341, IDT79S385A, IDT795381, IDT79S460, and IDT795464 Evalua-
tion Boards.

The IDT Advantage Catalog, detailing various third-party tools, such as real-time
08, in-circuit emulation, logic analyzer support, and program development tools
available to support applications development around the IDT RISController™ and
ORION™ family devices.
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IDT79R3051™ SYSTEM
DESIGN EXAMPLE

APPLICATION
NOTE
AN-86

by Andrew Ng

INTRODUCTION

This application note describes amemory evaluation board
that is an example of many of the design considerations for
systems based on an IDT79R3051™ RISController™ family
CPU.

The memory board, illustrated in Figure 1, consists of:
An R3051 CPU

Reset circuitry

An address de-multiplexer

A data transceiver

Wait-state and memory control logic

128K bytes of SRAM

128K bytes of EPROM

A dual channel UART

A real time counter

An interrupt controller

In addition, an expansion connector supplies all the CPU
signals for the addition of external modules such as DRAM
memory systems or other application specific I/0 systems.
The memory and I/O system on the example board are
compatible with the IDT7RS382 R3000 Evaluation Board.
Thus 7RS382 software such as the IDT/sim PROM Debug
Monitor can run on the example board. The board is typical
of an embedded controller core such as for LAN adapters,
laser printers, facsimiles, and avionics applications. The
differences would appear in which peripherals are used and
memory type, size, and speed requirements.

The board was designed as a generic example of the
construction of a systemusing the IDT79R3051 RISController
with both low parts count and cost sensitive requirements.
However, since many generalities were taken into consider-
ation, many systems can reduce both parts count and cost

even further. Although the board is not populated with parts
that have the highest performance achievable, its design can
be easily modified to do so. In addition, PAL™ support for
further experiments with optimizations and trade-offs can be
done to accommodate different kinds and speeds of memory
and 1/O. While the board is designed with SRAM for the
simplicity of a design example, the extension to a DRAM
system with CAS before RAS refresh is only slightly more
complex.

THE R3051 RISCONTROLLER CPU

The IDT79R3051 family is a series of high-performance 32-
bit microprocessor RISControllers designed to bring the high-
performance inherentinthe MIPS™ RISC architecture into low
cost, simplified, and power sensitive applications.

The instruction set is compatible with the 79R3000A and
79R3001 RISC CPUs. Features of the R3051 family include:
4kB (R3051) to 8kB (R3052) of Instruction Cache on-chip
2kB of Data Cache on-chip
Clocked from a single, double-frequency clock input
On-chip 4 deep read and write buffer
On-chip DMA arbiter
Flexible burst/simple block bus interface
Multiplexed address and data bus for low cost packaging,
simplicity of use
* Base versions use fixed address translation to simplify

software
¢ Extended architecture versions use 64-entry, fully asso-

ciative Translation Lookaside Buffer (TLB) to support page
mapping and virtual memory

The R3051 RISController combines a similarly featured
R3000A CPU system consisting of over 50 LSI/MSI parts into
a single integrated chip.

128K 128K
RAM EPROM
Address
Latches
R3051 Family
RISController S5
CPU Data G 0
Buffers ce
25
wo
Memo
Control
UART Counter/
Timer
Figure 1. System Block Diagram
The IDT Logo, R3051, and RISC: are Device Te Inc.

MIPS and R3000 are trademarks of MIPS Computer Systems, Inc. PAL is a trademark of AMD.




IDT79R3051™ SYSTEM DESIGN EXAMPLE

APPLICATION NOTE AN-86

DETAILED DESIGN REVIEW

The following sections give a detailed review of how each
functional block relates specifically to designing with the
R3051 RISController. Particular attention is focused on
alternative design strategies that could reduce parts count
and improve performance as well as on a description of the
original design. The subsystem block designs include:
Analog reset logic
A PAL-based memory controller (3x PALs)
Address de-multiplexer (4x IDT74FCT373T)
Data transceiver (4x IDT74FCT623T)
128kB of SRAM (4x |DT71256 32kx8 45ns SRAM)
128kB of EPROM (4x 27256 32kx8 125ns EPROM)
68681 DUART
8254 Timer
Interrupt controller (1x PAL)
Off-card connector

Reset, Reset Vector, and Clock Buffer Circuitry

The Reset signalis based on a linear integrated circuit, a Tl
TL7705A supply voltage supervisor with a Power-On Reset
Generator. A 1 pF capacitor is used to program the reset
generator for a 13 ms Reset period.

Note that because the R3051 synchronizes the Resetinput
signal internally, an RC circuit can be used instead. An
example is to pull Reset high with a resistor of about 10K
Ohms, tie Reset to a 22 puF capacitor which is tied to ground,
andtie Resetto a push button switchthatis tiedtoground. The
example board can be reprogrammed and populated to ex-
periment with Reset.

Certain configuration options (the reset vector) are se-
lected in the R3051 by using the interrupt pins at the rising
edge of Reset. On the example board, the interrupt pins are
simply pulled up (or down) since Sint(2:0) are not used in this
system (software can permanently maskthese interruptinputs
in the Status Register). However, if they are used (via the
expansion connector) they would need to be multiplexed with
the reset function. There are a number of techniques to
perform this multiplexing: for example, if the interrupting agent
is not capable of tri-stating its interrupt during Reset, an ex-
ternal multiplexer such as an IDT74FCT257T can be used,
with the enable always tied active and the select tied to Reset.
If the interrupting agent tri-states its interrupt during Reset,
then using simple pull-ups or pull-downs will still operate
properly.

The clocks on the board are buffered by an
IDT74FCT240C(T) inverting tri-state buffer. This buffer was
selected partially to provide a board testability path for inject-
ing atest clock, as well as to buffer the signals toincrease their
drive. The primary reason for the buffer, however, is to invert
SysClkto form SysCIk, the signal thatis used to clock the state
machines on this board. Buffer output pins closest to the
ground pin (pins with the lowest pin inductance) were used
first to help lessen potential noise and ground bounce prob-
lems. The Clk2xIn oscillator is socketed, so that the board
may be populated with different speed parts.

In this design, the FCT240C(T) enables are pulled down to
be active all of the time. Since SysClk does not tri-state when

Tri-State (SInt(1)) is active during the reset vector, it is helpful
to an ATE programmer to be able to tri-state the inverter.

Memory Controller

The example board’s Memory Controller consists of three
22V10 PALs. The first PAL is used for address decoding, the
second for wait state and cycle counting, and the third for byte
enables. The PALs are functionally described in the following
paragraphs. The PAL equations are included in the appen-
dices. The PALs are all placed in sockets, and thus can easily
be reprogrammed for various experiments.

Address Decoder

The Address Decoder PAL, MEMDEC.JED, uses Ad-
dress(31:17) to generate chip selects. The chip selects are
decoded according to the 7RS382 address map as described
in the 7RS382 Hardware User's Guide. Three spare I/O pins
are provided, which could be used to decode additional chip
selects. These spare outputs are in place of the ‘USER
CS1X* chipselects provided foron the 7RS382 board, but not
explicitly supplied by this example board.

The address decoder does not wait for ALE to begin
generating the chip-select outputs. It does this so that
maximum performance may be achieved, since the Chip
Selectoutputs willbe generated earlierinthe transfer. However,
as a result, the CS outputs may tend to “glitch” as a valid
address is driven. Thus, the Read Enable and Write Enable
seen inthe memory system mustbe synchronized so thatthey
are valid only within the time that the CPU is attempting a read
or write transfer. This combination allows maximum perfor-
mance: address and chip enables are seen early in the
transfer, but the Read and Write signals are generated syn-
chronously to insure proper system operation.

One of the extra I/O pins can be used as a test enable input
to tri-state the outputs for board level ATE. Some systems will
not need to decode as many address bits or may have a fixed
map, and thus may able to use FCT138's or 16V8's to do the
address decoding instead of the relatively expensive 22V10
part.

Memory Cycle Controller

The purpose of the Memory Cycle Controller is to provide
a wait-state generator which stalls the R3051’s Bus Interface
Unit, so that various types and speeds of memory can be
used. The Memory Cycle Controller is implemented with a
22V10 PAL called MEMCONT.JED. Note that this PAL was
selected in order to make the PAL equations more readable.
Alower cost solution may implement the state machine in two
16R8 PALs.

The Memory Cycle Controller allows various speeds of
memory devices to be used, by using the throttled read
supported by the R3051 bus interface. Other kinds of trans-
actions are treated as simplified cases of the throttled read.

The basic state machine looks for the start of a read or write
transaction by looking foran asserting edge of Rd orWr. When
atransaction is begun, the state machine starts a 5-bit binary
up counter, C(4:0). C(4:0) then increments on each SysClk
rising edge. C(4:0) is used as the basic timing master for all
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of the other control signals generated in the state machine.
In the memory scheme used here, rather than search for
the negating edge of Rd or Wr at the end of the transaction, a
CycEnd synchronous decoder is used to tell the C counter
when the end of the memory cycle occurs. This type of
strategy is used because the de-asserting edges of Rd and Wr
occur within the setup and hold times of a buffered/inverted
(FCT240C(T)) SysClk. Typically, the de-asserting edge ofRd,
Wr, and Burst should not be used to control a SysClk based
state machine. Similarly, the rapid negation of ALE by the
processor makes it difficult to synchronously sample ALE
when using a state machine driven by a buffered clock.
CycEnd serves to synchronously reset the state machine
when a de-asserting Rd or Wr edge is expected, whether or
not the Rd or Wr de-asserting edge meets the setup and hold
times of the state machine. Anotheroutput, EnStartis usedto
start the byte enables by waiting a number of cycles before
asserting. The amount of time the transfer waits is used to
allow drivers used in the previous transfer to tri-state, and may
be necessary in systems which employ devices whose output

disable time is long relative to the system clock frequency.

Other outputs from the Memory Cycle Controller PAL
include the R3051 transfertermination inputs RACEn, Ack, and
BusError. On a read transfer, Burst and one of the Chip En-
able inputs from the Address Decoder are used to determine
the timing and quantity of RdACEn signals to be assertedforthis
transfer (according to the requested transfer size and the
memory device speed).

Ack is asserted at the end of a write cycle to indicate
completion of the transfer, and optionally towards the end of
a Quad Word (Burst) read cycle. A description of the various
kinds and options of read and write cycles is thoroughly
explained in the R3051 Family Hardware User's Guide. The
number of cycles before and between the assertion of Ackand
RdCEn is programmable, allowing flexibility for various types
of memories.

Finally, the BusError output is used to end an undecoded
memory cycle. In the R3051, Rd is negated one-half cycle
after the BusError input is asserted.

s __/ \_/ ./ ./ ./ \

Wr

N\

C(4:0) X 0

Ack
e \
CycEnd
Figure 2. Timing of CycEnd
Other Approaches

Of course, alternative methods and techniques to memory
interfacing with an R3051 family CPU exist. Four approaches
eas:ly implemented in discrete components include:

using a SysClk based CycEnd counter (as used in this

example)

* using asynchronously resettable registers for the counter
* using interlocking SysClk and SysClk registers
¢ using an unbuffered SysClk

All of these methods can be used to design for the clocking
scheme of the R3051 Family, which uses both the rising and
falling edges to control its outputs. The use of both edges of
the clock allows the R3051 to mitigate the 1 clock inter-
transaction latency that is associated with most other CPUs
that need the extra clock to fixup and start new memory cycles.
However,because the R3051 Family asserts and de-asserts

its edges the same way on both Rd and Wr cycles, specific
methods can be employed so that the memory system is
always clocked from one edge of SysClk. An example of this
is the CycEnd method used on this board, which ignores the
edges that are not synchronized with the state machine.
Although traditional high-performance CPUs require complex
state machines to operate efficiently, the beauty of the R3051
family is the simplicity of its interface. Memory control state
machines for the R3051 family are really only minor variations
on traditional wait-state machines, and can also easily take
advantage of the 1/2 clock inter-transaction savings provided
by the CPU interface.

Each of the four approaches has advantages as well as
drawbacks relative to each other. The following paragraphs
will give a brief description of each technique. Each of the
methods could be used by themselves or combined with one
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or more of the other methods, to achieve the optimal price/
performance/parts count for a given application. Systems
employing dedicated interface chips (such as the IDT R372x
family, or customer specific ASIC or Gate Array devices), may
choose to make different trade-offs than those using discrete
component based solutions.

Using SysClk and generating a Cycle End indicator
The SysClk based CycEnd approach as described above
is straightforward because of its similarity to traditional wait-
state machines. As mentioned above, it does not require the
terminating edge of Rd or Wr to complete a transaction.
The system implemented in this design example is limited
in speed by:

tclk/2 >= 1240 + tpalco + t3051setup + tcap + twire

which works out to 28 MHz for a 10 nsec 16V8, over 40 MHz
fora 5 nsec 16R8 PAL, and 33 MHz fora 10 nsec 22V10 PAL.

Using Asynchronous Reset to terminate the Cycle
Counter

The second potential method, which uses an asynchro-
nous reset to terminate the cycle, requires AND'ing together
Rd and Wr into the the reset line of the counter C(4:0) and can
be demonstrated by reprogramming the PAL on the example
board. The reset-to-valid output, reset width, and the reset
recovery time to clock are among the speed limiting paths in
this approach when implemented in PALs. Unfortunately, the
reset-to-output delay of a PAL is usually less optimized and
relatively slow.

tasyncreset <= tclk/2 - trdn - tcap - twire

For example, a 20 MHz system would require a reset-to-
output delay of 17ns, which can be found ina 10 nsec 22V10
PAL (with a 15 nsec reset to valid output data time).

Using interlocking PALSs clocked on opposite edges

The third potential approach uses a SysClk based register
todetectassertingedges and a SysClk basedregistertodetect
de-asserting edges. The outputs of each of the PALs interlock
by controlling the outputs of the other PALs. This allows the
flexibility of seeing all edges and being able to control outputs
optimally by using any 1/2 clock edge (such as output enables).
Such an approach obviously requires more PALs, and is
somewhat speed limited by:

tclk/2 >= 1240 + tpalco + tpalsetup + tcap + twire

which works out to 20 MHz for a 10 nsec 16V8 PAL.

In systems using chips designed specifically to interface to
the R3051 family (such as the IDT R3721 DRAM controller),
this approachis simpler to implement and leads to the highest
levels of performance.

Using an unbuffered SysCk
The fourth potential approach uses an unbuffered SysClk
based state machine. This leads to the requirement of having

0 hold time on the registers as well as a 2 nsec minimum
propagation delaytime to meetthe R3051 timing requirements
(note that using a buffered SysClk instead of the unbuffered
version would require negative hold time on the registers).
Despite these restrictions, some PALs can be found that meet
all of these requirements. This approach leads to a one cycle
latency in reacting to R3051 output assertions. An asserting
Rd or Wrwould be seen a clock too late to bring RdCEn or Ack
low during their first possible sampling clock. Using an
unbuffered SysClk has a speed advantage over the other
techniques:

tclk >= tpalco + t3051setup + tcap + twire
tclk/2 >= t3051prop + tpalsetup + tcap + twire

which can support designs of 35 MHz fora 10 nsec 16V8 PAL
and well over 40 MHz with a 7.5 nsec 16R8 PAL.

An additional consideration relative to using an unbuffered
SysClk is the amount of loading placed on the clock, and the
impact of additional loading on R3051 AC parameters. Of
course, when using a single chip memory controller such as
the IDT R3721 or a customer designed ASIC, these loading
considerations are minimal.

Insummary, the R3051 Family uses both edges of the clock
to assert control signals in order to reduce inter-transaction
delay between external bus cycles. However, by using one or
a combination of the above techniques in a design, a tradi-
tional wait-state machine can still be used with the addition of
only minor variations.

Read and Write Enables

The Read and Write Enables PAL, MEMEN.JED, uses
EnStart and CycEnd to control the initiation and length of the
outputenable and write enable assertions. Rd and Wrare used
to select between read and write cycles. Note that it would
have been possible to combine individual bank selects with
the address decoder PAL, rather than use a distinct PAL to
control the timing of the assertion of Write and Read Byte
Strobes.

On read cycles, RdEn is asserted as the system’s primary
outputenable signal. RdDataEnis usedtoenablethe FCT623T
data transceiver bank. RdDataEn in most systems would
simply be ‘DataEn’ as supplied straight from the processor.
This system provides RdDataEn in case other transceiver
banks are added to the system.

The byte enables are used to support partial word writes
which are used during byte, halfword, and tri-byte operations.
Write cycles combine the byte enables, BE(3:0), with Wr,
EnStart, and CycEnd to form the write enable outputs
WrEn(D:A) which are attached to the byte banks within the
memory system. Whether or not the system is Little or Big
Endian, WrEn(A) is always attached tothe LSB. WrEn(D:A) can
also be implemented using an FCT257T multiplexer.
WrDataEn is used to control the FCT623T data transceiver
bank and must be held extra long to provide memory data hold
time.
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Finally, the Byte Enable PAL also has a synchronized
PowResetoutput called Resetand a “guarded” GUARTCS. The
guarded chip select, GUARTCS is an example of interfacing
R3051 signals to a Motorola-type I/0 Device as opposedto an
Intel-type 1/O Device.

Motorola-type devices multiplex their read/write input pin
and expect a data strobe pin to validate the data out or to latch

sk __/ \_/ \

the data in, while Intel-type devices have separate read and
write strobes. Since the MC68681 DUART is a Motorola
device, the data strobe must start late and end early, so that
read/write is held throughout that period. Additionally, the
MC68681 uses its chip select pin as a data strobe. As a data
strobe, it is important not to have decoder glitches on the chip
select since reads in I/O devices are often used to update

/N N\

Rd \

C(4:0) X o X X

2 X 3 X o

RdCEn

RdDatakn

Figure 3. Timing Diagram of RdEn
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Figure 4. Timing Diagram of WrEn(A)




IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

C(40) X o X X 2 X 38 X 4 XS

EnStart \

CycEnd
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Figure 5. Timing Diagram of Start of GUARICS
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Figure 6. Timing Diagram of End of GUARTGCS




IDT79R3051™ SYSTEM DESIGN EXAMPLE

APPLICATION NOTE AN-86

FIFO pointers. Thus, the guarded GUARTCS uses EnStart
and CycEnd to shorten up UARTCS. Finally, WrEn is pro-
vided to extend Wr to allow additional data hold time at the end
of the write cycle. WrEn could easily be inserted with another
OR term into WrEn(A).

Address Latch and Transceiver De-multiplexer

The address latch bank consists of four FCT373T 8-bit
transparent latches. ALE is used for the latch enable on the
FCT373T's. The transparent phase allows extra address
decoding time during the time that ALE is high; the outputs of
the latches are fed directly to the address decode PAL and to
the memory devices. Inordertoinsure that address hold time
to the latches are met, it is important to take care with the use
of the ALE signal. The number and length of the ALE traces
is critical and should be kept to a minimum.

Rather than use FCT373's, DRAM systems may want to
use FCT821’s or FCT823's, which are wider latches. RAS/
CAS address multiplexing can be performed by sequencing
the output enables of the latches and having the outputs of the
latches tied together and driving the DRAM address bus.

The data transceiver bank on the example board uses four
FCT623T 8-bit transceivers. FCT623T’s were chosen over
the similar 10-bit FCT861's and 9-bit FCT863's simply to
reduce pin count. The FCT861/3's provide a more conven-
tional interface, since both output enables are active low,
instead of one enable active high, and the other active low as
in the FCT623T's. However, since this system uses PALs to
control the transceivers, the use of FCT623's poses no
additional complexity to the design.

FCT623T's were selected instead of FCT245's because of
the ease of interfacing to dual output enable pins instead of a
direction and enable pins as in the FCT245. Interfacing with
FCT245 controls would ideally require that the direction con-
trol only be changed when the output enable is disabled. This
requires extending a combined (latched) Rd and Wr based
signal for an extra cycle at the end of a memory transaction,
which may be the beginning of the next memory cycle. Unless
the direction pin is controlled with a SysClk based state ma-
chine, a signal like EnStart would be necessary to keep the
enable pin de-asserted in the subsequent cycle until the
direction pin control becomes valid. Some systems with high
noise tolerance, e.g., IBM-PC adapter boards, forgo the extra
cycle ideal and simply bus contend for a very short time (a few
ns) into its memory system by having the read strobe directly
control the direction. DataEn, output from the CPU, can be
used in such systems to simplify control signal generation.

When there are no pending DMA, read, or write requests,
the R3051 tri-states the A/D(31:0) bus during these non-bus
clock cycles to reduce power consumption. One canoptionally
add external pullup or pulldown resistors so that the A/D(31:0)
bus is always defined for board level ATE and so that the input
pins of the latches and transceivers are stabilized.

Finally, systems that can output disable (oe to Z-state) all
memory readable devices within:

tdisable < tclk/2 - t3051dataenn + taddr - tcap - twire

might not require the transceiver bank and thus could reduce
the parts count by 4.

EPROM and Static RAM Memory

The memory on the example board is populated with 125
nsec Erasable PROMs (EPROMSs) and 45 nsec Static RAMs
(SRAMSs). Four 27C256 32Kx8 EPROMs are used to form
128K bytes of ROM. The EPROMs are placed in sockets and
thus can easily be removed for reprogramming or replacement;
alternative designs may wish to add circuitry to allow in-board
programming of the EPROMs (e.g. Flash Erase EPROMs).

The EPROMs have a relatively long output disable time (oe
to z-state), typical of ROMs and thus require data buffers to
prevent contention on the multiplexed AD(31:0) bus, since the
following equation is not met:

tclk/2 >= tdisablecontrol + tdisable - taddr + tcap + twire

In addition, the disable time for these EPROMs is long
enough that, except for relatively slow systems (under 20
MHz), extra clocks need to be added to the next bus cycle to
prevent bus contention with other memory banks. This is
determined by:

tclk >= tdisablecontrol + tdisable - tdata + tcap + twire

The SRAM bank is formed using four IDT71256 32Kx8
SRAMs for a total of 128K bytes. The RAM chips have
common data I/O pins, separate read and write strobes, and
chip selects. RAMs without a separate read strobe (output
enable pin) may require more complex address decoding
when used in a multiple bank configuration.

DUART, Timer, and Interrupt Controller

An MC68681 DUART and an MAX235 RS232 transceiver are
used to form two RS232 serial communication links. The DUART
control registers are word addressed, but only D(7:0) are used. The
MC68681isanexampleof aMotorola-type l/Ointerface as explained
above.

An iP8254 timer/counter chip is used for a real-time clock
or timer. The iP8254 is an example of an Intel-type /O
interface. The iP8254’s need for separate read and write
strobes matches up well with the R3051.

Software control of these chips is best described by their
respective data sheets. Typically, most software programs for

" the 7RS382 have used the DUART in a polling mode and the

timerin a square wave mode. [nterrupts Int(5:3) are controlled
by UARTINtOC, Timer OutB, and Timer OutA respectively
from MSB to LSB. The 16R8 PAL, called MEMINT.JED, is
used to control these interrupts latches in the assertion
transition of the original interrupt lines.

The controller holds the interrupt line to the processor for
Timer A and Timer B until they are acknowledged (as required
by the R3051). Acknowledgement is indicated by reading the
interruptcontroller at Virtual Address BF800010and BF800014
(Physical Address 1F800010 and 1F800014) respectively.
This action incidentally reads extraneous data from the Timer
chip itself on D(7:0). The DUART interrupt must be ac-
knowledged by using the DUART control registers.
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The output disable to data in z-state time for these I/0
peripherals is relatively long, as is typical for I/O devices. This
forms the critical timing path for the placement of EnStartinthe
Memory Controller and Memory Enable PALs.

Expansion Connector
Two 50-pin connectors are provided which bring out the
R3051 RISController pins to allow off-board expansion. The

BusReq and BusGntpins are not presently used on this board.
If DMA is to be used, the R3051 control outputs Rd, Wr, Burst,
DataEn, and ALE are pulled high or low so that they remain
inactive when tri-stated.

SCHEMATICS AND PAL EQUATIONS

Appendices include the System Design Example Board
Schematics and the PAL equations.

AD(0) |54 AD(Q)/—|
R3051 AD(1) }25 ADM)
AD(2) 22 AD2L
PLCC-84 AD(3) {52 AD() 7
AD(4) 62 AD(4)
AD(5) 61 AD(5) /~—
AD(6) 62 AD(6)
AD(7) 63 ADQC
AD(8) 64 AD(8) /——
AD(S) |6 AD(9) >
19} RSVD(0) AD(10) 68 AD 10IC
18| RSVD(1) AD(11) 69 AD 11!C
17} RSVD(2) AD(12) 70 AD(12) /=
16 | RSVD(3) AD(13) 71 AD(13) /
15} RSVD(4) AD(14) 72 AD(14)
AD(15) 75 AD(15)
AD(16) 76 AD(16)
AD(17) 77 AD(17) —/—
AD(18) 78 AD(18) /—
D SINTN(0) 27 SINTN(0) AD(19) 79 AD“QJ;
D SINTN(1) 26 SINTN(1) AD(20) 80 AD(20)
> SINTN(2) 25 SINTN(2) AD(21) 83 ﬁg{Z;)
INTN(3) 24 8 22) /4
% INTN(4) 23 ::mg; ﬁggg 1 AD(23) ==
[ INTN(S) 20 INTN(5) AD(24) 2 AD(24)
AD(25) |2 AD(25) ===
AD(26) 4 AD(26)
AD@7) |L AD(27) ==
BRCOND(0) 33 BRCOND(0) AD(28) 8 AD(28) —
—=,___BRCOND(1) 30 { BRCOND(1) AD(29) 9 AD(29) ——
SBRCOND(2) 29 SBRCOND(2) AD(30) 10 AD(30) ==
:> SBRCOND(3) 28 SBRCOND(3) AD(31) 11 AD(31)
51 ADDR(2
Qgg:g; 52 ADDR(3) —]
—___ACKN 36 45 RDN _—
RDCENN 35 Qg'ggNN v?g: 44 WRN S>—
BUSERRORN ___37 | gUSERRORN BUSGNTN [39 BUSGNTN
—=,__ BUSREQN 34 | BUSREQN ALE |48 ALE ==
DATAENN 43 DATAENN ==
BURSTNIWRNEARN (53 BURSTN &
47 DIAG(0)
RESETN DlAG(1) |48 DiAGHS—]
D 38 RESETN DIA (1)
> CLK2XIN 14 | GLK2XIN SYSCLKN 40 SYSCLIWC

Figure 7. R3051 RISController
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+5V

+5V

16
47K
TL7705A 8
SENSE VvCC
RESIN RESET|® SINTN(2),‘=']
1= ‘CT 3 —s POWRESETN
CT RESET <] BRCOND(0) l
4 1 REF BRCOND(1)
. GND U32 REF SBROOND(2)S—
1UF (TANT) T =< 0.1UF SBRCOND(3
47K
Figure 8. Reset Logic
+5V
16
4.7K
BUSREQN
Figure 9. Unused Inputs
TESTEN(4)
[
TESTEN(O
= -
+5V
A
3.6864 MHZ
FCT240
osc 1 WK
vce OFA
19 [2=n
4 s | loosc 2[OEB | 48
—1.GND Q ;|PAO QRO po
$—{DAt QAT p7 10CLK
DA2 QA2 b SVSCIK
[—>—SYSCLKN 13 DAY QRS L\a e
osC 1 $.5{DB0 08O p
veeH $.>{DB1  OBT p>
¢=ipp2 QB2
QB2 IN
7 N qpf—O8C2XiN lpes  a@B3 p2 CLK2XN —
I00s¢ _ —
4.7K§ 4.7K§
16 |16

Figure 10. Clock Logic
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NOTES:
MEMSPAREO -- CARDCSN | XCSNO +5V
MEMSPARE1 -- C4 | WRLASTN | WORLDBOOTN A
MEMSPARE2 -- TESTEN | SHADOW RAM | DATAENN | XCSN1
16
22V10 §4.7K
A(17) 1
A31:17
— 117 /A(28) 43 ﬁh’g oo 123 RAMCSN
AN 11| N vos 122 EPROMCSN G;]
A(26) 10| N /o7 121 UARTCSN ]
/A(25) 9 \n7 /06 |29 TIMERCSN >
A(24) 8l \ns /os |19 MEMSPARE(0) =
A(23) 7 e vos |18 MEMSPARE(T) =
A(22) 6y vos 1z MEMSPARE(2) =
¢ %(—2”—5 IN3 o2 1
Agg;—; IN2 /01
IN1 1/00
I
|
+5V
MEMDEC.JED
16 |16 |16
47KSATKS 4.7K
22V10
SYSCLK 1
CLK
TESTEN(1) 13| Mo Vo9
MEMSPARE(2) 1] 1ng /08
MEMSPARE(0) 10} 1ns o7 121
TIMERCSN 9] N7 1108 ACKN —
UARTCSN 8] N6 108 RDCENN >—
EPROMCSN 7| ins voa B CYCENDN =
RAMCSN 6] \na 103 Z BUSERRORN =
BURSTN ] /o2 16 ENSTARTN =
WRN 41 in2 o1 H8 MEMSPARE(1) ]
RDN 31Nt 1100 H4(C3)
’:%RESETN 2 INO
MEMCONT.JED +5V
4.7K§ N
16
16
= 47K
22V10
SYSCLK 1ok
MEMSPARE(2) 13 23 RESETN
IN10 1109 . -
UARTCSN 11] 19 o8 122 WRENNA ==
BEN(3) 10] 1 o721 WRENNB
BEN(2) ] froee 1106 122 WRENNC
BEN(1) 8] \ns /08 12 WRENND
BEN(0) 7| ine voa 18 WRENN
CYCENDN A e yoalz WRDATAEN
ENSTARTN 5] ina /02 116 RDENN
WRN 7] oy /o1 15 RDDATAENN ==
RDN 3 INY /00 14 GUARTCSN
POWRESETN 2| ino
MEMEN.JED + [22UF
47K ==
16

Figure 11. Memory Controller

10



IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

WRDATAEN
RDDATAENN
D(31:0)
AD(31:0)
o 7AFCT623T
TESTEN(2) 1aap
ALE 74FCT373 19 GeA
— AB0) 3{po P BEN(0) AD(0) 2| a4 g1 8 D@
o Hor SN A0 il o -0
7K AD(3) 8] o2 a2 BENG)\] AD(3) 5|42 Bars D@3
16 [a@ Bl PhzAm o\ AB(4 3 s B b
AD(5 7 Qs AB) AD(5 7142 B5I3 D(5,
= AD(6 17 32 82 A6) AD(6' 8 23 gg 12 D(6)
AD(7 18] o % AN AD(T " olas AT D(7)
it]ie
11GE
74FCToZaT ]
T
74FCT373 " GeA o6
AD(g 3 ) 2
/—U Do Qo At B1HE— 55
D
Ao(ic 1 O Ao —e eI
AD(11) 8|22 az AD(11 5|42 B3R BN
AD(12) T R AD(12 o)A B4R DN
AD(13) 142 a4 [/an(i3 7148 85BN
AD(14) 17]P° as AD(14) g]he B> D4
AD(15) 1818 as AD(15) A b7y basN
D7 Q7 A8 B8
- 111 e N
oF
TAFCT623T
74FCT373 ’ Gea ot
AD(16) 3 2 AU6 AD(16 2 18
Do Qo Al B1
D(i7
i e < i P N
|/ AD(19 8|22 Q21 —xs AD(19) 5]|A° i [\
: D3 Q3 Ad B4 2
AD(20) 134 Qs 22 AZO‘\\ |/ AD(20) 6le Bs [12 D(2(1’
AD(21 14 15 A1 AD(21) 7 1
D5 Qs A6 B6 55
:ggzz 17 | pe P KT :gg\ AD(22) 8]y g7 [12 05223)\
23 18 1p7 ar e ) AD(23) 918 Bs L \
X [ N
11oe
| [ 7aFcTeasT
T i
74FCT373 Gea
AD(24) 3 2 A@4) AD(24 18___D(24)
AD(25 4]0 Qo A5, | /AD(25 At Bl DEeN\
[ /AD(25) 7o e —AeeN AD(26 432 o216 _D@o)
otz ﬁ—(—Kg ) D@7
ig(gg) 13 b3 asys :S; /f;i 8 2 A4 B4 :3 DZB;\
/2D (29) 14 3; g; 15__A(29 AD(29) 7 :g g: 13 DEIH\
o 50) 530
:g(g?) 1Hos Qs e 22(1] :g g?; a7 B7[2 031;§
| ADGY) 18 o7 Q7|19 AGYH, A8 B8
e NL_D(31:0
1loe s
47K BEN(3:0)
16 AGEY

Figure 12. Address Latch Data Transceiver Demultiplexer
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D(31:0)
— o r—
ADDR(2)
[_2>-ApoR(3)
DAUG:A) .
71256 o0) 71256
10 11 10 11_ D(8
Pl o e ool
AB 8l popl13_ D@ MO8l pael13_D00)
ARG 7l% a5 PON R 2 et EETCEIN
AB) 6lhe  pas[ie D@N Y A ETRTEIN
/A7) 5! a5 pas 117 D(5) A7) 515 pas Hz_Ba3
AB) 4l pas 18— DON AB)  alye pQs 182014
A(9) 3 19 DN L/AQ9) 3 19 D(15
A0l A7 pa7 H&——=24 AT A7 DQ7
AT 32’ AB /Ahﬁ—“;_i A8
A(2) 21|47 (T2 51| A3
,7——2(:3 2 art Z" WA(S 2 1a11 +5V
[/A(5) 26| A1 A(TS) 25| n1
/A(16) 28 | /A(TE) 4 28
A4 vee Al4 vee
GNDﬂl GND P4
20 cs = 20 oS =
27 WE 27 WE
—2215E 2215
| RAMCSN
| WRENNA
| WRENNB
| WRENNC
WRENND
|L—’ RDENN
27256 00) 27256 o)
10 11 10 11
9 ﬁ? g? 12 DN 9 2‘1’ g? 12 DN
A(4) 8| Ao p2 3 DERIN A(4) 810 p2 13 D{0) \{
L/A(5) 7] ‘a3 b3 [15__DBIN | /A5) 7] aa b3 15 BUNN
L/A(6) 8| a4 D4 |16 D)\ L/A6) 61'ag D4 HE D(12) \]
L/A(7) 5| 'as bs H7Z___DEIN /A7) 5| a5 bs 17 D3NN
|/A(B) 4] a6 Dg |18 DN |/A(8) 4ls Dg H8-P04 N
L/A(9) 3)'a7 p7 o DN L/"A(9) 3)a7 e EEETEEINY
/A(0) 25 AB \\ L/A(10) o5 A8 \\
A(TT) AT
/A12) S]ne +5V %12) e +5V
Aol 2 e
A 5 /A8 o]
At2 A12
L/A(15) 26 1 | /A(15) 26 1
[ RT6 a0 A13 vep L AT oo A13 VPP
——2Hms  vce /A8 27010 vee
GND P4 GND P4
] 1 nls ]
EPROMCSN
—

NOTE: BANKA --LITTLE ENDIANLSBBYTEO
- - BIG ENDIAN LSB BYTE 3

Figure 13. ROM and Static RAM Memory
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D(31:0)
— o —]
ﬂ
71256 71256 iz
10 11 D(16) 10 1
S oo el N
A(4) 8 o DQ2}13 D(18) A(4) 8an paz 13 D(26)
ARG 7|he D92lys D9 RO 7% pos[is 027
A(6) 6 16 D(20) A(6) 6 16 D(28
Fimm s NI e N
YO Y I T ) RBalfe oo fis DEON
/A(9) 3 19 D(23) \] A(9) 3 19 D(31)
Ao 50] A7 pa7H8 =) AT o] A7 paz
AT 24l h2 AT 24,5
A2 o1 2?0 A(T2) o1 A?o
| /A(13) 23 +5V A(13) 23 +5V
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A6 q] SAE)
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A6 6]y ba [16__D0) A©) 6| ba 16— DEBN
/A7) 51 p5 s 17 DRI N A7) 5 A5 s HZ D9\
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Figure 13. ROM and Static RAM Memory
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+5V
68681
37 11ACK
DTACK |-
. D(7) 19 29 OP(0)
e h6) 22|07 AT TXDA
L/D(5) 18|06 TXDA[G, RXDA
/D(a) 23 gi RXI% 7 1P(0)
L/ D(3) 17| os op1 112 OP(1)
D(2) 24 11 TXDB
D2  TXDB
D(1) 161 by AxpH2 RXDB
D(0) 251 by P14 1P(1)
ADDR(3:2) op2 |28 OP(2)
T ﬁ{iﬁ 6 Rs4 P2 38 F2)
ADDR(3 3| S8 — |21 UARTINTOC
RS2 R
ADDR(2 1| Rsy
TESTEN(
D GUARTCSN 35 TS
WRENN 8
' RESETN 24| W
[ 2 RES 13
2| 1P oP3[-
SaP4 OoP4[Sy
IOCLK 32| "> OP5156
> S{Ck  opsZ?
+5V f X2 OP7—
PN
[ SYSCIK
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ADDR(2) 19770
|/ ADDR(3) 201 o
4 ' gosa
/D(O) 8] bo
D{1) 7
D) 6] o 10 OUT(0)
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D(4) 4
D) 3| ¢
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161 GATE2
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Figure 14. Input/Output Devices
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+5V

+5V
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Ti2 TO2 TXD
9 10__RXD(0) 2
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Figure 14. Input/Output Devices
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J1
GND—< 1 GND—X 2
DIAG(0)—1<X 3 DIAG(1)—{X 4
BURSTN—< 5 +5V—1< 6
ADDR(2)—<X 7 ADDR(3)—< 8
GND—X 9 GND—< 10
AD(0)—< 11 AD(1) —< 12
+5V AD(2)—X 13 AD(3) —X 14
AD(4)—< 15 AD(5) —< 16
AD(6)—1< 17 AD(7) —< 18
GND—< 19 GND—X 20
AD(8)—< 21 AD(9) —1< 22
L<rav AD(10)—{< 23 AD(11)—X 24
£~ GND AD(12)—< 25 AD(13)— < 26
{GND AD(14)—< 27 AD(15)—1X 28
4 ¢ 45V GND—< 29 GND—< 30
AD(16)—< 31 AD(17)—X 32
AD(18)—1< 33 AD(19)— X 34
1 AD(20)—< 35 AD(21)—< 36
= AD(22)—< 37 AD(23)—< 38
Figure 15. Power Connector A&gz:i 2? AS;‘S:j 32
AD(26)—< 43 AD(27)—X 44
AD(28)—K 45 AD(29)—X 46
AD(30)—< 47 AD(31)—X 48
GND—1< 49 GND—}< 50
Figure 16. 50-Pin Connector
+5V
PaN
#|38UF - +|38UF - 4|33UF
47K T~ e T~
16
Figure 17. Spares Figure 18. Primary Power Decoupling Capacitors
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GND —
ALE —

RDN—]

WRN —
ACKN—]
BUSREQN —
GND —
SINTN(0) —|
SINTN(2) —|
INTN(4)—
BRCOND(0) —
SBRCOND(2) —
GND —
WRDATAEN —
RDDATAENN —
RDENN—
INTENN —

SYSCLKN—]

CLK2XIN —
GND —

AAARNAALNAAALNAALA L LKA LALNLOLNLXK

S h AL DWWWWWMNNNONNN 2 - L ONTTW -

ONOW-—-+ONUO WL ONOW= 0N W=

J2
GND—< 2
GND—1< 4
DATAENN—TX 6
BUSERRORN—<X 8
RDCENN—}<X 10
BUSGNTN —< 12
GND—< 14 J5
SINTN(1)—< 16
INTN(@3)—< 18
INTN(5)—< 20 GND —< 1 GND—TX
BRCOND(1)—< 22 —< 3 —<
SBRCOND(3)—< 24 —5 —
TESTEN(0)—1X 26 —1X7 —
MEMSPARE(0)—< 28 —1<9 —<
MEMSPARE(1) —< 30 TESTEN(1)—< 11 +5v—<
MEMSPARE(2) —< 32 locLk —< 13 100s€ —<
—< 34 TESTEN(4)—< 15 +5v—1<
—1< 36 SYSCLK —< 17 SYSCLKN—X
—< 38 TESTEN(0)—< 19 +sv—1<
GND—X 40
—< 42
RESETN—< 44
+5V—X 46
—< 48
GND—3< 50
Figure 19. 50-Pin Connector
+5V
PAN
0.1UF
V)
+5V 1
D
0.1UF |0.1UF [0.1UF |0.1UF [0.1UF  [0.1UF [0.1UF |0.1UF |0.1UF |0.1UF
EaNanRanRanan e R Ran R ah
+5V _
pay
0.1UF [0.1UF [0.1UF [0.1UF | 0.1UF [0.1UF [0.1UF [0.1UF [0.1UF |0.1UF
e e N e e e e Ranan e

Figure 21. Decoupling Capacitors
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{TITLE :MEMDEC.LPLC

UPAL1 MEMORY AND I/O ADDRESS DECODER PAL FOR THE R305X

BEHAVIORAL BUS EMULATOR MEMORY EVALUATION BOARD

PURPOSE : DECODES DEMULTIPLEXED ADDRESS TO GENERATE CHIP SELECTS.

LANG :LPLC —TM OF CAPILANO COMPUTING SYSTEMS

AUTHOR : ANDY NG, IDT INC.

UPDATES : C2503 03-18-91 AP NOTE FIRST RELEASE

}

MODULE UPAL1
TITLE UPALT
TYPE AMD 22V10;

INPUTS ;
{ DEMULTIPLEXED MEMORY A
A17 NODE[PIN1] ;

A18 NODE[PIN2] ;
A19 NODE[PIN3] ;
A20 NODE[PIN4] ;
A21 NODE[PINS] ;
A22 NODE[PINS] ;
A23 NODE[PIN7] ;
A24 NODE[PINS] ;
A25 NODE[PINO] ;
A26 NODE[PIN10] ;
A27 NODE[PIN11];
A28 NODE[PIN13] ;

DDRESS LINES }
{ MSB ADDRESS LINES 31-17

{ OUTPUT FEEDBACK NODES (NEEDED FOR LPLC'ISM) }

A29 NODE[PIN16] ;
A30 NODE[PIN15] ;
A31 NODE[PIN14] ;
MEMSPAREO  NODE[PIN19] ;
MEMSPARE1  NODE[PIN18];
MEMSPARE2  NODE[PIN17];

}

OUTPUTS ; { ATTRIBUTES C — COMBINATIONAL, R — REGISTERED, H — HIGH, L — LOW }

{ CHIP SELECTS }
RAMCSN
EPROMCSN
UARTCSN
TIMERCSN

{ /O PINS USED AS INPUTS }

A29 NODE[PIN14] ATTR[CL] ; { MSB ADDRESS LINES 31-17

A30 NODE[PIN15] ATTR[CL] ;
A31 NODE[PIN16] ATTR[CL] ;

MEMSPAREO
MEMSPARE1
MEMSPARE2

{ OUTPUT ENABLES }
RAMCSNEN

NODE[PIN19] ATTR[CL] ;
NODE[PIN18] ATTR[CL] ;
NODE[PIN17] ATTR[CL] ;

NODE[PIN23EN] ;

EPROMCSNEN  NODE[PIN22EN];

NODE[PIN23] ATTR[CL] ; { STATIC RAM CHIP SELECT
NODE[PIN22] ATTR[CL] ; { EPROM CHIP SELECT

NODE[PIN21] ATTR[CL] ; { UNGATED UART CHIP SELECT

NODE[PIN20] ATTR[CL]; { TIMER CHIP SELECT
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UARTCSNEN  NODE[PIN21EN];
TIMERCSNEN  NODE[PIN20EN];

A29EN NODE[PIN14EN] ;
A30EN NODE[PIN15EN] ;
A31EN NODE[PIN16EN] ;

MEMSPAREOEN NODE[PIN19EN];
MEMSPARE1EN NODE[PIN18EN];
MEMSPARE2EN  NODE[PIN17EN] ;

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES }
RESETEN NODE[RESET] ;
PRESETEN NODE[PRESET] ;

{ 7TRS382 COMPATIBLE PHYSICAL ADDRESS DECODE MAP }
{ RAM  00000000H — OOO1FFFFH 32K }

{ EPROM 1FCO0000H — 1FC1FFFFH 32K }

{ UART  1FE00000H — 1FE0003FH }

{ TIMER 1F800000H — 1F80002CH }

TERMS ; { LPLC “TABLE" ALGORITHM TAKES TOO LONG TO COMPILE }

{ NOTES: MEMSPAREQO IS BEING USED FOR A BOARD CHIP SELECT
DRIVABLE BY ANOTHER MEMORY SYSTEM. WITHOUT IT
ASSERTED LOW, THIS BOARD WILL NOT ISSUE ANY MEMORY
SIGNALS NOR OUTPUT ENABLE SHARED CONTROL PINS. }

{ NOTES: MEMSPARE1 IS NOT BEING USED. IT COULD BE USED AS AN
OUTPUT IF IT OR THE UPAL2 OUTPUT IT IS CONNECTED TO IS
TRISTATED. }

{ NOTES: MEMSPARE2 IS BEING USED AS A TESTEN INPUT PIN TO
TRISTATE THE OUTPUTS DURING BOARD TESTING. ANOTHER
USE WOULD BE FOR A BOARD CHIP SELECT — MEMCSN.
MEMSPARE2 IS CONNECTED TO A UPAL3 INPUT PIN. }

{ /O PINS USED ONLY AS INPUTS }
A28EN =0;
A30EN =0;
A31EN =0;
MEMSPAREOEN =0;
MEMSPARE1EN =0;
MEMSPARE2EN =0;
A29 NOT=0;

A30 NOT=0;

A31 NOT=0;
MEMSPAREO NOT=0;
MEMSPARE1 NOT=0;
MEMSPARE2 NOT=0;

{ RESET AND PRESET ARE NOT USED IN THIS PAL. }
RESETEN =0;
PRESETEN=0;

RAMCSNEN = IMEMSPAREZ2 ;
RAMCSN NOT  =!MEMSPAREO AND
1A31 AND !A30 AND !A29 AND !A28
AND !A27 AND |A26 AND !A25 AND !A24
AND !A23 AND 'A22 AND !A21 AND !A20
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AND !A19 AND !A18 AND 'A17

EPROMCSNEN  =!MEMSPARE2;
EPROMCSN NOT =!MEMSPAREO AND
1A31 AND !A30 AND !A29 AND A28
AND A27 AND A26 AND A25 AND A24
AND A23 AND A22 AND !A21 AND !A20
AND !A19 AND |A18 AND |A17

UARTCSNEN = IMEMSPAREZ2 ;
UARTCSN NOT  =IMEMSPAREO AND
IA31 AND !A30 AND !A29 AND A28
AND A27 AND A26 AND A25 AND A24
AND A23 AND A22 AND A21 AND !A20
AND !A19 AND !A18 AND !A17

TIMERCSNEN = IMEMSPARE2;
TIMERCSN NOT = !MEMSPAREO AND
IA31 AND |A30 AND |A29 AND A28
AND A27 AND A26 AND A25 AND A24
AND A23 AND !A22 AND |A21 AND |A20
AND !A19 AND !A18 AND |A17

END;
END UPAL1.
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{TITLE : MEMCONT.LPLC
UPAL2 MEMORY CONTROLLER PAL FOR THE R305X BEHAVIORAL BUS EMULATOR
MEMORY EVALUATION BOARD
PURPOSE: PRODUCES READ, WRITE, AND BUS ERROR ACKNOWLEDGE CONTROLS (RDCENN,
ACKN, BUSERRORN) BASED ON A 4 OR 5 BIT COUNTER AND CYCLE END
STALL CYCLE (WAIT STATE) EQUATIONS.
LANG :LPLC —TM OF CAPILANO COMPUTING SYSTEMS
AUTHOR : ANDY NG, IDT INC.
UPDATES: C4B28 03-18-91 AP NOTE FIRST RELEASE
}

MODULE UPAL2 ;

TITLE UPAL2 ;

TYPE AMD 22V10;

INPUTS ;
{ REGULAR INPUT PINS }
SYSCLK NODE[PIN1] ; { UN-INVERTED SYSTEM CLOCK  }
RESETN NODE[PIN2] ; { MASTER RESET }
RDN NODE[PING] ; { READ }
WRN NODE[PIN4] ; { WRITE )
BURSTN NODE[PINS] ; { BURST READ | WRITENEAR ~ }
RAMCSN NODE[PINS] ; { RAM CHIP SELECT }
EPROMCSN  NODE[PIN7] ; { EPROM CHIP SELECT }
UARTCSN  NODE[PINS] ; { UART CHIP SELECT }
TIMERCSN  NODE[PIN] ; { TIMER CHIP SELECT }
MEMSPAREO  NODE[PIN10]; { }
MEMSPARE2  NODE[PIN11]; { }
TESTEN NODE[PIN13] ; { TEST PIN TO Z-STATE OUTPUTS }

{ REGISTER FEEDBACK PINS }

CWIDTH[5] NODE[PIN15,PIN14,PIN21,PIN22,PIN23] ;
ENSTARTN NODE[PIN16] ;

CYCENDN NODEI[PIN18] ;

RDCENN NODE[PIN19] ;

ACKN NODE[PIN20] ;

BUSERRORN  NODE[PIN17];

OUTPUTS ; { ATTRIBUTES C — COMBINATIONAL, R — REGISTERED, H — HIGH, L — LOW  }

{ REGISTERED OUTPUT PINS }

{ BINARY UP COUNTER INPUTS MSB TO LSB C4, C3, C2, C1, C0 }

CWIDTH[5] NODE[PIN15,PIN14,PIN21,PIN22,PIN23] ATTR[RL] ;

ENSTARTN  NODE[PIN16] ATTR[RL]; { READ/WRITE OUTPUT ENABLE START }
CYCENDN  NODE[PIN18] ATTR[RL]; { CYCLE END (COMPOSITE ACK) }
RDCENN NODE[PIN19] ATTR[RL] ; { R305X READ BUFFER CLOCK ENABLE }
ACKN NODE[PIN20] ATTR[RL] ; { R3050X ACKNOWLEDGE }
BUSERRORN  NODE[PIN17] ATTR[RL] ; { R305X BUS ERROR }

{ OUTPUT ENABLES }

CENWIDTH[5] NODE[PIN15EN,PIN14EN,PIN21EN,PIN22EN,PIN23EN] ;
ENSTARTNEN  NODE[PIN16EN];

CYCENDNEN  NODE[PIN18EN] ;

RDCENNEN  NODE[PIN19EN];

ACKNEN NODE[PIN20EN] ;

BUSERRORNEN NODE[PIN17EN];
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{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES }
RESETEN NODE[RESET] ;
PRESETEN NODE[PRESET] ;

TABLE ;

{ RESET AND PRESET ARE NOT BEING USED. }
RESETEN =0;
PRESETEN=0;

{ PURPOSE: PROVIDES REGISTERED VERSION OF RDN AND WRN.

NOTE: QRDN AND QWRN ARE KEPT LOW ONE EXTRA CLOCK BY CYCENDN.
THIS IS BECAUSE THE RISING EDGE OF RDN OR WRN MAY NOT
HAVE ENOUGH HOLD TIME FROM THE RISING EDGE OF
(BUFFERRED) SYSCLK.

NOTE: QRDN AND QWRN DO NOT NECESSARILY TRANSITION BACK HIGH
BETWEEN CONSECUTIVE MEMORY CYCLES, E.G., WRITE FOLLOWED
BY A WRITE. }

{QRDN NOT := RESETN AND ('RDN OR (!QRDN AND ICYCENDN)) ; }
{QWRN NOT := RESETN AND (!WRN OR (IQWRN AND !ICYCENDN)) ; }

{ PURPOSE: C[4]-C[0] PROVIDES A 5-BIT BINARY UP COUNTER. IT IS RESET
ANYTIME RESETN IS ASSERTED AND AT THE END
OF EVERY MEMORY CYCLE AFTER CYCENDN IS ASSERTED.
IT BEGINS COUNTING UP WHEN A READ OR WRITE CYCLE IS
INITIATED.

NOTE: CYCENDN IS ASSUMED TO ASSERT WITH THE LAST RDCENN

ON READS AND WITH ACKN ON WRITES. THUS CYCENDN WILL CLEAR
THE COUNTER WHETHER OR NOT RDN OR WRN HIGH TRANSITION
MEETS THE REGISTER SETUP AND HOLD TIME REQUIREMENTS. }

{NOTE: TO ADD A GENERAL PURPOSE READY (A.K.A. BUSYN AND WAITN)
INPUT, CHANGE EACH OF THE COUNTER C[4:0] EQUATIONS SO
THAT THEIR VALUE CAN BE HELD WITH AN ADDITIONAL TERM, E.G.:
C[0] := RESETN AND CYCENDN AND ('RDN OR WRN)
AND ( (C[0] XOR 1)
OR (C[0] AND IREADY) ) ;
A READY INPUT CAN BE USED FOR DUAL-PORT MEMORY INTERFACING,
EEPROM WRITE INTERFACING, ETC.
}

CEN[0] = ITESTEN;

CEN[1] = ITESTEN;

CEN[2] = ITESTEN;

CEN[3] = ITESTEN;

CEN[4] = ITESTEN;

C[0] := RESETN AND CYCENDN AND ('RDN OR IWRN)
AND (C[0] XOR 1) ;

C[1] := RESETN AND CYCENDN AND (!RDN OR IWRN)
AND (C[1] XOR C[0]) ;

C[2] := RESETN AND CYCENDN AND (IRDN OR IWRN)

AND (C[2] XOR (C[1] AND C[0])) ;
C[3] := RESETN AND CYCENDN AND (IRDN OR IWRN)
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AND (C[3] XOR (C[2] AND C[1] AND C[0])) ;
C[4] := RESETN AND CYCENDN AND (IRDN OR IWRN)
AND (C[4] XOR (C[3] AND C[2] AND C[1] AND C[0})) ;

{ PURPOSE: ENSTARTN OUTPUT PROVIDES THE TIMING FOR THE LEADING
EDGE OF OEN AND WEN STROBES SO THAT 1. THE ADDRESS LINES HAVE
TIME TO BE DECODED AND 2. OE/DATA PINS HAVE TIME TO Z-STATE
FROM READS ON THE PRECEDING CYCLE. THE CYCENDN TERM IS
NEEDED TO HOLD OFF A CONSECUTIVE MEMORY CYCLE, E.G., WHEN
WRITE DEASSERTS AND REASSERTS WITHIN THE SAME CLOCK.
ENSTARTN SHOULD NOT BE USED TO END WRITE TRANSCEIVER
ENABLES AS IT DEASSERTS WITH THE WRITE LINE INSTEAD OF
HOLDING FOR ONE MORE 1/2 CLOCK. }

ENSTARTNEN =ITESTEN;
ENSTARTN NOT := IMEMSPAREO AND RESETN AND (C >= 1) AND CYCENDN ;

{ PURPOSE: CYCLE END GOES LOW (SYNCHRONOUSLY) DURING THE LAST RDCENN ON
READS AND DURING ACKN ON WRITES. IT RETURNS HIGH
SYNCHRONOUSLY BY INTERLOCKING ON THE COUNTER OUTPUTS
WHICH COUNT ONE GREATER THAN THE ASKED FOR VALUE BEFORE
RESETTING BACK TO ZERO (VIA CYCENDN). THUS CYCENDN WILL
DEASSERT ON THE SAME CLOCK AS THE RDN, WRN, OR BURSTN RISING
EDGES REGARDLESS OF WHETHER OR NOT THOSE RISING EDGES MEET
THE REGISTER'S SETUP AND HOLD TIMES. }
{NOTE: TO FIT CYCENDN INTO A 16V8, TWO OUTPUTS MAY BE NEEDED. }

CYCENDNEN =!TESTEN;
CYCENDN NOT := RESETN AND CYCENDN AND (
(IRAMCSN AND (C == 02H) AND !RDN AND BURSTN)
OR (IRAMCSN AND (C == 08H) AND !RDN AND !BURSTN)
OR ('RAMCSN AND (C == 03H) AND IWRN
OR (IEPROMCSN AND (C == 03H) AND IRDN AND BURSTN)
OR (IEPROMCSN AND (C == 0CH) AND IRDN AND !BURSTN)
OR (IUARTCSN AND (C == 06H) AND BURSTN)
OR (ITIMERCSN AND (C == 06H) AND BURSTN)
OR ( {BUSERRORN} (C == 1FH) )

{ NOTE: IN THIS EXPERIMENT MEMSPAREQ IS PULLED LOW AND CAN BE
USED TO DISABLE THIS CONTROLLER'’S RDCENN, ACKN, AND BUSERRORN.
SINCE MEMSPAREQ IS ATTACHED TO THE MEMDEC.LPLC PAL, THE
MEMDEC PAL COULD COMBINE THE CSN'S SO THAT THESE SIGNALS
ARE ONLY DRIVEN WHEN NEEDED. }

{ NOTE: ANOTHER POSSIBILITY IS TO USE MEMSPAREQ AS AN EXTRA CHIP
SELECT. }

{ PURPOSE: READ BUFFER CLOCK ENABLE IS USED BY THE R305X TO STROBE
DATA INTO ITS INTERNAL READ BUFFERS.

{NOTE: IT 1S ASSUMED THAT THE UART AND TIMER ARE
IN UNCACHABLE MEMORY SPACE AND WILL NOT BE BURST READ.
IF THEY ARE BURST READ, THE STATE MACHINE LOOPS 4 TIMES. }

RDCENNEN =!MEMSPAREQ ;
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RDCENN NOT := RESETN AND CYCENDN AND (

{ PURPOSE: ACKNOWLEDGE IS PRIMARILY USED TO END WRITE CYCLES. IT
SHOULD BE PULSED ONE (HALF) CLOCK CYCLE BEFORE THE WRITE

(IRAMCSN AND IRDN
AND ( (C == 02H)
OR (IBURSTN AND (C == 04H))
OR (IBURSTN AND (C == 06H))
OR (IBURSTN AND (C == 08H))
)

)
OR (IEPROMCSN AND !RDN
AND ( (C == 03H)
OR (IBURSTN AND (C == 06H))
OR (IBURSTN AND (C == 09H))
OR (!BURSTN AND (C == 0CH))
)

)
OR ('UARTCSN AND IRDN
AND ( (C == 06H)
) )
OR (ITIMERCSN AND !RDN

AND ( (C == 06H)
)

STROBE IS NEEDED. ON READ CYCLES, ACKNOWLEDGE WILL

IMPLICITLY BE GENERATED BY THE R305X, HOWEVER, IF OPTIMAL
TIMING IS DESIRED, ACK SHOULD BE DRIVEN NO SOONER THAN 1
CLOCK BEFORE THE END OF A SINGLE READ AND FOR BURSTS NO

SOONER THAN 4 CLOCKS BEFORE THE END OF THE LAST READ.

ACKNEN = IMEMSPAREO ;
ACKNNOT  := RESETN AND CYCENDN AND (
(IRAMCSN AND IWRN { WRITE CYCLE }
AND ( (C == 03H)
) )
OR (IRAMCSN AND IRDN AND 1BURSTN { READ CYCLE}
AND ( (C == 05H)

)

)
OR (IEPROMCSN AND !RDN AND !BURSTN { READ CYCLE}
AND ( (C == 09H)
)

)
OR (IUARTCSN AND !WRN AND BURSTN { WRITE CYCLE }

AND ( (C == 06H)
) )
OR (ITIMERCSN AND IWRN { WRITE CYCLE }

AND ( (C == 06H)
)
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{ PURPOSE: BUSERRORN SIMPLY ENDS A WAYWARD UNDECODED BUS CYCLE. ON
READS IT CAUSES AN EXCEPTION. ON WRITES IT DOES NOT CAUSE
AN EXCEPTION CONDITION FOR THE PROCESSOR. TO DO THAT, LATCH
BUSERRORN AND FEED IT TO AN INTERRUPT PIN OR A BRANCH
CONDITION PIN. }

BUSERRORNEN = IMEMSPAREQ ;

BUSERRORN NOT := RESETN AND CYCENDN AND (
(C == 1FH)

);

END;
END UPAL2.
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{TITLE :MEMEN.LPLC
UPAL3 MEMORY READ AND WRITE ENABLE PAL FOR THE R305X BEHAVIORAL BUS
EMULATOR MEMORY EVALUATION BOARD
PURPOSE : GENERATES READ AND WRITE ENABLES FOR MEMORY CONTROLS.
LANG :LPLC — TM OF CAPILANO COMPUTING SYSTEMS
AUTHOR : ANDY NG, IDT INC.

UPDATES : C7C4F 03-18-91 AP NOTE FIRST RELEASE
}

MODULE UPAL3 ;

TITLE UPAL3 ;

TYPE AMD 22V10;

INPUTS ;
{ DEMULTIPLEXED MEMORY ADDRESS LINES }
SYSCLK NODE[PIN1] ; { INVERTED SYSCLKN }
POWRESETN  NODE[PINZ] ; { POWER UP RESET )
RDN NODE[PIN3] ; { READ LINE }
WRN NODE[PIN4] ; { WRITE LINE }
ENSTARTN  NODE[PINS] ; { ENABLE START }
CYCENDN  NODE[PINS] ; { CYCLE END }
BENO NODE[PIN7] ; { BYTE ENABLE 0 }
BEN1 NODE[PINg] ; { BYTE ENABLE 1 }
BEN2 NODE[PINY] ; { BYTE ENABLE 2 }
BEN3 NODE[PIN10] ; { BYTE ENABLE 3 }
UARTCSN  NODE[PIN11]; { UART CHIP SELECT }
MEMSPARE2  NODE[PIN13]; { SPARE INPUT }
{ OUTPUT FEEDBACK NODES (NEEDED FOR LPLC'ISM) }
RESETN NODE[PIN23] ;
WRENN NODE[PIN18] ;
WRDATAEN  NODE[PIN17};

OUTPUTS ; { ATTRIBUTES C — COMBINATIONAL, R — REGISTERED, H — HIGH, L — LOW }

{ WRITE ENABLES }

WRENNA NODE[PIN22] ATTR[RL] ; { WRITE ENABLE FORBYTEO }
WRENNB NODE[PIN21] ATTR[RL] ; { WRITE ENABLE FORBYTE1 }
WRENNC NODE[PIN20] ATTR[RL] ; { WRITE ENABLE FORBYTE2  }
WRENND NODE[PIN19] ATTR[RL] ; { WRITE ENABLE FORBYTE3  }
WRENN NODE[PIN18] ATTR[RL] ; { WRITE ENABLE MOTO-TYPE /O }
WRDATAEN  NODE[PIN17] ATTR[RL]; { WRITE DATA XCEIVER ENABLE  }

{ READ ENABLES }

RDENN NODE[PIN16] ATTR[RL] ; { READ OUTPUT ENABLE (FOR WORDS)}
RDDATAENN  NODE[PIN15] ATTRIRL]; { READ DATA XCEIVER ENABLE  }

{ MISCELLANEOUS CONTROLS }

RESETN NODE[PIN23] ATTR[RL] ; { SYNCHRONIZED RESET

GUARTCSN  NODE[PIN14] ATTR[RL] ; { GATED/GUARDED UART CHIP SELECT}
{ /0 PINS USED AS INPUTS }

{ NONE }

{ OUTPUT ENABLES }

WRENNAEN  NODE[PIN22EN] ;

WRENNBEN  NODE[PIN21EN];

WRENNCEN  NODE[PIN20EN] ;
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WRENNDEN NODE[PIN19EN] ;
WRENNEN NODE[PIN18EN] ;
WRDATAENEN  NODE[PIN17EN] ;
RDENNEN NODE[PIN16EN] ;
RDDATAENNEN  NODE[PIN15EN];
RESETNEN NODE[PIN23EN] ;
GUARTCSNEN  NODE[PIN14EN];

{ ASYNCHRONOQUS RESET AND SYNCHRONOUS PRESET NODES }
RESETEN NODE[RESET] ;
PRESETEN NODE[PRESET] ;

TABLE ;

{ RESET AND PRESET ARE NOT USED IN THIS PAL. }
RESETEN =0;
PRESETEN=0;

{ PURPOSE: WRITE BYTE ENABLES AND WRITE WORD ENABLE ALLOW
SUFFICIENT TIME FOR THE ADDRESS TO DECODE AND
FOR A VALID CHIP SELECT BEFORE ENABLING THE
WRITE STROBE FOR A SPECIFIC BYTE BANK.

NOTE: BANKA IS THE BIG ENDIAN'S LSB BYTE3 OR THE LITTLE

ENDIAN’S LSB BYTEQ. IT ALWAYS HOLDS D(7:0).
BANK D IS THE BIG ENDIAN'S MSB BYTEQ OR THE BIG
ENDIAN'S MSB BYTES. IT ALWAYS HOLDS D(31:23).

}

WRENNAEN = IMEMSPAREZ2 ;
WRENNA  NOT := RESETN AND (
IWRN AND !BENO AND !ENSTARTN AND CYCENDN

)

WRENNBEN = IMEMSPAREZ2;
WRENNB  NOT := RESETN AND (
IWRN AND IBEN1 AND IENSTARTN AND CYCENDN

%

WRENNCEN = IMEMSPARE2 ;
WRENNC  NOT := RESETN AND (
IWRN AND IBEN2 AND !ENSTARTN AND CYCENDN

)

WRENNDEN = IMEMSPARE2 ;
WRENND  NOT := RESETN AND (

IWRN AND !BEN3 AND !ENSTARTN AND CYCENDN
)

{ PURPOSE: WRENN IS USED TO PROVIDE A WRITE LINE THAT HOLDS
LOW FOR AN EXTRA CYCLE, SO THAT IT CAN BE USED FOR
MOTOROLA-TYPE I/O DEVICES ON THEIR MULTIPLEXED
READ/WRITE LINE. }

WRENNEN = IMEMSPARE2 ;
WRENN  NOT := RESETN AND (
(IWRN AND CYCENDN)
OR (IWRENN AND !CYCENDN)
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)

{ PURPOSE: WRDATAEN AND RDDATAENN DRIVE THE OUTPUT ENABLE
CONTROLS ON A FCT623T TRANSCEIVER BANK FOR THE
DATA BUS. THE CONTROLS CAN BE USED FOR ANY
DUAL-OUTPUT ENABLE TRANSCEIVER (1 FOR EACH
DIRECTION. OUTPUT ENABLE/DIRECTION CONTROLLED
TRANSCEIVERS (FCT245) REQUIRE MORE INTERFACING
IF OUTPUT CONTENTION IS TO BE AVOIDED BY
ONLY CHANGING THE DIRECTION WHEN THE OUTPUTS ARE
DISABLED. }

{NOTE: WRITE DATA ENABLE DEASSERTS ONE CLOCK AFTER
WRN DOES TO PROVIDE SUFFICIENT HOLD TIME FOR THE
WRITE DATA INTO THE MEMORY (SEE UPAL2 QWRN FOR A
MORE DETAILED EXPLANATION).
NOTE: WRDATAEN IS ACTIVE HIGH FOR THE FCT623T OUTPUT ENABLE
CONTROL. FOR THE FCT861 OUTPUT ENABLES, USE ACTIVE

LOW.
NOTES: THE FIRST OR-TERM ASSERTS WRDATAEN WHILE THE SECOND
OR-TERM DEASSERTS WRDATAEN. }
WRDATAENEN = IMEMSPAREZ2 ;
WRDATAEN := RESETN AND (

(IWRN AND IENSTARTN)
OR (WRDATAEN AND (!ENSTARTN OR ICYCENDN))

)

RDENNEN = IMEMSPAREZ2 ;
RDENN  NOT := RESETN AND (

IRDN AND !ENSTARTN AND CYCENDN
)

{ PURPOSE: RDDATAENN IS CONNECTED TO THE MEMORY BOARD'S
DATA TRANSCEIVER OUTPUT ENABLE (FCT623T OR FCT861)
AND ONLY ENABLES FOR THIS BOARD'S CHIP SELECTS.
IF THE MEMORY CONTROLLER IS USED FOR ANOTHER
BOARD’S MEMORY, THEN THE TRANSCEIVER OUTPUT ENABLE
SHOULD BE DISABLED FOR THOSE CHIP SELECTS (VIA
MEMSPARE?2. }

{NOTE: IN MOST SYSTEMS, R305X'S DATAENN OUTPUT CAN BE
CONNECTED DIRECTLY TO THE TRANSCEIVER ENABLE PIN
INSTEAD OF USING A SYNTHESIZED RDDATAENN. }

RDDATAENNEN  =!MEMSPARE2;
RDDATAENN NOT := RESETN AND (
IRDN AND IENSTARTN AND CYCENDN

)

{ PURPOSE: RESET SYNCHRONIZES THE POWER UP RESET FOR THE
MEMORY CONTROLLER STATE MACHINES AND FOR THE R305X. }

RESETNEN = IMEMSPARE2 ;

RESETN  NOT :=IPOWRESETN ;

{ PURPOSE: GUARDED/GATED UART CHIP SELECT, GUARTCSN GATES
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UARTCSN BECAUSE THE UART BEING USED HAS A MOTOROLA-
TYPE I/O DEVICE INTERFACE WHICH MULTIPLEXES ITS
READ/WRITE INPUT PIN SUCH THAT THE CHIP SELECT MUST
STROBE IN OR OUT DATA. THIS IS IN CONTRAST TO AN
INTEL-TYPE I/O DEVICE INTERFACE WHICH WOULD HAVE A
SEPARATE READ STROBE AND WRITE STROBE AS WELL AS A
CHIP SELECT. IT IS IMPORTANT NOT TO HAVE A

GLITCH (FROM ADDRESS DECODING THE CHIP SELECT) ON
READS IN ORDER TO ALLOW THE I/0 DEVICE TO UPDATE
FIFO POINTERS, ETC. THUS GUARTCSN STARTS LATE AND
ENDS EARLY, SO THAT READ/WRITE IS HELD VALID
THROUGHOUT THE CHIP SELECT. }

GUARTCSNEN = IMEMSPAREZ2;
GUARTCSN NOT := RESETN AND (

)
END;

IUARTCSN AND !IENSTARTN AND CYCENDN

END UPAL3.
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{ TITLE : MEMINT.LPLC
UPAL4 MEMORY I/O INTERRUPT CONTROLLER PAL FOR THE R305X BEHAVIORAL
BUS EMULATOR MEMORY EVALUATION BOARD
PURPOSE: REPLICATES THE TIMER/UART INTERRUPT CONTROLLER ON THE 7RS382 BOARD.
ADDITIONAL FUSE BITS ADDED FOR 16V8 COMPATIBILITY.
LANG :LPLC — TM OF CAPILANO COMPUTING SYSTEMS
AUTHOR: IDT INC.
UPDATES: C3F98 01-04-91 16V8 PCB VERSION FIRST RELEASE A.N.
}

{ U24A_382 INTERRUPT PAL}
{1-2-90,12-14-89 }
{JEDEC file's CHECKSUM = 379E } { NOTE: 01-04-91 — NOT APPLICABLE TO 16V8 }

{ CONTROL PAL FOR 8254 TIMER'S AND UART INTERRUPT
USED FOR EVALUATION BOARD 382}

MODULE U24A_382;
TITLE U24A_382;
TYPE MMI 16R8;

{ FUSE BITS FOR 16V8 FAMILY ATTRIBUTES USED AS A 16R8 }
FUSE 2048..2079 000000600000000000000000000000000 ;

FUSE 2080..2111 00000000000000000000000000000000 ;

FUSE 2112..2143 00000000000000001111111111111111;

FUSE 2144.2175 111111111 1111111111 1111111111111

FUSE 2176..2193 111111111111111101 ;

INPUTS;

MRES/  NODE[PIN2J;

UARTINT/ NODE[PIN3];

PMRD/  NODE[PIN4};

CSTIM/ NODE[PIN5J;

EAO02 NODE[PING6);

EA04 NODE[PIN7];

OUTA NODE[PINS]; {input from Timer output OUT1}
ouTo NODE[PINSJ; {input from Timer output OUT0}

DTOA/  NODE[PIN14J; {feedback}
DTOB/  NODE[PIN15]; {feedback}
TOINT/  NODE[PIN16]; {feedback}

DT1A/  NODE[PIN17]; {feedback}
DT1B/ NODE[PIN18]; {feedback}
T1INT/ NODE[PIN19}; {feedback}

OUTPUTS;

UINTS/  NODE[PIN13];
DTOA/  NODE[PIN14];
DTOB/  NODE[PIN15];
TOINT/  NODE[PIN16]; { goes to R3000’s UINT3}

DT1A/  NODE[PIN17];
DT1B/  NODE[PIN18];
T1INT/  NODE[PIN19]; { goes to R3000's UINT4}
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TABLE;

{ 8254 TIMER generates 2 square-wave outputs OUT0 and OUT1.
When OUTO goes from high to low, this PAL asserts interrupt
TOINT/, which will interrupt R3000 through UINT3.

Same scheme applies to OUT1, T1INT/ and UINT4.

Reading physical addresses 1F80 0010 and 1F80 0014 (which are
virtual addresses BF80 0010 and BF80 0014 in this 382 board)
will clear interrupt UINT3 and UINT4, respectively.

This PAL also synchronizes UART interrupt signal }

DToA/ = OUTO; {delay TIMER’s OUTO through a register}
DTOB/ := DTOA/; {delay again}
TOINT/NOT := MRES/ AND
((NOT DTOA/ AND DTOB/) OR
(NOT TOINT/ AND (NOT EA04 OR EA02 OR CSTIM/ OR PMRDY)));
DT1A/ = OUTH;
DT1B/ := DT1A/;
T1INT/NOT := MRES/AND
((NOT DT1A/ AND DT1B/) OR
(NOT T1INT/ AND (NOT EA04 OR NOT EA02 OR CSTIM/ OR PMRDY/)));
UINT5/ := UARTINT/ OR NOT MRES/;
{put UARTs interrupt through a register to synchronize
it with R3000 clock }
END;

END U24A_382.
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By Bob Napaa

INTRODUCTION

The IDT R3051™ RISController™ family utilizes a high-
performance computing core to achieve high performance
across a variety of applications. Further, the amount of cache
incorporatedin the R3051 family allow these CPUs to achieve
very high performance even with simple, low speed, low cost
memory sub-systems.

The R3051 RISController CPU family includes a full R3000A
core RISC processor, and thus is fully software compatible
with the standard MIPS processor. In order to provide high-
bandwidth to the CPU core, the family also incorporates
on-chip up to8 kB of instruction cache and 2 kB of data cache.
The externalmemory interface from the R3051 family is very
flexible, and allows a wide variety of implementations according
to the price / performance goals of the application. For a
detailed reference to the systeminterface of the R3051 family,
the reader is advised to refer to the “R3051 Family Hardware
User's Manual”.

This applications note is a design example on the interface
to anon-interleaved DRAM memory sub-system. The goals of

this sub-system are to provide a simple, extensible memory
interface using off-the-shelf components, and to illustrate
basic design techniques for systems using an R3051 family
CPU.

GENERAL DESCRIPTION OF THE DRAM
SYSTEM

Figure 1 illustrates a typical system based on the R3051
RISController family. The R3051 family uses a double-
frequency input clock for its internal operation and provides a
nominal frequency reference clock output for the external
system. This output clock, SysClk,synchronizes the external
memory sub-systems to the R3051.

Memory transactions from the R3051 use a single, time
multiplexed 32-bit address and data bus and a simple set of
control signals. External logic then performs address
demultiplexing and decoding, memory control, interface timing,
and data path control.

The system shown in Figure 1 runs at 25 Mhz (2x clock =
50Mhz). The R3051 interfaces to a DRAM system as the main
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Figure 1. R3051 RISController Family Based System
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memory, to an EPROM system and to various I/O devices and
controllers. Address latches decouple the address bus from
the data bus. Address decoders select among the various
external modules. The output clock from the R3051 (SysCIk)
is buffered (BSysClk) to reduce the loading effect and to
provide clock drive capability with minimum clock skew for the
system. This applications note will focus on the DRAM control
and data path sub-system.

The main DRAM memory system is based on 1 to 4 banks
of non-interleaved DRAMSs with 80 nsec of access time (trac =
80 nsec). The density of the DRAMs used is 256K x 4 to
provide a maximum memory space of 4 Mbytes. The DRAM
memory space occupies the lower 4 Mbytes of the physical
memory space (A21:A0). Figure 2 illustrates the architecture
of the main DRAM memory system.

Table 1 illustrates the decoding scheme used in accessing
the DRAM memory space. To simplify address decoding,
software will insure that all references to the DRAM memory
occur with address bit A(22) low, and thus only that bit will be
used in the decoding. Address bits A(21:20) will select among
the four banks, and the Rd and Wr outputs from the R3051
differentiate between read and write accesses.

Each 1MB bank of DRAMs is individually controlled by
separate RAS and CAS controlsignals. Thus, each bank may
be independently selected. The banks are arranged so that
each bank represents a single, contiguous range of 1MB (as
opposed to an interleaved memory structure).

Data buffers isolate the DRAM banks from the R3051 data
bus to reduce the loading effect and to prevent any bus
contentions between the R3051 and the DRAMs from
occurring. Note that this also alleviates concerns about the
relatively slow tri-state times associated with DRAM devices.
The data buffers selected are actually bi-directional latching
transceivers; the use of a latching transceiver greatly simplified
the timing control of the DRAM accesses, as will be described
later.

DRAM addresses are provided by multiplexing the latched
R3051 address bus, using IDT FBT2827B memory drivers.
This device type was chosen based on its ability to drive large
capacitive loads, such as that found when driving 32 DRAMs.
A single FBT output has sufficient drive to drive all four banks
of the DRAM sub-system.

ADDRESS
aoRess | M sUrrens [
BUFFERS M| paTA BUS
FBT
28278 N
N CONTROL
N
1 N
3
DRAM
PAL »| REFRESH
———»{CONTROL || TIMER
CONTROL | SYSTEM FCT161 2680 drw02
BYTE
DECODER |-
FACT32

BSysClk ?

Figure 2. DRAM Memory System Architecture
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A22 0 0 0 0 0 0 0 0 1 1 X
A21 0 0 1 0 0 0 1 1 X X X
A20 0 1 0 1 0 1 0 0 X X X
WR 1 1 1 1 0 0 0 0 1 0 1
RD 0 0 0 0 1 1 1 1 0 1 1
SELECTION |READ |READ | READ |READ | WRITE |WRITE |WRITE |WRITE | READ WRITE | NO
BANKO | BANK1 | BANK2 | BANK3 | BANKO | BANK1 | BANK2 | BANK 3 | OUTSIDE| OUTSIDE | ACCESS
DRAM DRAM
SPACE | SPACE

Table 1. DRAM Memory Space Decoding

In an R3051 system, it is possible to perform a 32-bit read
access even when smaller data elements are requested.
However, on writes, it is important to enable only those bytes
which are actually being written by the CPU. The R3051 bus
interface provides four individual byte enables to indicate
which byte lanes are involved in a particular transfer. The
DRAM sub-system uses a byte decoder (OR gate) to
individually select from 1 to 4 bytes for write accesses. Each
write byte enable is connected to those DRAMs which reside
on that particular byte lane (across the multiple banks)

An 8-bit refresh timer requests the refreshing ofthe DRAMs
every 9.6 usec. Although this is more frequent than is actually
required by the DRAMs, the use of this value simplified the

control logic associated with page mode write. DRAMs require
that RAS be maintained low no longer than 10usec; by
choosing a refresh value smaller than this maximum time, the
system is assured that maximum RAS low time will not be
violated.The operation of the DRAM memory system is
synchronized by BSysCIk.

STATE MACHINE IMPLEMENTATION

A simple state machine is used to perform the major
aspects of DRAM control. The state machine uses a simple
four-bit counter (C(3:0)) to dictate the timing for the DRAM
control and CPU response, and is sequenced using BSysClk.
There are nine major states to the state machine, asillustrated
in figure 3; these states are dictated by the type of transfer
requested and the state the DRAM control logic was left in by

RIP*=0 the prior transfer. Three PALs are required to implement the
entire DRAM control logic.
ll“l'llll """ e
RD*=0 & BURST*=0
REF_REQ=
REF_ACK* - BLOCK \<&~~
REFILL
CIP*=1 v
RD*=0 & e y
BURST*=0& -~ WR*=0 & WRNEAR'=1 OR
> y A22=0 _ -~ RD* =0 OR
e REF_REQ=1OR
K gl A22=1
e _~ WR*=0
WR*=1 & RD*=0 & il RD*=0 -
RD*=1 BURST*=1&
A22=0
Cip*= CIP*=1
WR"=0 & WRITE
WRNEAR*=1&
A22=0 CIP*=1
WR*=0 & 2880 drw 03
WR*=1 & WRNEAR*=0&
RD*=1 A22=0

Figure 3. State Machine
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The state machine uses the Reset pulse to resetits internal
states and to synchronize its operation to the R3051. During
the RESET state, it also performs one refresh cycle before
entering the IDLE state.

In the IDLE state, the state machine arbitrates between a
refresh cycle and abus access. ADRAMbus access is started
whenever Rd or Wr are asserted and A22 is low. A refresh
request is detected using the REF_REQ (Refresh_Request)
pulse from the refresh timer.

The state machine supports 4 types of bus accesses:
“Block refill read”, “Single read”, “Single write” and “Page
write”, according to the types of transfers which the R3051
may request.

After a “Single write” or a “Page write” access, the machine
enters the IDLE RAS ASSERTED state. This state is very
much analogous to the IDLE state, except thatthe RAS control
signal to the DRAMs remains asserted. This state allows
subsequent “near” writes to be retired using page mode
accesses, which are much quicker than standard accesses.
When the IDLE RAS ASSERTED state must be exited (i.e. an
action other than near write is requested) the RAS signal must
be pre-charged prior to another DRAM transaction.

THE DRAM MEMORY SYSTEM
IMPLEMENTATION DETAIL

The DRAM memory system consists of the control system,
the address path and the data path as illustrated earlier in
Figure 2.

PAL System

The state machine and control PAL system consists of 3
standard speed PALs: Pal 1 (PAL22V10-10), Pal2 (PAL20R8-
10) and Pal 3 (PAL16R8-10). Figure 4 illustrates the control
system and the address path. The PAL equations are included
in the appendix to this applications note.

Pal 1 is driven by SysCIk directly. This allows the CIP line
to detect transitions on the Rd and Wr signals from the R3051.
Signals generated by Pal 1 include:

* 4 RAS signals (one per DRAM bank)

* The DRAM_ACK and DRAM_RDCEN response signals to
the R3051 family CPU.

These signals are used to provide termination response
to the processor.

* The CIP (Cycle_In_Progress) indicates to the rest of the
control system that a bus access is being performed.

* The DRAM_WN (DRAM_WrNear) signal indicates that the
RAS signals are kept asserted after a “Single write” or a
“Page write” access.

Pal 2 is also driven by SysClk directly. Pal 2 generates:

e 4 CAS signals (one per DRAM bank)

+« DRAM_LE (DRAM_Latch_Enable), which latches the
read data into the data buffers.

* The S (Select) controls the memory drivers selection.

e The T/R (Transmit/Receive) controls the data buffers
during read accesses.

* The DRAM_WR (DRAM_Write), used during write
accesses.

Pal 3 uses the buffered CIP signal (BCIP) which is delayed
with respect to CIP by the buffer propagation delay. This is
important to ensure the proper operation of Pal 3, which is
driven by the buffered SysClk (BSysClk). Pal 3 generates the
master 4-bit counter. It also generates:

» The RIP (Reset_In_Progress), which indicates that a
reset cycle is being performed.

¢ The REF_ACK (Refresh_Acknowledge) signals that a
refresh cycle is being performed.

* The GATE_COUNTER controls the operation of the
counter when transitioning between bus accesses and
refresh accesses.

Refresh Timer

The refresh timer consists of 2 “74FCT161” counters
cascaded together as shown in Figure 4. The refresh timer
issues a REF_REQ pulse every 9.6 pusec. The refresh timeris
loaded with the value b00001111 after each refresh. It is
incremented by one forevery clock cycle. Atvalueb11111111,
it will issue the REF_REQ pulse. This amounts to a total count
of 240 which at 25 Mhz reflects a 9.6 psec refresh period.

The refresh period is set to be shorter than the maximum
15.5 usec refresh period that most DRAM require. The refresh
interval has been setto 9.6 psecin order not to violate the RAS
maximum pulse width of 10 pusec (tras = 10 psec max). In an
IDLE RASASSERTED state, the RASsignals are leftasserted
while the CAS signals are de-asserted.

Byte Decoding

__The byte decoding uses a “74FACT32" OR gate to OR the
BE signals from the R3051 with the DRAM_WR signal to
produce the write-byte signals WB(3:0). The DRAM_WRsignal
ensures that the WB(3:0) are only asserted during DRAM
write accesses and that the WB(3:0) meet the “write command
hold time” (twch = 20 nsec) of the DRAMs, It also ensure that
the WB(3:0) are asserted before the CAS signals for “Early
Write” accesses. Every WB signal enables one byte of the
DRAM banks and of the data buffers during write accesses to
allow for partial word write operations. The WB(3:0) are
always issued one clock cycle before the CAS signals are
asserted, in order to meet the timing requirements fora DRAM
“Early Write” cycle.

Address Path

The DRAM address path consists of 2 “74FBT2827B"
memory drivers to multiplex the row and column address of
the DRAMSs. The “FBT2827” have a 25 Q series resistance
incorporated in the output buffers and are used to drive
multiple memory banks with large capacitive loading. The Sbit
from Pal 2 selects between the row address and the column
address that drive allthe DRAMbanks. Figure 4 illustrates the
address path architecture. The address to the DRAMs is
always set one clock cycle before the assertion of either the
RAS orthe CAS signals, in orderto guarantee proper address
set-up time to the DRAMs.
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A1

The data path consists ofthe DRAM banks and 4 74FCT543
latched transceivers. Figure 5 illustrates the architecture of
the data path and of the data buffers. Latching transceivers
are used to allow more access time to the DRAMs; the datais
captured by the latches one-half cycle before they are needed
by the CPU. During this half-cycle, the data propagates
through the buffer; if traditional buffering transceivers had
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Figure 4. Control System and Address Path
Data Path

been used, the buffer propagation delay would have occurred
at the expense of the DRAM access time.

Up to four banks of DRAMs are used, with each bank
having its own set of RAS and CAS signals to minimize the
loading impact of multiple DRAM devices. Address bits A21
and A20 determine the bank selection.

The latched transceivers serve three roles in the DRAM
sub-system: they isolate the DRAMs from the A/D bus of the
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R3051 to minimize loading; they latch the data from the
DRAMSs on reads to allow a better timing model; and they are
used to prevent bus contention from occurring at the end of a
read (as the processor begins another transaction). The
R3051 is connected to the A bus of the transceivers, and the
DRAM system is connected to the B bus.

In a processor write access, the R3051 drives both the
addressandthedata. Inthis case the latches are lefttransparent
to pass the processor data through directly to the DRAMs.
Only those transceivers whose byte lanes are involved in the
write are output enabled, since only those DRAMs will be
written into. DRAMSs not accessed in this write will output the
current contents of their memory at that location, since the OE
of the DRAMSs is asserted. DRAM_WR controls the LEAB,
leaving the latch transparent throughout the write. WB(3:0)
controls the OEAB of the latches, thus enabling only those
bytes that are written.

bRAM |}

In a processor read access, the DRAM system drives the
data bus. The DRAM system is synchronized to the rising
edge of BSysClk, and the R3051 samples the input data onthe
falling edge of SysClk before terminating the access. Thus,
the DRAM contro! design, which drives the RAS and CAS
signals on the rising edge of SysCIk, actually removes CAS
one-half cycle before the data is sampled by the CPU. Thus,
data output by the DRAMs is actually latched by the
transceivers, and remains valid when the CPU samples the
A/D bus one-half clock cycle later.

The DRAM_LE from the DRAM controller is connected to
the LEBA pin, which latches the data into the transceivers. The
T/R signal connected to the CEBA pin, which controls the
direction of the bi-directional transceiver. The DataEn signal
from the R3051 is connected directly to the OEBA pin to
control the timing of the output enable onto the A/D bus. This
ensures that the output buffers are tri-stated before the next
R3051 access starts and prevents any bus contention.
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Figure 5. DRAM Banks and Data Buffers
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THE DRAM MEMORY SYSTEM TIMING

The R3051 system interface allows this DRAM interface to
be simply constructed. Features of the R3051 which are used
in this DRAM system include:

On-chip four-deep read and a four-deep write buffers,
These buffers decouple the system interface speed from
the speed of the execution engine on-chip.
Single word reads and four-word refills. Block refills
amortize the relatively long latency of DRAMs over
muitiple words, taking advantage of high-bandwidth
capabilities (e.g. Page Mode) offered by DRAMs.
The WrNear signal, which informs the external DRAM
sub-system that two consecutive writes have the same
upper 22 address bits (equivalent to a local page of 256
words), and can be written using a Page Mode access.
For the system running at 25 Mhz, the clock period is 40
nsec. DRAMswith 80 nsec of access time require 160 nsec (trc
=160 nsec) to complete one read access (as per DRAM data
sheet). A5 clock cycles (200 nsec) read access time allows an
acceptable margin for address decoding, control signal
propagation, and bus interface.

For a4 word block refill read, the initial latency (time to read
the first word) is the same as for a single word read access
(200 nsec). For the next 3 consecutive words, the DRAM
memory system provides a word every 2 clock cycles (every
80 nsec). A block refill access can be completed in 11 clock
cycles (440 nsec), which is an average of 110 nsec per word.
Thus, blockrefill, with this simple scheme, provides a significant
improvement in the average access time per word (over 2
clock cycles per word savings).

The state machine to manage write operations takes
advantage of two features of the R3051:

On a write cycle, the write data from the processor is held
one full clock cycle after the clock edge where the
processor samples its ACK input. Thus, the DRAM
system can give an early acknowledge, and still rely on
the CPU to continue driving data.

The WrNear output from the CPU, which indicates that
this write may be retired using a page mode write. This
reduces the number of cycles required to perform write-
intensive operations, such as building the program stack
or flushing the write buffer.

The state machine for single word writes is optimized to
allow subsequent near writes to be retired using page mode
accesses. The DRAM memory system takes advantage of the
WrNear signal from the R3051 by defaulting to the case that
any single write to the DRAM system will be followed by
another write with the same upper 22 address bits (within the
local page of 256 words). Given this assumption, the RAS
signals must be kept asserted after every write access to
remain in the page mode of the DRAMs.

Thus, an initial single write can be performed in 4 clock
cycles (160 nsec) since the RAS signals are not de-asserted
and the RAS precharge time (tp = 70 nsec) will be deferred
until the end of the page write mode. Note that this is faster
than a single read; the state machine takes advantage of the
fact that the processor will drive data a full clock cycle after
acknowledge is given.

A consecutive write to the same DRAM page can be
performed in 3 clock cycles (120 nsec) since the RAS signal
is already asserted and doesn’t need to be precharged. When
this state is exited (when a write outside of page or a different
type of access occurs) the RAS signal needs to be precharged
for 2 clock cycles (80 nsec) before responding to the pending
access.

Single Write Cycle/Page Write Cycle

Figure 6 illustrates the timing diagrams for a single write
access followed by a page write. The R3051 initiates a single
DRAM write access by the assertion of Wr and with A22 low.
Since the state machine isinthe IDLE state, RASis deasserted
and the ROW addresses are flowing through the address
multiplexer. The CIPis issued on the next clock edge to inform
the rest of the machine that the write is being processed, thus
preventing the commitment of any other state (e.g. refresh).
The appropriate RAS signal is issued on the same edge as the
CIP. The DRAM_ACK is issued on the following edge and the
CAS signal on the 4! edge to terminate the write access. At
the end of the access, the CIP is removed while the RAS signal
is kept asserted in anticipation of a consecutive write access
within the same page. Atthe end of an initial write access, the
DRAM_WN signal remains asserted. This signal informs the
rest of the state machine that the RAS signals are kept
asserted.

Idle, RAS Asserted State

At the end of a write access the state machine enters this
state where a RAS signal is kept asserted while the state
machine awaits a subsequent transaction. If the next access
is a local write (WrNear from the R3051 is asserted) the state
machine enters the page write mode. If a different access type
occurs (read, block refill, not local write) or a refresh is
pending, the state machine exits this state.

Upon exiting this state, the machine precharges the RAS
signal before responding to the pending access. For the ease
of discussion, any access that requires the RAS signals to be
precharged before the access is processed will be referred to
as “delayed” access. If an access outside the DRAM space is
detected (Wr or Rd asserted while A22=1) the RAS signals are
immediately de-asserted and the machine goes into the IDLE
state. This is an important condition; an intervening write to
another memory location causes the R3051 to report
subsequent writes as “near” to that other memory location,
and thus the DRAM controller should not process these writes
as near writes.

Page Write Cycle

‘A page write cycle is a write access to the DRAM following
another write with the same upper 22 address bits. Figure 6
illustrates the timing diagram for a page write access. The
R3051 initiates a page write cycle by the assertion of Wr,
WrNear and A22 = 0. On the following clock edge CIP and
DRAM_ACK are issued, and on the 3rd clock edge CAS is
asserted. and the access is terminated (CIPis negated). The
RAS and DRAM_WN signals are kept asserted, aliowing
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Figure 6. Single Write, Page Write and Delayed Write Timing Diagrams
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subsequent page writes to be rapidly processed. The state
machine exits this state into the IDLE RAS ASSERTED state
to await subsequent page mode writes.

Delayed Write Cycle

The delayed write cycle has exactly the same sequence as
a single write but is delayed by two clock cycles. A delayed
write is a“non-near” write detectedinthe IDLERASASSERTED
state. Figure 6 illustrates the timing diagrams for a delayed
write access.

The R3051 initiates a delayed write access by the assertion
of Wrand A22 = 0 while RAS and DRAM_WN are asserted. On
the next clock edge RAS is de-asserted while the DRAM_WN
is kept asserted. The precharging of the RAS signal takes two
clock cycles. The DRAM_WN signalis kept asserted to inform
the state machine that the control signals for this access have
to be delayed by two clock cycles. This is true for all the
delayed accesses.

Single Read Cycle

A single read cycle is a read access to the DRAM following
an IDLE state in which the RAS and the DRAM_WN are not
asserted. Figure 7 illustrates the timing diagrams for a read
access. The R3051 initiates a single read access by the
assertion of Rd with A22 low while the state machine is IDLE
and all RAS outputs are de-asserted. The CiPis issued on the
next clock edge to inform the rest of the machine that a cycle
is ongoing, thus preventing the commitment of any other state.
The appropriate RAS signal is issued on the same edge as the
CIP. Two clock cycles later, the CAS, DRAM_RDCEN and the
DRAM_ACK are issued to terminate the cycle.

For a read access both the DRAM_ACK and the
DRAM_RDCEN are required to end the cycle. The processor
will not actually sample RACEn until one-clock after the clock
edge used to generate DRAM_RDCEN, and thus will not
sample the data until one and one-half clock cycles after the
edge used to generate DRAM_RDCEN. From the timing
diagrams it is clear that the CAS and the RAS signals are
removed half a clock cycle before the falling edge of the clock
when the R3051 samples the data. DRAM_LE latches the
DRAM data into the transceivers and holds it for one clock
cycle. At the end of the access the CIP is removed.

Delayed Read Cycle

The timings of a delayed read are exactly the same as for
a single read but shifted by two clock cycles to accommodate
RAS pre-charge time. A delayed read ead cycle is a read access
to the DRAM following an IDLE | RAS ASSERTED state in
which the RAS and the DRAM_WN are still asserted. Figure 8
illustrates the timing diagrams for a delayed read access.
Once aread access is detected, the RAS signal is de-asserted
while the DRAM_WN is kept asserted. The RAS signal is
precharged for two clock cycles. At the end of a delayed read,
the DRAM_WN and the CIP are removed and the machine
enters the IDLE state.

Block Refill Cycle

A block refill cycle is a 4 word read access to the DRAM
following an IDLE state. Figure 7 illustrates the timing diagrams
for 4-word block refill access. The R3051 indicates a block
refill read access by the assertion of Rd and Burst with A22
low. The DRAM control sub-system handles block refill
accesses using the Throttled Block Refill mode of the R3051.
In a throttled read, RACEnN is used to control the data rate of
memory back to the CPU. The Ack input is not provided back
to the processor until the transfer has sufficiently progressed
such that the last word of the transfer is clocked into the on-
chip read buffer before the processor core requires it.

In the block refill access the first word read takes the same
time as a single read while the 3 subsequent words are read
into the read buffer at the rate of 1 word every two clock cycles.
The DRAM_RDCEN is issued with every word being read to
cause the R3051 to latch the data into the read buffer. The
DRAM_ACK is issued between the second and the third word
read. This ensures that for 4 subsequent falling edges of
SysClk the read buffer can provide data to the R3000A core
at the rate of a word every clock cycle.

Block refill uses the page mode characteristics of the
DRAM to obtain subsequent words at a high data rate. In this
access, the RAS signal is kept asserted while the CAS signal
is toggled 4 times to produce 4 data words. Every word from
the DRAM system is latched into the transceivers as for a
single read operation, using the DRAM_LEto clock the latched
transceivers. At the end of the access RAS and CIP are de-
asserted, and the state machine returns to the IDLE state.

In the block refill access, address lines Addr(3:2) from the
R3051 act as a two-bit counter to provide the address of 4
consecutive words. These two lines are incremented on the
falling edge of SysClk. This timing could prove critical at high-
frequencies: this is only half a clock margin (20 nsec) before
the CAS signals are asserted, in which address set-up time to
CASmustbe provided. These two lines are part of the address
path and are driving large capacitive loads. Two minimize
additional delay due to loading, two sets or more of memory
address drivers could then be used to minimize the effect of
the capacitive loads and to ensure proper operation.

Delayed Block Refill Cycle

A delayed block refill cycle is a block refili access to the
DRAM following an IDLE RAS ASSERTED state in which the
RAS and the DRAM_WN are asserted. Figure 9 illustrates the
timing diagrams for a delayed block refill access. A delayed
block refill is exactly the same as a block refill with the
exception that the access is shifted by two clock cycles to
accommodate RAS precharge requirements. The DRAM_WN
signals to the machine that the access has a delayed timing.
At the end of the access, the DRAM_WN and the CIP are de-
asserted.
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Figure 7. Single Read and Block Refill Read Timing Diagrams
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Refresh Cycle

A refresh cycle is initiated every time a REF_REQ pulse is
detected. The state machine responds immediately by
asserting the REF_ACK signal on the following clock edge.
This disables the refresh timer until the refresh access is
completed. Figure 10 illustrates the timing diagrams for a
refresh arbitration and the actual refresh access.

Ifa REF_REQ occurs during an access or atthe same time
as an access, the refresh is delayed until the access is
terminated (signaled by CIP de-asserted). Asserting REF_ACK
at the detection of REF_REQ ensures that the following
access will be a refresh access and prevents the commitment
of any other state. Delaying a refresh request until the end of
a bus access doesn't affect the DRAM operation, since the
refresh period selected is much less than the maximum
refresh period of a DRAM row. The refresh period is every 9.6
usec and the longest access is the delayed block refill with 14
clock cycles (until CIP is removed) which is 0.56 psec. Thus,
the refresh will be serviced at a maximum of 10.16 psec, which
is substantially below the maximum 15.5 psec refresh
requirement of the DRAMs. By the same reasoning, if the
granted access is a delayed access, the RAS signal will be
precharged prior to the 10 psec RAS pulse width maximum
requirements. If a Page Mode Write is granted, it will be retired
in3cycles, or.12psec, and thus RAS will be precharged for the
refresh no longer than 9.72usec after it was asserted.

The refresh access is a CAS-before-RAS refresh in which
all four CAS and RAS signals are issued. The CAS signal is
issued 1 clock cycle before the RAS signal. A refresh access
takes 10 clock cycles. This time is long enough to allow the
RAS signals to be precharged if needed (delayed refresh). A
delayedrefresh has then the same timing as a refresh access.

Figure 11 shows the timing diagrams for the delayed
refresh cycles. GATE_COUNTERcontrols the operation of the
4-bit counter when transitioning between bus accesses and
refresh accesses. It is mainly used in the arbitration phase
when a bus access and refresh access are requested at the
same time.

Reset Cycle

Aresetcycle s initiated by the assertion of the Reset signal.
This is a hardware reset and is used to initialize the PALs to
the correct IDLE state. The RIP signal is asserted on the
following clock edge to inform the machine that a reset cycle
is in progress. After the Reset signal is de-asserted, the RIP
stays asserted and one refresh access is initiated. Atthe end
of this refresh access, the RIP is removed and the state
machine enters the IDLE state. Figure 12 illustrates the timing
diagrams of the reset operation.

Most DRAMs require at least 8 CAS before RAS refresh
accesses priortoaregularaccess, toinsure properinitialization.
The actual state machine provides only one refresh access. It
is the responsibility of the software to ensure that no DRAM
access is made prior to the elapsing of 8 refresh periods from
the refresh timer. This can typically be insured by normal
operation of the boot PROM; however, software could “spin-
lock” for a pre-determined number of loops to insure that
sufficient time has elapsed.

Idle State

The IDLE state is the state in which the machine is not
performingany bus access orarefresh access butis constantly
monitoring the bus for any access request. All the signals are
de-asserted and the 4-bit counter operation is halted.
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CRITICAL TIMING CALCULATIONS

The following is a timing analysis of some of the critical
paths in the DRAM system.

DRAM Data for a Read or block Refill access

As illustrated in all the timing diagrams, the CAS signal is
asserted for only 1 clock cycle for a read or a write access. For
a write access there is no critical timing since the DRAM
latches the data in at the CAS leading edge, and the processor
insures sufficient data hold time by holding data for one cycle
after ACK is detected.

For a read or a block refill access the DRAMs provide the
datatothe R3051 andthe maximum delays mustbe considered.
Figure 13 illustrates the detailed timing for a portion of a block
refill access which is also true for a read access. The R3051
uses the SysClk for its reference with a period Tclk of 40 nsec.
The CAS and the DRAM_LE signals are delayed with respect
to SysClk by the Pal 2 propagation delay T1. The data is
available from the DRAM after T2 (tcac = 25 nsec max). The
critical path requires that the DRAM data be available and
meet the setup time of the transceivers before the DRAM_LE
is asserted. The timing calculation for this data path is as
follows:

Telk = 40.0 nsec

- T1 max =80
=320

- T2 max =25.0
=7.0

- T setup = 3.0 FCT543T data setup time.
=4.0

The available margin is 4.0 nsec. Some 80 nsec DRAMs
have T2 (tcac = 20 nsec) which could offer more margin.

T clk Sample Data edge
]

SYSCLK 1 | I
T1 max T1 min!
- — 1

CAS \

-

T2 max |
DATA FROM DRAM

arA —

—!

T setup

—/

2880 drw 13

DRAM_LE

Figure 13. Read or Block Refill Access

Transceivers Turn Off time

For a read or a block refill access, the DRAMs provide the
data to the R3051 through the latched transceivers. As
illustrated in Figure 7, the R3051 reads the data from the bus
half a clock cycle before it starts a new access in which it can
drive address on the bus. This information is explained in
detail in the R3051 User Manual.

The critical path requires that the transceivers be tri-stated
before the R3051 starts driving the bus in the next clock cycle.
The Datakn signal directly from the R3051 enables the Bto A
output buffers of the transceivers (FCT543T). The DataEn is
delayed by T3 from the falling edge of SysClk at which the
R3051 samples the data (as per R3051 data sheet). The
transceivers disable the output buffers within T4. Figure 14
illustrates the timing for this path.

Tek/ 2 = 20.0 nsec
- T3 max =6.0
=140
- T4 max =9.0
T margin = 5.0 nsec

This margin of 5 nsec is long enough to accommodate for
any SysClk skews.

New access start
—Tek Tck/2
5VSCIK — 1 J 1 | L
|
o 1
DRAM_ACK —\ / .
DRAM_RDCEN —\ /
_J T3 max
(—
_
DATAEN
T4 max
—p
DATA 31:0
DATA FROM FCTB43T
T margin
AD 31:.0 E >
FROM R3051 NEW ADDRESS
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Figure 14. Termination of a Read or Block Refill Access
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DRAM_ACK and DRAM_RDCEN Timings

The DRAM_ACK and the DRAM_RDCEN are issued for
one clock cycle only as illustrated in the timing diagrams. They
are removed by the clock edge which the R3051 uses to
sample them. The R3051 requires that these two signals be
held constant for a minimum of 4 nsec after the clock edge.
These two signals are usually combined with similar signals
from other memory sub-systems (e.g. EPROM) to form one
set that is routed to the R3051. This extra delay, plus the Pal
1 minimum propagation delay are long enough to meet the
R3051 required hold time.

PERFORMANCE

The performance of the different types of R3051 bus
accesses to the DRAM memory is usually measured by the
number of clock cycles it takes to send the Ack back to the
R3051. This time is computed from the beginning of the
external access. The performance of the DRAM system can
be summarized as follows:

* single read: 4 clock cycles.
* block refill: 7 clock cycles.
» firstwrite: 3 clock cycles.
* page write: 2 clock cycles.

The above numbers (with the exception of page write) will
be increased by 2 in the case of delayed accesses.

Thus, relatively high memory performance is obtained with
minimal external logic parts count, and low-cost commodity
DRAM. More aggressive designs could utilize faster DRAMSs,
and techniques such as memory interleaving, to achieve still
higher levels of performance.

CONCLUSION

The R3051 RISController family businterface was designed
to allow memory systems of differing complexity and
performance to be implemented. Even a relatively simple
DRAM system, as the one described here, offers very high
performance. With simple modifications, this approach is
applicable to higher frequencies (33 and 40 Mhz) and to
interleavedmemory systems yielding even higher performance.
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}

TITLE: PAL1

PURPOSE: RAS

AUTHOR : BOB NAPAA, IDT INC.
DATE: 4/5/91

MODULE PALl;
TITLE FPALl;
TYPE AMD 22V10;

INPUTS;

SYSCLKB
ENABLEB
RDB
WRB
BURSTB
RIPB
REFACKB
A22

A21

A20

c3

c2

Cl

Cco

{FEED BACK PINS}
CIPB

RAS3B

RAS2B

RAS1B

RASOB

DRAMWNB
DRAMACKB
DRAMRDCENB

OUTPUTS;

CIPB
RAS3B
RAS2B
RAS1B
RASOB
DRAMWNB
DRAMACKB
DRAMRDCENB

{OUTPUT ENABLES}
CIPBEN

RAS3BEN

RAS2BEN

RAS1BEN

RASOBEN

DRAMWNBEN
DRAMACKBNODE [ PIN22EN] ;
DRAMRDCENBEN

NODE[PIN1];
NODE [PIN2] ;
NODE[PIN3];
NODE [PIN4];
NODE [PIN5] ;
NODE [PIN6] ;
NODE [PIN7];
NODE [PIN8] ;
NODE [PINI] ;
NODE [PIN10]
NODE (PIN11]
NODE[PIN13];
NODE[PIN14]};
NODE [PIN15];

NODE[PIN16] ;
NODE[PIN17];
NODE[PIN18];
NODE [PIN19]
NODE [PIN20]
NODE[PIN21] ;
NODE [PIN22];
NODE [PIN23]

NODE[PIN16] ATTR[RL];
NODE[PIN17] ATTR[RL];
NODE[PIN18] ATTRI[RL];
NODE{PIN19] ATTR[RL];
NODE([PIN20) ATTR[RL];
NODE([PIN21] ATTR[RL];
NODE({PIN22] ATTR[RL];
NODE([PIN23] ATTRIRL];

NODE [PIN16EN] ;
NODE [PIN17EN] ;
NODE [PIN18EN] ;
NODE [PIN19EN] ;
NODE [PIN20EN] ;
NODE [PIN21EN] ;

NODE [PIN23EN] ;
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TERMS;

RAS3BEN
RAS3B NOT

RAS2BEN
RAS2B NOT

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

ENABLEB;
RAS3B AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND
1222 AND A21 AND A20 {read/block refill}

IRAS3B AND !CIPB AND !RDB AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}

RAS3B AND !CIPB AND RIPB AND !DRAMWNB AND !RDB AND

{A22 AND A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}

!RAS3B AND !CIPB AND !RDB AND !BURSTB AND !C3 {keep block refill}
'RAS3B AND !CIPB AND !RDB AND !BURSTB AND !DRAMWNB AND
1IC1 {keep delayed block refill}

RAS3B AND REFACKB AND RIPB AND DRAMWNB AND !WRB AND
'A22 AND A21 AND A20 (write}

RAS3B AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND
{A22 AND A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed write}

!RAS3B AND !WRB AND !CIPB {keep for write}

IRAS3B AND !DRAMWNB AND REFACKB AND RIPB AND RDB AND
WRB AND BURSTB {no access pending}

'RAS3B AND !DRAMWNB AND REFACKB AND RIPB AND !WRB AND
IBURSTB AND !A22 AND A21 AND A20 {keep for page write}
'REFACKB AND CIPB AND !RAS3B AND !DRAMWNB AND CO
{(remove in refresh)

RAS3B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND !C2
AND Cl AND CO ({issue for refresh}

IRAS3B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND !Cl AND !CO ({keep for refresh}

'RAS3B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND !Cl AND CO; ({keep for refresh}

ENABLEB;
RAS2B AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND
'A22 AND A21 AND !A20 {read/block refill)

'RAS2B AND !CIPB AND !RDB AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}

RAS2B AND !CIPB AND RIPB AND !DRAMWNB AND !RDB AND
'1A22 AND A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}

'RAS2B AND !CIPB AND !'RDB AND !BURSTB AND !C3 {keep block refill}
'RAS2B AND !CIPB AND !RDB AND !BURSTB AND !DRAMWNB AND
1C1l{keep delayed block refill}

RAS2B AND REFACKB AND RIPB AND DRAMWNB AND !WRB AND
YA22 AND A21 AND !A20 ({write}

RAS2B AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND
1A22 AND A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed write}

'RAS2B AND !WRB AND !CIPB {keep for write}

'RAS2B AND !DRAMWNB AND REFACKB AND RIPB AND RDB AND
WRB AND BURSTB {no access pending}

'RAS2B AND !DRAMWNB AND REFACKB AND RIPB AND !WRB AND
!BURSTB AND !A22 AND A21 AND !A20 {keep for page write}
'REFACKB AND CIPB AND !RAS2B AND !DRAMWNB AND CO
{remove in refresh}

RAS2B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND !C2
AND Cl AND CO ({issue for refresh}

'RAS2B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND !Cl AND !CO0 {keep for refresh}

!RAS2B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND !Cl1 AND CO; ({keep for refresh}
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RAS1BEN =
RASIB NOT H

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

RASOBEN =

RASOB NOT :=

OR

OR

OR

OR

CR

OR

OR

OR

OR

OR

OR

OR

OR

ENABLEB;

RASIB AND REFACKB AND RIPB AND DRAMWNB AND
'A22 AND !A21 AND A20 ({read/block refill}
'RAS1B AND !CIPB AND !RDB AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}

RAS1B AND !CIPB AND RIPB AND !DRAMWNB AND
'A22 AND !A21 AND A20 AND !C3 AND !C2 AND
{delayed read/delayed block refill}

'{RAS1B AND !CIPB AND !RDB AND !BURSTB AND
'RAS1B AND !CIPB AND !RDB AND !BURSTB AND
!Cl{keep delayed block refill)

RAS1B AND REFACKB AND RIPB AND DRAMWNB AND
'1222 AND !A21 AND A20 (write}

!RDB AND

!RDB AND
ICl AND CO

'C3
!DRAMWNB AND

{WRB AND

RAS1IB AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND

'A22 AND !A21 AND A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed write}

'RAS1IB AND !WRB AND !CIPB {keep for write)

'RAS1B AND !DRAMWNB AND REFACKB AND RIPB AND RDB AND

WRB AND BURSTB {no access pending}

!RAS1B AND !DRAMWNB AND REFACKB AND RIPB AND !WRB AND

'BURSTB AND !A22 AND !A21 AND A20 ({keep for page write}

!'REFACKB AND CIPB AND
{remove in refresh}

{RAS1B AND !DRAMWNB AND CO

RAS1B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND !C2
AND Cl1 AND CO0 {issue for refresh}

'RAS1B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND !Cl AND !CO {keep for refresh)

'RAS1B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND !Cl AND CO; {keep for refresh}

ENABLEB;

RASOB AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND

'1A22 AND !A21 AND !A20 ({read/block refill}

'RASOB AND !CIPB AND !RDB AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}

RASOB AND !CIPB AND RIPB AND !DRAMWNB AND !RDB AND
'A22 AND !A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}

'RASOB AND !CIPB AND !RDB AND !BURSTB AND

'RASOB AND !CIPB AND !RDB AND !BURSTB AND !DRAMWNB AND
1C1 {keep delayed block refill}

RASOB AND REFACKB AND RIPB AND DRAMWNB AND !‘WRB AND
'A22 AND !A21 AND !A20 (write}

RASOB AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND
'A22 AND !A21 AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed write}

IRASOB AND !WRB AND !CIPB {keep for write)}

'RASOB AND !DRAMWNB AND REFACKB AND RIPB AND RDB AND

WRE AND BURSTB {no access pending}

'RASOB AND !DRAMWNB AND REFACKB AND RIPB AND !WRB AND
!BURSTB AND !A22 AND !A21 AND !A20 {keep for page write}
!REFACKB AND CIPB AND !RASOB AND !DRAMWNB AND CO

{remove in refresh}

RASOB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND !C2
AND Cl AND CO {issue for refresh}
'RASOB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND IC1 AND !CO {keep for refresh}
'RASOB AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND !C1 AND CO; (keep for refresh}
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DRAMWNBEN = ENABLEB;
DRAMWNB NOT 1= DRAMWNB AND !CIPB AND RIPB AND !WRB AND !C3 AND !C2 AND
IC1 AND CO {write}
OR {DRAMWNB AND !REFACKB AND CIPB AND RIPB AND !C3 AND !C2
AND !Cl AND !CO{remove at refresh}
OR |DRAMWNB AND RIPB AND !RAS3B {keep asserted if any RAS}
OR 'DRAMWNB AND RIPB AND !RAS2B
OR !DRAMWNB AND RIFB AND !RAS1B
OR 'DRAMWNB AND RIPB AND !RASOB
OR IDRAMWNB AND RIPB AND !RDB AND !CIPB {keep for read)
OR !DRAMWNB AND RIPB AND !WRB AND !CIPB; {keep for write}
DRAMACKBEN = ENABLEB;
DRAMACKB NOT = !CIPB AND !RDB AND DRAMWNB AND BURSTB AND !C3 AND !C2 AND
!Cl AND CO ({read}
CR !CIPB AND !RDB AND !DRAMWNB AND BURSTB AND !C3 AND !C2
AND Cl AND CO ({delayed read}
OR ICIPB AND !RDB AND DRAMWNB AND !BURSTB AND !C3 AND C2 AND
1ICl AND !CO0 {block refill}
OR !CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND C2
AND Cl AND !CO {delayed block refill}
OR ICIPB AND !WRB AND DRAMWNB AND !C3 AND !C2 2AND !Cl AND !CO
{write}
OR ICIPB AND !WRB AND !DRAMWNB AND BURSTB AND !C3 AND !C2
AND Cl AND !CO0 {delayed write}
OR {WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPB AND
CIPB AND !A22 AND !RAS3B {page write}
OR !WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPB AND
CIPB AND !A22 AND !RAS2B {page write}
OR !WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPB AND
CIPB AND !A22 AND !RASIB {page write}
OR {WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPB AND

CIPB AND !A22 AND !RASOB ;{page write)

DRAMRDCENBEN = ENABLEB;
DRAMRDCENB NOT 1= iCIPB AND !RDB AND DRAMWNB AND BURSTB AND !C3 AND !C2 AND
tCl1 AND CO ({read}
OR !ICIPB AND !RDB AND !DRAMWNB AND BURSTB AND !C3 AND !C2
AND Cl AND CO {delayed read}
OR ICIPB AND !RDB AND DRAMWNB AND !BURSTB AND !C3 AND CO
{block refill}
OR ICIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND !C2
AND Cl1 AND CO {delayed block refill}
OR I{CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND C2
AND CO {delayed block refill}
OR ICIPB AND !RDB AND !DRAMWNB AND !BURSTB AND C3 AND !C2

AND !Cl AND CO; {delayed block refill}

CIPBEN = ENABLEB;
CIPB NOT 1= CIPB AND REFACKB AND RIPB AND !RDB AND !A22 ({read}
OR CIPB AND REFACKB AND RIPB AND !WRB AND !A22 {write)}
OR ICIPB AND !RDB {keep for read}
OR {CIPB AND !WRB ;{keep for write}
END;
END PALl.
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TITLE: PAL2

PURPOSE: CAS

AUTHOR: BOB NAPAA, IDT INC.
DATE: 4/5/91

MODULE PAL2;
TITLE PAL2;
TYPE MMI 20RS8;

INPUTS;
{SYSCLKB NODE(PIN1); )
REFACKB NODE [PIN2};
DRAMWNB NODE[PIN3];
BURSTB NODE [PIN4] ;
RIPB NODE [PIN5] ;
CIPB NODE[PIN6] ;
WRB NODE[PIN7];
A21 NODE[PINS8] ;
A20 NODE[PINI];
Cc3 NODE [PIN10];
Cc2 NODE([PIN11];
{OUTENABLEB NODE[PIN13]; }
Ccl NODE[PIN14];
co NODE [PIN23];

{FEED BACK PINS}

CAS3B NODE [PIN22] ;
CAS2B NODE[PIN21];
CAS1B NODE [PIN20] ;
CASOB NODE[PIN19];
DRAMLE NODE [PIN18] ;
DRAMWRB NODE [PIN17];
SB NODE [PIN16] ;
TRB NODE [PIN15];
OUTPUTS;
CAS3B NODE [PIN22] ;
CAS2B NODE [PIN21] ;
CAS1B NODE [PIN20] ;
CASOB NODE [PIN19] ;
DRAMLE NODE [PIN18];
DRAMWRB NODE [PIN17];
SB NODE [PIN16] ;
TRB NODE[PIN15];
TABLE;
CAS3B NOT = CAS3B AND RIPB AND

AND !C3 AND !C2 AND

OR CAS3B AND RIPB AND

AND !C3 AND !C2 AND Cl AND CO0)

OR CAS3B AND RIPB AND

WRB AND !SB AND (A21 AND A20 AND

OR CAS3B AND RIPB AND

WRB AND !SB AND (A21 AND A20 AND CO)

OR CAS3B AND RIPB AND

'WRB AND !SB AND (A21 AND A20 AND

1Co) {page write}

AND DRAMWNB AND (A21 AND A20
{read or write}

!DRAMWNB AND (A21 AND A20
{delayed read/write}

AND DRAMWNB AND

AND CO) {block refill}

AND !DRAMWNB AND
{delayed block refill}

AND !DRAMWNB AND

IC3 AND !C2 AND !Cl AND
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CAS2B NOT

CAS1B NOT

CASOB NOT

DRAMLE NOT

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR
OR
OR
OR

CIPB AND DRAMWNB AND !REFACKB AND CAS3B AND (!C3 AND !C2
AND C1 AND !CO) {refresh)}
CIPB AND DRAMWNB AND !REFACKB AND !CAS3B AND (!C3 AND !C2
AND Cl AND CO0); ({refresh}

CAS2B AND RIPB AND !CIPB AND DRAMWNB AND (A21 AND !A20

AND !C3 AND !C2 AND !Cl AND CO) ({read or write)

CAS2B AND RIPB AND !CIPB AND !DRAMWNB AND (A21 AND !A20

AND !C3 AND !C2 AND Cl1 AND CO0) {delayed read/write}

CAS2B AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND

WRB AND !SB AND (A21 AND !A20 AND !C3 AND CO) {block refill}
CAS2B AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND

WRB AND !SB AND (A21 AND !A20 AND CO) {delayed block refill}
CAS2B AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND

!WRB AND !SB AND (A21 AND !A20 AND !C3 AND !C2 AND !Cl AND
1C0) {page write}

CIPB AND DRAMWNB AND !REFACKB AND CAS2B AND

(1C3 AND !C2 AND Cl1 AND !CO) ({refresh}

CIPB AND DRAMWNB AND !REFACKB AND !CAS2B AND

(!C3 AND !C2 AND Cl AND CO0); ({refresh}

CAS1B AND RIPB AND !CIPB AND DRAMWNB AND (!A21 AND A20

AND !C3 AND !C2 AND!C1 AND CO) {read or write}

CAS1B AND RIPB AND !CIPB AND !DRAMWNB AND (!A21 AND A20

AND !C3 AND !C2 AND Cl AND CO0) {delayed read/write}

CAS1B AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND

WRB AND !SB AND (!A21 AND A20 AND !C3 AND CO) {block refill}
CAS1B AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND

WRB AND !SB AND (!A21 AND A20 AND CO) {delayed block refill)
CAS1B AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND

IWRB AND !SB AND (!A21 AND A20 AND !C3 AND !C2 AND !Cl AND
1C0) {page write}

CIPB AND DRAMWNB AND !REFACKB AND CAS1B AND (!C3 AND !C2

AND Cl AND !CO) ({refresh}

CIPB AND DRAMWNB AND !REFACKB AND !CAS1B AND (!C3 AND !C2

AND Cl AND C0); ({refresh}

CASOB AND RIPB AND !CIPB AND DRAMWNB AND (!A21 AND !A20

AND !C3 AND !C2 AND !Cl AND CO) AND CASOB {read or write}
CASOB AND RIPB AND !CIPB AND !DRAMWNB AND (!A21 AND !'A20

AND !C3 AND !C2 AND Cl AND CO) AND CASOB {delayed read/write}
CASOB AND RIPB AND !CIPB AND !BURSTB AND DRAMWNB AND

WRB AND I!SB AND (!A21 AND !A20 AND !C3 AND CO) {block refill}
CASOB AND RIPB AND (CIPB AND !BURSTB AND !DRAMWNB AND

WRB AND !SB AND (!A21 AND !A20 AND CO0) {delayed block refill}
CASOB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND

'WRB AND !SB AND (!A21 AND !A20 AND !C3 AND !C2 AND !Cl AND
1C0) {page write}

CIPB AND DRAMWNB AND !REFACKB AND CASOB AND (!C3 AND !C2

AND Cl AND !CO)} {refresh}

CIPB AND DRAMWNB AND !REFACKB AND !CASOB AND (!C3 AND !C2

AND Cl AND C0); ({refresh}

TRB AND CAS3B AND CAS2B AND CAS1B AND !CASOB {issue after}
TRB AND !CAS3B AND CAS2B AND CAS1B AND CASOB {any CAS if}
TRB AND CAS3B AND !CAS2B AND CAS1B AND CASOB {read cycle}
TRB AND CAS3B AND CAS2B AND !CAS1B AND CASOB

CAS3B AND CAS2B AND CAS1B AND CASOB;
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DRAMWRB NOT = ICIPB AND RIPB AND !WRB AND DRAMWRB ({issue for write}
OR !WRB AND !BURSTB AND !DRAMWNB AND DRAMWRB AND RIPB
AND REFACKB ({issue for page write}
OR !CIPB AND !DRAMWRB AND CAS3B AND CAS2B AND CAS1B

AND CASOB AND RIPB; ({keep until end of write}

SB NOT = SB AND !CIPB AND DRAMWNB AND (!C3 AND !C2 AND !Cl
AND !CO) (read/write/block refill}
OR ISB AND !CIPB AND !BURSTB AND WRB AND !C3 (keep for block refill}
OR SB AND !CIPB AND !DRAMWNB AND (!C3 AND !C2 AND Cl
AND !CO0) (delayed read/write/block refill}
OR !SB AND !CIPB AND !DRAMWNB AND !BURSTB AND WRB AND
Ic1l {delayed block refill}
OR !SB AND !CIPB AND BURSTB AND WRB AND CO AND CAS3B AND
CAS2B AND CAS1B AND CASOB {read and delayed read}
OR 'SB AND !CIPB AND !WRB AND CAS3B AND CAS2B AND CAS1B AND
CASOB {keep for write)
OR !WRB AND !BURSTB AND !DRAMWNB AND SB AND REFACKB; {page write}
TRB NOT 1= TRB AND !CIPB AND WRB AND DRAMWNB AND (!C3 AND !C2
AND !Cl1 AND !CO) ({read/block refill}
OR TRB AND !CIPB AND WRB AND !DRAMWNB AND SB AND (!C3
AND !C2 AND Cl1 AND !CO0) {delayed read/block refill}
OR ITRB AND !CIPB AND !SB; {keep asserted for read/block refill}
END;
END PAL2.
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TITLE:
PURPOSE:
AUTHOR :
DATE:

PAL3 |
COUNTER
BOB NAPAA,
4/5/91

IDT INC.

MODULE PAL3;
TITLE PAL3;
TYPE MMI 16RS;

INPUTS;

{BSYSCLKB
RESETB
REFREQ
BCIPB
DRAMWNB
{OUTENABLEB

{FEED BACK PINS}

RIPB

Cc3

Cc2

cl

co

REFACKB
GATECOUNTERB

OUTPUTS;

TABLE;

RIPB

c3

c2

cl

Cco

REFACKB
GATECOUNTERB

RIPB NOT

C3 NOT

C2 NoT

NODE[PIN1]; )
NODE [PIN2] ;
NODE [PIN3]};
NODE [PIN4] ;
NODE [PINS5] ;
NODE[PIN11]; }

NODE [PIN18]
NODE [PIN17];
NODE [PIN16];
NODE[PIN15];
NODE [PIN14];
NODE (PIN13];
NODE [PIN12];

NODE[PIN18];
NODE [PIN17];
NODE [PIN16];
NODE [PIN15] ;
NODE [PIN14];
NODE [PIN13];
NODE[PIN12];

:= IRESETB

OR !RIPB AND !RESETB
OR {RIPB AND REFACKB

{reset}

OR IRIPB AND !REFACKB AND

= !GATECOUNTERB AND

1C3;

{keep for reset}
{keep for refresh}

{keep until end of refresh}

!BCIPB AND REFACKB

OR !GATECOUNTERB AND BCIPB

OR GATECOUNTERB AND BCIPB AND REFACKB
OR !C3 AND !C2

OR IC3 AND C2 AND !Cl

OR !C3 AND C2 AND Cl AND !CO

OR C3 AND C2 AND Cl AND CO;

= !GATECOUNTERB AND

!BCIPB AND REFACKB

OR !GATECOUNTERB AND BCIPB

OR GATECOUNTERB AND BCIPB AND REFACKB
OR 1C2 AND !C1l

OR !C2 AND C1 AND !CO

OR C2 AND Cl AND CO;
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Cl NOT := !GATECOUNTERB AND !BCIPB AND REFACKB
OR !GATECOUNTERB AND BCIPB
OR GATECOUNTERB AND BCIPB AND REFACKB
OR IC1 AND !CO
OR Cl AND CO;
C0 NOT 1= !GATECOUNTERB AND I!BCIPB AND REFACKB
OR !{GATECOUNTERB AND BCIPB
OR GATECOUNTERB AND BCIPB AND REFACKB
OR co;
REFACKB NOT = REFACKB AND REFREQ AND RESETB {for refreq}
OR I{REFACKB AND !BCIPB AND RESETB {as long as cipb low}
OR 'REFACKB AND !C3 AND RESETB AND GATECOUNTERB
{keep asserted}
OR REFACKB AND RESETB AND (RIPB (reset}
OR IREFACKB AND !GATECOUNTERB; {keep for reset}
GATECOUNTERB NOT := GATECOUNTERB AND !REFACKB AND !BCIPB AND RIPB
{issue for both refack and cipb}
OR !GATECOUNTERB AND !BCIPB AND RIPB
{keep as long as cipb)}
OR {GATECOUNTERB AND !REFACKB AND RIPB AND C3
OR {GATECOUNTERB AND !REFACKB AND RIPB AND C2
OR {GATECOUNTERB AND !REFACKB AND RIPB AND C1l
OR IGATECOUNTERB AND !REFACKB AND RIPB AND CO;
END;
END PAL3.

58



Integrated Device Technology, Inc.

IDT79R3051™ MAIN MEMORY
AND SYSTEM I/O INTERFACING

APPLICATION
NOTE
AN-92

By Andrew Ng

INTRODUCTION

The IDT79R3051™ RISController™ family provides a
simple, flexible external bus interface to directly support main
memory and system 1/O resources. The bus interface is
straightforward in that it uses a single, multiplexed 32-bit
address and data bus and a small number of supporting
control signals. The bus interface is adaptable in that it can
handle differenttypes and speeds of memoryincluding DRAM,
SRAM, and EPROM and different kinds of /O resources.
Thus the simple, flexible R3051 bus interface allows design-
ers to make optimal trade-offs between system speed and
cost issues.

MAIN MEMORY DESIGN

The R3051 normally accesses its internal instruction and
data cache memories as in Figure 1, while using external main
memory as a secondary source of memory as in Figure 5.
Since the R3051 contains its own internal instruction and data
caches, the complexity of the cache timing and interfacing is
kept on-chip, which allows the external interface to be dedi-
cated to main memory and system I/O interfacing. The system
interface is decoupled from cache memory by the use of an
internal 4-deep read buffer and an internal 4-deep write buffer.
The instruction and data cache allow the R3051 to access 1

instruction and 1 data word on each clock cycle. On reads,
when a cache miss or an uncachable reference occurs, the
R3051 begins an external read cycle which buffers 1 word on
non-burst reads and 4 words at a time on burst reads from
system I/0 and main memory. On writes, the R3051 maintains
a write-through cache update policy which simultaneously
updates both the data cache and main memory. With the use
of its 4-deep write buffer, the R3051 can continue to execute
instructions from its instruction cache while the main memory
retires up to 4 words from the write buffer.

Read and Write Cycle Protocols

The simple read interface allows a wide range of memories
and I/0 to be used with the R3051, from slow I/O peripherals
to high speed burst accessed DRAM and SRAM. As showniin
Figure 2 and 3, the read interface supports both single datum
accesses and 4-word burst accesses simply by providing a
Burst output signal and by providing dedicated LSB address
line outputs Addr(3:2) which are used as a word counter.
System 1/0 or main memory is only required to acknowledge
each of the 4 words with the RdACEn input which is used as a
read clock enable to latch each word into the 4-deep read
buffer. Read interfacing also has the option of using the Ack

BrCond(3:0)

‘

Clkexin_, Gecnlgrcaktor | Master Pipeline Control — General Registers (32 x 32)
Unit | ALU
Exception/Control Registers Shifter
Memory Management Registers Mult/Div Unit
Int (5:0) Translation Lookaside Buffer Addrass Adder
g (64 Entries) PC Control
t Virtual Address
Physical Address Bus
2 // Instruction Data 32//
Cache Cache
(8KB/4kB) (2kB)
’ Data Bus o
v [)
BUS INTERFACE UNIT
> 4-deep 4-deep DMA BIU
Write Buffer Read Buffer Arbiter Control 2881 drw 01
Address/ DMA Rd/Wr SysClk
Data Ctrl Ctrl

Figure 1. R3051 RISControiler Internal Architecture

The IDT logo is a registered trademark and RISController, R3051, R3052, and BICEMOS are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademark and R3000 is a trademark of MIPS Computer Systems, Inc.
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acknowledge input signal to optimally control when the R3051
core restarts its pipeline on burst read cycles.

The simple write interface allows a wide range of memories
and /O to be used with the R3051 by buffering writes from the
R3051 core which are done atcache speeds. This allows main
memory and I/O to retire write cycles attheir own rate of speed
by returning Ack, to acknowledge that the word has been
received as shown in Figure 4.

Basic System Functional Blocks

The following sections will describe the functional blocks
that are typical of R3051 main memory and system /O
interfacing. As shown in Figure 5 these blocks include:

* Address De-multiplexing

* Address Decoding and Chip Selection

» Data Transceivers

* Wait-State Controller and Interface Handshaking

* Read/Write Enables and Strobes

The discussion concentrates on the generalinterface blocks
involved when using the following modules:

¢ SRAM Interfacing
* DRAM Interfacing
* EPROM Interfacing

* |/O Interfacing
¢ DMA Interfacing

Specific information on using the different memory and
1/0 types is presented in detail in other application notes.

ADDRESS DE-MULTIPLEXER AND DECODER

The R3051 uses a multiplexed A/D(31:0) bus to output its
address and to send and receive data. Thus main memory
must de-multiplex the address by using the R3051’s Address
Latch Enable control signal, ALE, before decoding the ad-
dress to select chip enables.

Latching A/D(31:0)

Transparent latches such as the IDT54/74FCT373 and the
IDT54/74FCT841 pass inputs straight through to the outputs
when their Latch Enable input is high. When their Latch
Enable input is low, the data in the latches are held constant.
The R3051 provides the ALE output for direct connection to
thetransparentlatches’ Latch Enable pins. Transparentlatches
are typically used to allow address decoding to take place
when ALE is high and the address begins to become valid,
instead of waiting until the latch closes.

The Address Latch Enable, ALE, is designed to clock the
address into a transparent latch such as the FCT373. ALE is

SysClk \ /—\__/_\_/
Rd \ L/
A/D(31:0) { Addr&BE —(Data lnpu?--(
Addr(3:2) X Word Address X
ALE / \ /
DataEn \ /
Burst
RdCEn \ /
Ack \ _/
Start Tum Ack/ Sample New
Read Bus RdCEn Data Transaction
2881 drw 02
Figure 2. R3051 Single Word Read
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sk \__/ N/ \_/ __/ 7/ 7
Rd \ /T
A/D(31:0) { Addr&BE —(Word 0) (Word 1j\ (Vlord 2)——@——(:
Addr(3:2) X ‘00" X lor (X i X 11 X
ALE /—_\ /—
DataEn \ /_ 3
RaCEn AU VAR VAL VARLNY/]
= \_

2880 drw 03

Figure 3. R3051 4 Word Burst Read

also designed to meet the address hold time of latches. As
with all high speed processors, ALE should be considered a
critical signal. Thus Printed Circuit Board routing should
minimize ALE’s trace length and crosstalk susceptibility.

Decoding A(31:0)

Address decoding, which selects between the various
memory and I/0 banks in the system, can be done with IDT54/
74FCT138/139 decoders as shown in Figure 6.

The time for the main memory chip selects to become valid
in such a scheme is:

tDecode =max (t3051ALEProp-+1373LEtoO, t3051AddrProp+1373Dt00)
+ t138At0O + tCap

Systems that require the chip selects to not have decoding
glitches while the address drives to a valid value can register
the decoder outputs by using SysClk as the clock and a
CycleStart signal as the clock enable. The CycleStart signalis
derived from the Rd and Wr control lines so that it asserts at
the beginning of every memory cycle.

Decoding Byte Enables with Chip Selects

During the address phase, the R3051 uses the lower 4 bits
of the multiplexed A/D(31:0) bus to output BE(3:0). Byte
enables are used to determine which bytes of each word are
being read or written to support partial word accesses. Be-
cause BE(3:0) are used throughout the memory cycle, they

are latched by ALE along with the other A/D bits.

In general, it is permissible to process all reads as 32-bit
reads—the processor will only take the data it requested from
the bus. However, in write operations, the system mustinsure
that only the specified bytes are written. Thus, the byte enable
outputs are used to control this.

There are two ways in which the byte enables may be used:

* Gate the byte enables with the memory chip selects.
Thus, only those bytes of memories which will be written
are selected. A single write enable can then be presented
to all banks of that memory subsystem. This solution
requires that each memory sub-system further decode
the chip-selects, and thus one decoder per memory sub-
system is required.

Gate the byte enables with the memory chips read/write
enables/strobes. Thus, although all of the devices in that
bank of memory are “selected”, only those bytes to be
written are enabled for the writes. This is a common
strategy in DRAM sub-systems. Note that the individual
byte strobes may be broadcast to all memory systems,
and the address decoder will insure that only one sub-
system is “Selected”. Thus, a single decoder for byte
enables can serve the entire memory system.

If the memories being used are 1-bit to 8-bits wide, gating
the byte enables with the chip selects can be done. Because
the byte enables are predetermined within the R3051 by using
the LSB address bits, the endianness of the system, and the
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2881 drw 04
Figure 4. R3051 Single Word Write
———>1 Reset
——»j Clk2xin
——p1 [NT(5:0) IDT R3051/E52/E
_’ BrCond (3'.0) RISController™
——b1 BusReq Soret
‘  BusGnt RdCEn  WrNear
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DRAM Controlter
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I/O Devices/
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Figure 5. R3051 with Main Memory
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FCT244 | A@:2
Addr(3:2) —» BUFFER (3:2)
8 | Fkcri3s =
— 7—*| becoper [ C5(7:0)
A(31:4)
' FCT373 s FAR1:2)
A/D(31:0) — | ATcH BE(3:0) »>BE(3:0)
ALE > -_F 2881 drw 06

Figure 6. Address De-multiplexer and Decoder

type of load or store instruction, the byte enables have the
same timing as the rest of the A/D lines during the address
phase when ALE is asserted. This allows a memory decoder
to have individual chip selects for each byte of each bank with
no timing penalty. An example is shown in Figure 7.

As gating the byte enables with the chip selects usually
takes more output pins than gating the byte enables with the
read and write enables, the latter is usually preferred. The use
of byte enables with read/write enables willbe discussed inthe
read/write enable/strobe section.

Using Addr(3:2)

Since the lower 4 A/D bits are used for byte enables during
the R3051’s address phase, the R3051 provides the informa-
tion for addressing words through its Addr(3:2) output pins.
The R3051 uses 4 bytes per word and pre-decodes the byte
enablesinstead of providingthe 2 LSB addresslines. Addr(3:2)
are driven throughout external bus cycles and do not require
latching. During non-burst read cycles and all write cycles,
Addr(3:2) contains the instruction cache miss address. The
advantage of dedicating output pins for Addr(3:2) is that
during burst read cycles, Addr(3:2) are incremented from 0 to
3 by the R3051 RdCEn protocol so that the system memory
system does not have to provide a counter for this function.

Since each memory chip requires Addr(3:2), large memory
systems that use Addr(3:2) extensively may want to use
buffers. A common strategy may be to provide a buffered
version of Addr(3:2) to non-time critical areas of memory (e.g.
the boot prom), or to areas which do not perform burst
accesses (I/O devices), and directly use the outputs of the
R3051 in time-critical areas such as the DRAM control.

The crossover point where buffering is appropriate can be
determined by determining if the delay through an IDT54/
74FCT244 buffer and the capacitive derating from all the

Addr(3:2) inputs driven by the buffer (Addr(3:2) can be buff-
ered for separate branches of memory banks) would be less
than the delay from the capacitive derating from all the
Addr(3:2) inputs driven directly from the R3051. In addition,
the crossover doesn’t occur until Addr(3:2) is delayed past
when rest of the A(31:4) lines reach their inputs.

t3051Addr(3:2) + t244 + t244Cap < max(t3051Addr(3:2) +
t3051Cap, tA(31:4))

where:
t244Cap = (sum(CinpuvOutput) + C244 + tTrace - 50 )/33 pf/nsec
13051Cap = (sum(Cinput/Output) + C3051 + tTrace - 25 )/25 pfinsec

Using Diag(1:0)

Some systems may need to know whether a read cycle is
cachable or uncachable and whether a cachable read cycle is
an instruction or a data fetch. In Figure 8, this information is
provided by latching the diagnostic pins, Diag(1:0) with the
same latch controls as the address lines. These signals are
useful for:

« Decoding whether a reference to the lowest half GB of
physical memory is from ksegO or kseg1.

* Tracing processor execution by knowing which address
caused the |-Cache miss.

DATA TRANSCEIVERS

The R3051 uses a multiplexed A/D(31:0) bus to output its
address and to send and receive data. Thus main memory
must drive or receive data after the R3051 has tri-stated its
address. Further, to support high-performance memory sys-
tems, the R3051 family is capable of initiating a new bus
transaction one-half clock cycle after data is sampled for a
read operation.
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Determining if Data Transceivers are needed

Multiplexed CPU busses often use data transceivers to
separate the memory system from the processor bus. Read
cycles require the memory system to stop driving data on the
A/D bus before the processor drives the next memory cycle’s
address. Slow memories with relatively long output disable
times cannot meet this limitation without data transceivers.
However, some memories, such as the IDT71B256
BiCEMOS™ 32Kx8 Static RAM, have very short access time
and output disable time which makes it possible to consider
attaching memory device data I/O pins directly to the multi-
plexed A/D(31:0) bus. Alternatively, in low frequency systems,
the amount of time provided by the R3051 may be sufficient
for the memory devices attached to the bus.

The key parameter is the memory outputdisable time, TOZ,
which has to be less than 1/2 clock to disable before the next
memory’s address is driven. In addition the address and data
driven from the R3051 is delayed because of the extra
capacitance of the memory data I/O pins.

t0z < tsysCik/2 - tDisableControl + Min{t3051Addr)

Data Transceivers also serve to isolate memory banks
from each other. In systems with varying speeds of memory,
transceiver banks can be used to separate chips with rela-
tively long output disable times from those with relatively quick
output disable times. Thus in many systems, fast scratch-pad
SRAMs may have their own set of transceivers, while slower
EPROMs and /O peripherals might have a separate set of
transceivers.

BE(0) —————»|Ea  O0a|— TS(0)BE(0)
Ofa|— CS(1)BE(0)
) 2, A0a 0O%2a|—p CS(2)BE(0)
A(31:2) 7 PlA1a O3al - CS5(3)BE(0)
FCT139

DECODER
BE(1) ®|Eb  Qob|— TS(0)BE(1)
Q1h —® CS(1)BE(1)
»| AOb  Q2b—® CS(2)BE(1)
Alb  O3bf—" CS(3)BE(1)
BE(2) Ea  00a|— CS(0)BE(2)
Otal— CS(1)BE(2)
.| A0a  O2a|— CS(2)BE(2)
PlA1a  O3a|— CS(3)BE(2)

FCT139

DECODER
BE() &6 Gop|— CS(O)BE)
O1b {— CS(1)BE(3)
»{ AOb  0O2b [— CS(2)BE(3)
Alb  O3b[— CS(3)BE(3)
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Figure 7. Gating Byte Enables with Chip Selects

Using IDT54/74FCT861’s and IDT54/
74FCT245’s for Data Transceivers

Most systems will use slower memories and thus require
data buffering through a transceiver interface. There are two
basic families of transceiver interfaces:

1: IDT54/74FCT861 with separate enable pins for each
direction
2: IDT54/74FCT245 with a direction pin and an enable pin

Using IDT54/74FCT861’s for Data
Transceivers

The 10-bittransceiver FCT861 approach functionally com-
bines two 10-bit tri-statable FCT827 buffers internally. The
8-bit FCT623T transceiveris similarto the FCT861 except that
one of its output enables is active high. On read cycles, if there
is only one transceiver bank, then DataEn can be used directly
to control the read direction output enable. Otherwise, combi-
nationallogic such as an FCT157/257 multiplexer can be used
to combine DataEn with the chip selects of the bank whose
transceivers need to be enabled (see Figure 16 for a similar
common input OR gate circuit). Alternatively, some transceiv-
ers, such as the 9-bit IDT54/74FCT863 and the 8-bit IDT54/
74FCT543 have two logically AND’ed output enables for each
direction so that DatakEn and the bank chip select can be
hooked up directly to the transceiver. State machines usingan
inverted SysClk can also use a Rd derived signal to synchro-
nously assert and de-assert the read direction output enable.

The write direction output enable can use a signal derived
from Wr which asserts at the beginning of the cycle and waits
until after the data has been strobed into the memory or I/O
device before de-asserting to provide sufficient data setup
and hold time. For systems with 1 wait-state or more, the
derived write direction enable signal shouldideally assert after
the A/D bus finishes driving its address phase to reduce
switching noise.

The transceiver control’s critical timing pathis the transition
from a read cycle to a write cycle. After a read cycle, slower
memory chips take a relatively long time to disable from the
data bus. If the next memory cycle is a write, the transceivers
will drive data onto the same bus. Such systems can use the
second memory cycle's wait-states to delay the assertion of
the transceiver's write direction output enable until the first
memory cycle’s memory has fully disabled. The cutoff for

FCT373
or
FCT841

Diag{0)———] —— RdInst

Diag(1)—¥/ — RdCache

LATCH

ALE ——¥ 2881 drw 08

Figure 8. Latching Diag(1:0)
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Figure 9a. Timing Diagram of FCT861 Read Direction Enable
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Figure 9b. Timing Diagram of FCT861 Write Direction Enable
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determining if the memory output disable time is small enough
to require no wait-states is:

tSysClk >= tDisableContro! + tMemReadDisable - tWriteData

Systems that use memory chips without an output enable
pin (i.e., a read is implied for every chip select with no write
enable) require special transceiver interfacing in order to
support partial word writes. During partial word writes, where
only some of the bytes are selected for writing, bytes which are
notbeing written may actually output onto their byte lanes, and
thus conflict with the transceiver write direction outputs. In
such memory sub-systems, there are two options: only chip
selectthose devices actually being writteninto; or, only enable
those transceivers whose byte lanes are used in this write
transfer. Either of these solutions will insure that no bus
conflict oceurs.

Using IDT54/74FCT245'’s for Data
Transceivers

The 8-bit FCT245 transceiver approach ideally requires
that the direction control only be changed when the outputs
are disabled to prevent bus contention. Although such sys-
tems are easy to design, this general discussion uses the
following assumptions:

1: Either a SysClk or SysClk based state machine is used.
2: The memories require at least 1 wait-state.

The output enable of an FCT245 needs to be determined
by finding the start and end of the memory cycle, which can be
determined by logically AND'ing Rd and Wr. The assertion of
the output enable can be easily delayed to occur well after the
transfer, depending on the number of wait-states in the
memory controller. That is, the transceiver only needs to be
enabled in time to allow the data to propagate through to the
CPU as the read data response is finally returned to the
processor. In read cycles, the output may be disabled using
the same clock edge as is used by the CPU to negate Rd. On
write transactions, the transceiver must be enabled until the
data set-up and hold time requirements of the memory being
written are met, which may extend until the next falling edge
of SysClk (note for the R3051, the processor guarantees that
valid data will remain for one-half clock cycle afterthe negation
of Wr).

The T/R direction pin of the FCT245 should be asserted
before the output enable asserts, which can be achieved by
using a Rd or Wr derived signal. The direction should be held
untilthe next clock edge after Rd or Wrde-asserts; that is, until
after the output enable is de-asserted..

SysCk L_/_—\\__/ \L / \ /_\__/ \_/
Mo\ /
A/D(31:0) VA Addr&BE /\Data Input )--( ( )
Addr(3:2) )( Word Address
ALE 7\ /~\
DataEn /
RACEn \_ _/
245DirT/R
245En
Start Turn  Ack? Ack? Ack/ Sample End 2881 dw 11
Read Bus RACEn Data Read

Figure 10a. Timing Diagram of FCT245 Enable and T/R Direction Controls for a Read
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Figure 10b. Timing Diagram of FCT245 Enable and T/R Direction Controls for a Write

Systems that use memories without a dedicated output
enable pin require separate byte output enables in the data
path, as discussed above.

PULL-DOWN/UP RESISTORS ON R3051
OUTPUTS

The R3051 tri-states its outputs under three conditions:

1: If no external read or write memory cycles are being
executed, the A/D bus will tri-state. Control signal outputs
will be driven to negated states.

2: [f a DMA bus grant is given, all bus interface outputs will
tri-state.

3: If the Tri-State reset mode has been invoked, all outputs
except SysClk will be tri-stated.

The following paragraphs detail which outputs are affected
when the R3051 is in a tri-stated condition.

Pull-down/up Resistors on the A/D Bus

The R3051 tri-states the A/D bus when it finishes a write (or
read) cycle and thére is not another pending memory cycle
thatit needs to execute. This situation occurs when the R3051
is getting instructions from its internal instruction cache and it
executes a sequence without store instructions. Since the A/
D bus can be tri-stated for these periods, it is desirable for the
input pins of the address latches and data transceivers to
maintain the A/D bus with defined, valid logic values by using
pull-up/pull-down resistors. The use of pull-up or pull-down

resistors also has the benefit of easing Automatic Test Equip-
ment programming on board-level and in-circuit tests.

Pull-down/up Resistors on Control Lines
for DMA

The R3051 has an on-chip Direct Memory Access (DMA)
arbiter that allows outside processors and controllers to take
control of the external memory systems, and perform transac-
tions. It does this by indicating a request to the R3051, which
then tri-states its bus interface to allow it to be driven by the
external agent.

During DMA, the R3051 will execute instructions from its
internal caches untilithas acache miss, makes an uncacheable
reference, or its write buffer becomes full.

An external agent requests bus mastership by asserting
the R3051 BusReq input. If BusReq is asserted by the DMA
device, the R3051 tri-states its outputs and asserts BusGnt to
signal to the DMA device so that it can begin to drive its own
memory cycles. During DMA, the R3051 tri-states all outputs
except SysClk and BusGnt. During the time that the R3051
and the DMA controller transfer control back and forth, neither
one drives the control line outputs (to avoid bus conflicts). In
order to properly transfer control, the R3051 control outputs
should be kept in their de-asserted state. If the transfer time
is relatively short, the system designer may choose to rely on
bus capacitance to hold these signals in their negated posi-
tions. Alternatively, amore conservative strategy is to hold the
bus in a negated position with pull-down or pull-up resistors.
Thus Rd, Wr, Burst/WrNear, and DataEn should use pull-up
resistors and ALE should use a pull-down resistor.
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Puil-down/up Resistors on Control Lines for
Tri-State

The R3051 has a reset mode vector which allows the chip
totri-state allits outputs, except SysClk. This mode is attained
by asserting Tri-State via SInt(1) while Reset is asserted. In
addition to the control lines above, BusGnt is tri-stated. Thus
for Automatic Test Equipment programming on board-level
and in-circuit testing, a pull-up resistor for BusGnt can be
used. .

WAIT-STATE CONTROLLER LOGIC

Wait-states are used to extend the number of clocks within
a memory transfer to provide sufficient memory access and
data setup time for the particular type of memory being
accessed. Such control can be provided with a wait-state
controller state machine. In general, a wait-state machine has
four steps:

1:
2:

Detect the beginning of a memory cycle

Determine the type of cycle:

a: Which chip select (address decode)

b: Read or write

c: Single word or burst, write near or non-page write
Count out cycles until memory is ready and assert R3051
handshaking signals

Acknowledge the end the cycle

Thus, the basic control strategy is to use a counter which is
held at zero until a cycle is started, and which then increments
every clock cycle until the transfer is completed. This master
counter then provides the reference by which control outputs
to the memory, data path, and CPU are provided.

R3051’s use of both Clock Edges

The R3051 uses both edges of the clock to assert and de-
assert its control signals. This is to ameliorate the fixup time
between memory cycles, which for most processors, takes 1
full clock cycle. The R3051 is able to do the fixup in 1/2 clock
cycle. This would seem to complicate the design of state
machines which must latch these signals synchronously to
one edge or the other. However, as will be shown in the
following sections, a traditional state machine that follows a
small number of simple design rules can still use a single edge
clock.

The R3051 uses an input clock, Clk2xIn, that runs at twice
the frequency of the processor. The R3051 provides an output
clock, SysClk, that runs at the same frequency as the proces-
sor and can be used to clock external state machines. The
polarity of SysClk was chosen intentionally so that either an
unbuffered SysClk or an inverted version of SysClk, (referred
to here as SysClk) can be used. Because all the R3051 control
outputs have very short propagation delays (less than 1/2
clock), a state machine can use either edge of SysClk.

In developing the set of constraints brought on by the use
of both the rising and falling clock edges, some observations
can be made:

1: Aliclockable control line outputs, except DataEn assert off
the rising edge of SysClk.

2: All clockable control line outputs de-assert off the falling
edge of SysClk.

3: All control line inputs required by the R3051 are sampled
on the rising edge of SysClk.

Observations 1 and 2 can be specifically applied to two of
the primary control signals, Rd and Wr.

1: E and E both assert off the rising edge of SysCik.
2: Rd and Wr both de-assert off the falling edge of SysClk.

The similarity of edge assertions for Rd and Wr can be used
to simplify the wait-state controller.

Detecting the Beginning of a Memory Cycle

State machines looking forthe beginning of amemory cycle
can look for one of two things:

1: Rd or Wr asserting
2: ALE asserting

In general, state machines have to choose between using
SysClk and SysClk. State machines such as those imple-
mented in ASICs can use both clock edges, however, to
simplify the discussion it will be assumed that only one or the
other clocks is being used. If SysCIk is used, certain registers
must use SysClk directly from the processor to provide suffi-
cient hold time from the processor. Only a negative edge
clocked register can synchronously clock ALE under worst
case timing, since ALE is only high surrounding the falling
SysClk edge which requires a negative edge triggered flip-
flop. SysClk cannot be used because its inverter delay will put
it past when ALE could fall.

Machines which use SysClk (the inverted SysClk) will have
a delay from inverting SysClk. All state machines can use Rd
and Wr to determine the beginning of a cycle. SysClk ma-
chines are able to do this easily with wide margins on setup
and hold times to its registers. SysClk machines must use
SysClk directly from the processor and use registers with 0
holdtime and also have a guaranteed minimum clock to output
delay to meet the R3051's input hold time.

Determining the type of Memory Cycle

The type of memory cycle usually depends on the following
variables:

1: Type of memory
2: Read or write cycle
3: Burst or non-burst, write near or non-page write

These three variables are usually logically AND’ed to-
gether to form equations for determining the number of
wait-states before asserting RACEn, Ack, or BusError as well
as any transceiver controls. The chip selects from the memory
decoder canbe usedto determine the type of memory to count
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Figure 11. State Diagram of an Example Wait-State Controller for a Single Memory Type

the correct number of wait-states. By using the R3051’s Rd
and Wr fines, the transceiver controls can be defined. Onread
cycles, the R3051’s Burst/WrNear line determines if 1 word or
4 words are to be returned. On write cycles, BurstWrNear
determines if a consecutive write is on the same 256 word
page as its predecessor. An example of a state transition
diagram that uses the read/write and burst/non-burst vari-
ables for one memory type is shown in Figure 11. Each
memory type in the system also has a state diagram.

Further variables that affect the type of memory cycle are
implied by the mode initialization vector which is supplied
during processor reset initialization. The variables determine
whether the data byte ordering is Big or Little Endian and
whether data cache miss refills are handled one word at a time
or as 4 word block refill reads. BigEndian and DBRefill are set
by multiplexing the interrupt lines on the de-assertion of reset,
an example of which is shown in Figure 12

The mode vector of the R3051 was chosen to allow it to be
supplied by just using pull-up resistors on the appropriate
interrupt inputs. For example, the multiplexer shown in Figure
12 could be eliminated, and the pull-up resistors tied directly
to the Sint(2:0) pins.

Note that to maintain compatibility with future versions of
the R3051 family, Int(5:3) should be high when Reset is de-
asserted. This also can be performed using pull-up resistors.

Memory Interface Handshaking

The R3051 uses two inputs, RACEn and Ack,to indicate
that the memory system is ready to receive or return data. On
read cycles, RACEn is sampled on the rising edge of SysClk

by the R3051 so that it can enable its internal read buffer clock
on the next falling edge of SysClk. Thus on single word reads,
asingle RACEn is asserted as the memory becomes ready as
shown in Figures 2 and 11. On 4 word burst reads, RdCEn is
assertedfor each ofthe 4 words. Thus on burst reads, the wait-
state controller can optionally “throttle” each word into the
R3051 by delaying the return of each word by a varying
number of clocks. RACEn can be generated by gating the
memory type and the count:

RdCERN not := Reset and CycleEnd and BusError and (
({RamCS and 'Rd
and ( (Counter == 02H)
or (IBurstWrNearand (Counter==03H))
or({BurstWrNearand (Counter==04H))
or (!BurstWrNearand (Counter==05H))

The acknowledge input, Ack, has two uses. On burstreads,
Ack can be used to optimize the processor execution engine
restart. On writes, Ack is used to signal the end of the cycle,
as will be explained later. The R3051 throttles burst reads into
its internal read buffer at the rate of the memory system;
however, it reads data from the read buffer on every clock
cycle. Therefore, the R3051 will either wait until the 4th RACEn
has occurred to begin reading the internal read buffer, or until
the memory system signals Ack to the processor. Asserting
Ack on a burst read cycle causes the R3051 to start reading
words from the read buffer in the next cycle; thus, the memory
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Figure 12. Reset Vector Circuit

system times the assertion of Ack so that the 4th word can be
presented by the memory system just beforeitis read fromthe
read buffer. Thus for optimal speed burstreads, Ack should be
asserted 3 clocks before the last RdCEn occurs, as shown in
Figure 3.

On write cycles, Ack is sampled on the rising edge of
SysClk by the R3051 so that the cycle ends on the next falling
edge of SysClk as shown in Figure 4. Ack is used by the wait-
state controller on write cycles to acknowledge that data is
being strobed into memory. Ack can be generated by gating
the memory type and count.

Note that in writes, the WrNear output from the processor
may also affect the write timing. For example, when writing to
Page Mode DRAMs, it will be possible to retire near writes
faster than non-near writes.

An example of generating Ack from gating the memory type
and count is:

Ack not := Reset and CycleEnd and BusError and (
('RamCS and Wr
and ( ( Burst/WrNear and (Counter ==

or(!Burst/WrNearand (Counter==

03H))
02H))
)

)
('/RamCS and |Rd

and ( (!Burst/WrNear and (Counter ==

or
02H))
)

)

Stopping the Counting

Four common ways to end the memory cycle and stop the
counter include:
1: Usea SysClk state machine and look for the de-asserting
edge of Rd or Wr

Use a SysClk state machine and gate the type of cycle into
the counter to reset it independently of the de-asserting
edge of Rd and Wr (predict the end of the cycle)

3. Use registers with asynchronous resets and gate Rd and
Wr into the reset
4: Interlock a SysClk register looking for the asserting edge

of Rd or Wr with a SysCIk register looking for the de-
asserting edge of Rd or Wr

In method 1, the SysCIk registering of Rd or Wr is straight-
forward. However, if the counting is based on SysClk, the state
machine will not be able to bring Ack or RdCEn low during the
first possible clock cycle that they are sampled for by the
R3051. This is, because the state machine will not detect the
assertion of Rd or Wrin time. This implies that a SysClk based
state machine willhave a minimum of one or more wait-states.

Inmethod 2, SysClk based state machines must determine
when to stop counting independent of the de-assertion of Rd
or Wr. In general al they cannot use Rd or Wr to terminate the
cycle because Rd or Wr may de-assert within the buffered
(inverter delayed) SysCIk register’s setup or hold time. Thus
SysClk based state machines should use its counter to
determine when the cycle will end, e.g., with CycleEnd.
CycleEnd or a similar signal uses the chip selects and a
counter to determine the end of the memory cycle, without
using the de-asserting edges of Rd and Wr. Logic equations
for CycleEnd and the LSB of an N-bit binary up counter look
like:

CycleEnd not := Reset and CycleEnd and (
{'RamCS and (Counter == 02H) and !Rd and Burst)
{('RamCS and (Counter == 05H) and !Rd and !Burst)
(!RamCS and (Counter == 03H) and IWr and Burst)
({RamCSand (Counter==02H) and IWr and /Burst)
({Bus Error Timeout} (Counter == OFH))

%

Counter(0) := Reset and CycleEnd and BusError and (IRd or IWr)
and (Counter(0)xor1)

A Timing Diagram of CycleEnd showing how CycleEnd
asserting at the end of the memory cycle will reset the wait-
state counter independently of Rd and Wr is shown in
Figure 13.

Counters using CycleEnd use the type of cycle to deter-
mine when the wait-state counter should stop and reset
independent of the de-asserting edge of Rd or Wr.

Wait-state machines implemented in ASICs can consider
usingmethod 4 which involves interlocking SysClk and SysClk
based registers as shown in Figure 15. ASICs can also
selectively combine two independent SysClk and SysClk
state machines to avoid 1/2 cycle interlock timing constraints.

Bus Errors

Bus errors can be handled by timing out with the wait-state
controller counter as it is about to overflow. For all types of
memory cycles, the R3051 de-asserts its control edges, e.g.,
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Figure 13. Timing Diagram of CycleEnd

Rd or Wr, on the clock following the assertion of BusError.
SysClk based state machines can look for the de-asserting
edge of Rd or Wr in order to reset the wait-state machine’s
counter. In SysClk based state machines, BusError can di-
rectly reset the wait-state machine’s counter or the overflow
countcan be usedto assert CycleEnd which will thenreset the
counter.

Bus errors signal an exception to the R3051 only if it is a
read cycle. If exceptions need to be noted for write or DMA
cycles, BusError should be gated into an interrupt line. The
interrupt must be held until the R3051 can acknowledge it,
since the R3051 re-registers its interrupt inputs on each clock
cycle in which it is executing instructions in its run or fixup
state.

READ ENABLES AND WRITE ENABLES

Memories and I/O devices have a combination of chip
selects, read enables, and write enables to drive data out of
the device and to strobe data into the device. Because the
exact timing and functions of the selects, enables, and strobes
differ for DRAM, SRAM, and /0, this section discusses read
and write enables and their relationship to the byte enables.

Read Enables

Ingeneral, amemory or I/O device has an output enable pin
to enable its data outputs on a read cycle. Typical designs will
address all 8-bit and 16-bit /0 devices using 32-bit word
addressed, (i.e., use Addr(3:2) as their LSBs). Even though
the R3051 produces byte enables on read cycles, itis rare to
require use of the byte enables for reads as the R3051 will
internally mask the bytes not being used. The output enable
for the device can be derived from Rd or from Datakn.

If more than one memory device uses a single transceiver,
itmay be necessary to generate device Output Enables using
a delayed version of DataEn. If one of the memory or I/O
devices has a long output disable to tri-state time, then extra
time must be allowed for that device to tri-state before another
deviceis enabled. An equation determining if the read enables
should be delayed on a back to back read cycle is:

tSysClk >= tDisableControl + tOldMemoryDisable - tNewMemoryData +
tCap

The output enable control should be asserted at least until
the clock cycle that Rd and DatakEn de-assert to provide
sufficient data hold time to the R3051.
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Figure 14. Using CycleEnd in a SysClk Based Counter
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Figure 15. Using Interlocked Registers
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Gating Write Enables and Byte Enables

Memory and /O devices have a write enable pin or a similar
protocol to strobe data into the device. A special case occurs
forpartial word stores, where only the pertinent bytes of aword
have their byte enables asserted. Partial word stores occur
when a store byte, store half-word, or store tri-byte instruction
is executed. Because of the efficiency and optimization capa-
bilities of modern compilers, such as the MIPS™ and IDT
Compilers for the R3000™ family, the hardware must always
assume that the software will make use of the partial word
store instructions. Thus the write enables (or as shown earlier
the chip selects) of each byte of a word must be gated with
their respective byte enables. Gating the byte enables into the
write enables can be done with an FCT157/257 multiplexer by
configuring it as a set of four OR gates with a common input
term as shown in Figure 16. The write enable signal can be
derived from Wr.

5V
BEO) N3
> FeTis7
J— Ha or
BE(1) > ,p FCT257
> L —» WrEn(3:0
_ 12 MULTI- rEn(3:.0)
BE(2) 126 PLEXER
—_ 13a
BE(3) >113b
> SEL
4
WrEn > WrEn
2881dw 18

Figure 16. Gating Byte Enables into the Write Enables

SUMMARY

The main memory interface of the R3051 is conventional

and simple. Basic blocks include address de-multiplexing,
address decoding, data transceivers, wait-state controller, as
well as the memory and /O modules themselves. The R3051’s
uses both edges of the clock for control signals to reduce inter-
cycle latency. Thus conventional wait-state controller
algorithms can be used if the following guidelines are fol-
lowed:
1. In SysClk based wait-state controllers, the input clock
should be unbuffered from the processor's SysClk output.
SysClk controllers will have a minimum of 1 or more wait-
states. SysClk registers require small hold time and a
minimum clock to output propagation delay to meet the
R3051 input hold time.

In SysClk (inverted version of processor SysClk output)
based wait-state controllers, the master reference counter
must be reset independently of the de-asserting edges of
Rd or Wr. This can be done by gating the memory type and
cycle type into a CycleEnd output which deterministically
resets the counter.

The R3051’s integration of an instruction cache, a data
cache, read buffers, and write buffers allows simple main
memory interfacing which can be implemented using a small
amount of external logic. Thus the R3051 reduces the cost
and board size of RISC processing, while maintaining very
high throughput.
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OVERVIEW

The IDTR3051™ family is a series of high-performance 32-
bit microprocessors featuring a high-level integration and
high-performance. The R3051 family integrates the MIPS
R3000A™ RISC CPU, along with 8KB of instruction cache
and 2KB of data cache. The R3051 family uses a simple time-
multiplexed 32-bit address and data bus to provide a low cost
system interface (and to minimize the cost of ASIC devices
designed to interface with the processor). In order to minimize
the impact of a time-multiplexed bus, the R3051 family incor-
porates a 4-deep read buffer and 4-deep write buffer into the
interface, allowing relatively slow memory systems to be
mated to a high-speed processor. The R3051 family is able to

offer 35 MIPS of integer performance at 40MHz without
requiring external SRAM or caches.

The R3051 family is designed to bring the high-perfor-
mance inherent in the MIPS RISC architecture into low cost
simplified embedded applications such as laser printers,
X-Window terminals and network bridges and routers. Figure
1 illustrates the simplified block diagram of the R3051-based
X-Window terminal.

The focus of this application note to describe the interface
between the R3051 and National Semiconductor's System
Oriented Network Interface Controller(SONIC).
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The SONIC™ is National Semiconductor’s System: Ori-
ented Network Interface Controller (DP83932). This Ethernet
controller is intended to provide a high performance 32 or
16-bit Ethernet connection for systems that require efficient,
high throughput, low power network connectivity. The SONIC
can be employed in an R3051-based system, in order to
tightly couple the system’'s CPU and main memory to the
network. Figure 2 depicts this interface.

The SONIC is ideally suited to embedded processing
applications such as X-Terminals, due to its unique feature
set. The SONIC completely supports all the required specifi-
cations set forth in the IEEE 802.3 standard, including the
Media Access Control (MAC) requirements contained in the

IEEE 802.3 layer management specification. Additionally,
SONIC's high performance DMA channels allow it to use a
very small percentage of the bus bandwidth, while its efficient
linked list buffer management scheme limits the number of
descriptor and data fetches required. It is also important to
note that the SONIC utilizes internal content addressable
memory (CAM) to provide a 100% perfect address filter for
both multicast and physical address packets. This alleviates
the need to waste bus bandwidth, memory space, and CPU
time on unwanted packets. Finally, the SONIC contains an
integrated Manchester encoder/decoder, which is required in
all Ethernet applications. This provides a savings in board
space, as well as improved reliability.
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Figure 2. SONIC Interface to the R3051
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FUNCTIONAL OVERVIEW

System Interface

‘The R3051 has a multiplexed 32-bit address and data bus.
Sincethe SONIC's address and data buses are demultiplexed,
it is necessary to employ a set of external latches to connect
the SONIC to the processor’s address and data buses. In
many applications, these latches may also be used to
demultiplex the R3051 bus to other parts of the system
memory and I/O.

In order to allow the R3051 to have access to the SONIC's
internal registers, as well as allow the SONIC to gain contro!
of the system bus and perform DMA operations, the SONIC is
interfaced to the system bus as both a slave and a master. As
a slave, the SONIC appears as a block of 256 bytes, consist-
ing of sixty-four 32 bit words. The SONIC can be mapped into
any location of memory and will typically provide for a 7 cycle
register access. In R3051 applications, the SONIC will typi-
cally be mapped into the processor kseg1, which is an
unmapped, uncached address space typically used for pro-
cessor I/O resources.

As a master, the SONIC will arbitrate with the R3051 for
ownership of the bus and proceed to operate as a 32-bit DMA
engine between the network and the system memory. While
operating on the bus, the SONIC is capable of performing
32-bit/3 cycle DMA operations. It is important to note that the
ability to place the SONIC on the same bus as the R3051 and
the system memory is critical: this eliminates the need for
the Ethernet controller to have a local buffer, which the CPU
must spend time and bandwidth to transfer to main memory.
The ability of the SONIC to place data directly in main memory
and communicate with the CPU through linked list descriptors,
as well as register accesses, makes the SONIC/R3051 inter-
face CPU and bandwidth efficient.

Network Interface

With respect to the physical layer design, both AUI drop
cable Ethernet and thin wire Ethernet are supported. The
block diagram in Figure 2 contains a 15 pin AUl drop cable
connector for standard drop cable Ethernetimplementations,
as well as a thin wire Ethernet connection via the National
Semiconductor coaxial transceiver interface (CTl, DP8392).
Either of these network connections can be chosen through
the use of a single jumper between the 5 volt supply and the
5 volt to -9 volt DC-to-DC converter. In either case, the AUl
signals (RX+, TX+, and CD+) are sent back to the SONIC.
These signals are interfaced to the ENDEC portion of the
SONIC, which provides for communication between the AUI
interface and the non-return to zero (NRZ) signals (RXD,TXD,
and COL) of the Media Access Control (MAC) module of the
SONIC. It should be noted that the integrated ENDEC module
of the SONIC alleviates the need for an external Ethernet
Manchesterencoder/decoder, such as National’s CMOS Serial
Network Interface (CMOS SNI, DP83910).

ARCHITECTURE AND DESIGN

Bus Interface

The SONIC's bus interface can be externally configured to
operate in one of two modes. If the SONIC's BMODE pin is
tied to ground, the SONIC will operate on the bus exactly like
an 80386 microprocessor. If the SONIC’s BMODE pin is tied
to 5 volts, the SONIC will operate on the bus exactly like a
68030 microprocessor. In this design, the most appropriate
mode of operation was achieved by connecting BMODE to 5
volts.

The bus interface, as depicted in Figure 3, consists of 2
parts. There is an address bus interface and a data bus
interface. Since the R3051’s address and data buses are
multiplexed, it is necessary to utilize a set of '244 buffers and
'373 latches to multiplex the SONIC busses onto the CPU bus.
The '244 buffers are required to tri-state the SONIC’s address
lines from the system bus during the data portion of master
transfers, while the '373 is required to latch the register
addresses being sent to the SONIC during slave operations.
The output enable signal of the '244 is asserted when the
SONIC is the master of the bus and both the SONIC's address
strobe (AS) is asserted and the master logic’s address latch
enable (ALE) signal is asserted. The '373 should latch the
address when the R3051 is the bus master and it asserts its
ALE signal.

The data bus interface requires the use of 2 sets of ‘244
buffers. The first set of buffers (Buffer 1) prevent the SONIC
from placing data onto the system’s multiplexed address and
data bus prematurely. In the slave mode of operation, the
output buffer is enabled once the address output drivers are
tri-stated. This is signaled by the assertion of the DataEn
signal. In the case of a master operation, the buffers are
enabled once the address buffers external to the SONIC are
tri-stated, which takes place upon the deassertion of the ALE
signal.

The second set of buffers is enabled when the SONIC's
registers are being written by the R3051 and data is being
presented on the multiplexed system address/data bus, or
when the SONIC is reading system memory and the memory
is placing data on the multiplexed address / data bus. The
assertion of the DataEn signal by the system signals that data
isnow ableto be placed on the bus. The actual logic represen-
tation for the bus interface can be found in the bus interface
logic segment of the Control Logic section of this application
note.

Slave Operation

The timing diagram for a slave access of the SONIC is
shown in Figure 4. The falling edge of the R3051’s ALE signal
latches the output of an address decoder and the address
lines being passed to the register address lines of the SONIC.
If the address decode selects the SONIC, a signal called
“AdrDec” will be asserted. The logic for generating this signal
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Figure 6. Bus Request Timing Diagram

is shown in Figure 5. The value of this signal is passed to the
chip select (CS) and slave address strobe (SAS) signals of the
SONIC on the rising edge of the bus clock. The acknowledge
signals back to the R3051 (ACK for a write and RdCEn for a
read) are asserted 2 clocks after the SONIC generates its
slave acknowledge signal (SMACK). These signals remain
asserted to the R3051 for a clock cycle, after which they are
removed. The ACK and RACEn signals inform the R3051 that
the data has been latched or is valid, respectively. The
deassertion of these signals results in the deassertion of CS
and SASto the SONIC. The logic for implementing this part of
the design can be found in the slave logic segment of the
Control Logic section.

Master Operation

The first step in designing the master interface is imple-
menting the bus request logic. The timing diagram for this is
shown in Figure 6. The bus request (BR) signal of the SONIC
is passed to the R3051's bus request (BusReq) on the falling
edge of the bus clock. The SONIC then waits for the bus grant

(BusGnt) from the R3051, which is passed directly to the
SONIC’s bus grant (BG) signal. The assertion of BG causes
the SONIC to assert bus grant acknowledge (BGACK) and
begin its master DMA operations. It is important to note that
the assertion of BGACK causes the SONIC to deassert BR,
which would cause the bus requestlogic to deassert BG to the
SONIC. Thus, the BusReq signal to the R3051 should be the
logical “OR” of the SONIC BR and BGAck outputs. A block
diagram of the bus request logic appears in Figure 7, while the
actual illustration of the logic is found in the bus request logic
segment of the Control Logic section.

Once the SONIC has gained control of the bus, it will begin
to perform master DMA operations, as illustrated in the
Figure 9 timing diagram. Ideally, if the memory is fast enough,
the SONIC will be able to perform 3 cycle DMA. At 25 MHz,
less than 3.75% of the bus’ bandwidth willbe consumed by the
network interface.

There are two very important points to note. First, the
R3051's ACK signal is basically equivalent to the SONIC's
DSACK signals, but the SONIC’s DSACK signals require that
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the memory system provide a total of 8 ns hold time from the
rising edge of the clock, while the R3051 requires only 4 ns.
Second, the ALE signal generated from the SONIC's control
signals will be deasserted 3 ns later than the R3051’s would
be. However, this should not be a significant factor, since the
address set-up and hold time providedto the memory system’s
latches is consistent with the R3051’s specification.

When interfacing to the multiplexed bus, it is necessary for
the master logic to generate an ALE signal for the system bus.
The ALE signal is asserted on the rising edge of the second
cycleinthe SONIC's memory access. Itis necessary to assert
the ALE in this cycle, in order to guarantee that the latch will
be provided with an adequate amount of set-up time for the
address. The ALE signal is then removed on the falling edge
of the same clock cycle. The deassertion of ALE triggers the
assertion of DataEn on aread operation, in order to inform the
memory that the bus' address drivers are tri-stated and data
can now be driven. The DataEn signal is actually arrived at by
delaying the the ALE signal through a buffer or PAL, since the

ALE signal is also responsible for disabling the output buffers
of the address drivers.

The final piece of interface logic is used to make the
SONIC's read and write (MR/W) strobe compatible with the
R3051’s read (Rd) and write (Wr) signals. The SONIC's read/
write signal is passed to the appropriate read or write strobe
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Figure 7. Bus Request Interface Block Diagram
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Figure 9. Master Interface Block Diagram

of the system bus, on the falling edge of AS. The Rd or Wr
signal is then deasserted on the falling edge of the last clock
cycle. The block diagram for the master interface is found in
Figure 9, while the logical implementation is shown in the
master interface logic segment of the Control Logic section.

Physical Layer

Figure 10 contains a block diagram of the physical layer
interface, while a schematic of the physical layer design is
located on the last page of this application note. This design
can be used in either a thin wire or standard drop cable
Ethernet environment. When the design is used in a thin wire
Ethernet application, the 5 volt supply must be connected to
the DC-to-DC converter, so that the necessary —9 volt output
can be supplied to National Semiconductor’s Coaxial Trans-

ceiver Interface (CTI, DP8392). The CTl provides an interface
between the 10 MHz Manchester encoded coax cable and the
10MHzManchesterencoded differential signals ofthe SONIC’s
ENDEC. In the case of a standard drop cable Ethernet
application, the 5 volt supply is left unconnected, so that the
CTI will not receive power. This allows the signals of the
SONIC’s ENDEC to pass directly to the AUI cable, via the 15
pin AUI connector. In examining the schematic of the physical
layer design, it can be seen that there is a pulse transformer
atthe AUl side of the CTI. This is placed here to isolate the CTlI
from the SONIC’s ENDEC signals, when the AUI drop cable
connection is being employed. This transformer also provides
the IEEE 802.3 specified isolation between the coax and the
differential AUI signals, when thin wire Ethernet is being used.
It is also necessary to provide a termination for the 78Q AUI
cable’s differential receive and collision pair (RX+ and CD =).
This is the reason for the 39Q —1%resistors and .01pF
capacitors that are shown in Figure 10.

Additionally, there are 2 more significant considerations.
First, each one of the transmit pairs (TX+ and TX-) requires a
270Q non-precision pulldown resistor to complete the internal
source follower amplifiers that drive these signals. Second,
there is an isolation transformer placed between the differen-
tial signals of the SONIC’s ENDEC and the AUI cable. This
isolation is necessary to guarantee that the SONIC meets the
|EEE 802.3 fail safe specification of a 16V DC level appearing
on the AUI cable’s differential signals. This external isolation
is necessary, because in the powered down state the CMOS
process, in which the SONIC is manufactured, may not be
able to withstand this voltage.
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Figure 10. Physical Layer Interface Block Diagram
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Control Logic

This application note was developed with the intention of in state machine form, as opposed to being partitioned into
displaying the necessary requirements for interfacing the actual PAL devices. This leaves the freedom for the designer
SONIC to the R3051 system bus. Therefore, the actual to incorporate this logic into his / her system in PALs, ASICs, |
implementation of the control logic will be graphically depicted FPGASs, etc.

BUS INTERFACE LOGIC
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case 1 case 2

Note:
1. Q1 refers to the first state machine bit and Q2 refers to the second state machine bit (10: Q14=1 & Q2* = 0)
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SLAVE INTERFACE LOGIC
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MASTER INTERFACE LOGIC
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INTRODUCTION

This application note describes the behavior of the R3051’s
multiplexed Address/Data, “A/D” bus and presents the issues
of a particular topic called “Bus Turn Around.” Bus Turn
Around will be defined, design issues will be presented, and
design solutions will be given for conventional R3051 sys-
tems, as wellas a “DMA BusReq” design solution for very low
speed and very high speed systems.

Definition of the R3051

The IDT79R3051™ RISController™ is a highly integrated
MIPS™ R3000™ instruction set compatible microprocessor
that minimizes system cost and power consumption. The
R3051 includes 4kB to 8kB of instruction cache, 2kB of data
cache, an optional on-chip TLB memory management unit, 4-
deep read and write buffers, on-chip DMA arbitration, a simple
external bus interface, as well as the R3000A CPU execution
engine — all in a single compact plastic 84-pin package.

Definition of the A/D Bus

One of the key features of the R3051 is its low pin count.
The low pin count is largely a result of its simple control
interface and its use of a multiplexed Address and Data bus,
called A/D(31:0). As shownin Figures 1 and 2, the multiplexed
A/D bus drives its address during the first phase of a read or
write memory cycle. Inthe 2nd phase of a read memory cycle,
the CPU expects the external memory system to drive the bus

Address Phase

SysCk _—\_/—\_
ALE / \

andreturn the data. Inthe 2nd phase of a write memory cycle,
the CPU drives the data out to the memory system. Thus in
a typical R3051 system, the address can be latched using a
bank of transparent latches such as with the 54/74FCT373T
or 54/74FCT841T as shown in Figures 4 and 5 so that the
address is de-multiplexed from the data lines.

In systems using an ASIC, such as for a DRAM or DMA
Controller or as an Integrated I/O Subsystem/Controller with
on-chip programmable registers, the multiplexed A/D bus has
an advantage over separate Address and Data busses in that
the ASIC requires substantially fewer pins. The ASIC can
latch the 32 Address bits internally, using the Address Latch
Enable output from the CPU called “ALE", and then use the
same input pins to provide data. Inaddition, the CPUhasless
noise from simultaneous switching of the 32 A/D lines than if
it had to switch 64 separate Address and Data lines. Thus
R3051 systems can often save cost and space by using
inexpensive and low pin count ASICs.

Although a multiplexed bus may be thought of as a disad-
vantage in terms of system performance, thisis rarely the case
in R3051 systems. An analysis of memory behavior and the
bus shows that in conventional memory systems (those that
do notuse exclusively high-speed, single cycle SRAMs for the
entire memory system), the R3051 bus structure causes no
real performance loss.
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Figure 1. R3051 Read Cycle
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Figure 2. R3051 Write Cycle

For example, conventional memory systems use the ad-
dress before the data is generated on read cycles or needed
by write cycles. Onread cycles, the address is always needed
before the data array can be accessed. The multiplexed
R3051 bus provides the address as early as a non-multi-
plexed bus would; thus, the read access is not delayed. Since
memory read performance is described as “Address and
Chip-Select valid to Data Available”, the multiplexed bus
causes no performance loss on reads.

Similarly, on write cycles, most memories (except for self-
timed memories) require the address before the data in order
to properly coordinate the write strobe with the correct internal
row and column address decode/selects. The R3051 bus
provides the write target address for one-half cycle, and then
immediately presents the write data. That half cycle is
required to perform address decoding, and to provide a Chip-
Select to the memory device. Thus, once the address and
Chip-Select are available to the memory, the data is also
available.

Further, the R3051 decouples the system bus performance
from processor performance based on the integration of on-
- chip resources. Specifically, the large on-chip caches mini-
mize the number of main memory reads, thus making system
read performance less criticial. The on-chip 4-deep write
buffer isolates the processor from the memory system write
speed, allowing it to continue execution while store operations
are actually updated into the memory. Thus, R3051 perfor-
mance, while somewhat dependant on memory system per-
formance, is largely isolated from the memory system. Thus,
high-performance systems using relatively slow EPROM and
DRAM devices can be easily realized.

Definition of Bus Turn Around

The other consequence of a multiplexed bus arises from
the factthat during a particular transaction, as well as from one
transaction to the next, transitions between sources of the bus
can occur. For example, a read transaction begins with the
processor driving the address on the bus, and ends with the

memory driving the data on the bus. Similarly, atthe end of a
read, the next transaction on the bus will begin again with the
CPU driving an address on the bus.

Note that similar concerns are present even for non-
multiplexed busses. For example, a read followed by a write
results in the data bus first being driven by the memory, and
then being driven by the CPU. Thus, bus turn-around is also
a consideration in non-multiplexed bus systems.

Bus Turn Around behavior is the action that the CPU takes
when its address/data bus transitions between the CPU and
the memory, particularly when it changes direction from being
a driver to being a non-driver or vice-versa. The actions that
the CPU can take are:

1. Drive the address.
2. Drive the data.
3. Tri-state.

There are two basic times when the A/D bus will transition:
1. Intra-Cycle — Within a memory cycle as the address
phase transitions into the data phase.
2. Inter-Cycle — Between two memory cycles when the
data phase transitions into the address phase of the
next memory cycle.

Intra-Cycle Bus Turn Around

A typical case of an address to data transition happens
during a read cycle. As shown in Figure 1, when the Address
Latch Enable (ALE) is negated, the address is externally
latched and the CPU turns the bus around by tri-stating the A/
D bus, so that the external memory system can begin to drive
the expected data back to the CPU. The second case occurs
during write cycles when the CPU finishes drivingthe address,
it begins driving the data to the memory system. Since the
CPU drives both the address and data during write cycles, bus
turn around is not a significant issue during write cycles. The
two intra-cycle transition cases are listed in Table 1, which
shows the state of the CPU A/D output buffers during the
address and data phases of the transaction.
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Note that the processor provides an output, DatakEn, to
indicate that this transaction has occurred. During the ad-
dressing phase, DataEn is negated, indicating the CPU is
driving the A/D bus. During the Data Phase, DataEn is
asserted, indicating that the bus is to be driven by the external
memory system. During write cycles, and during idle cycles,
DataEn is guaranteed to be negated, indicating that the
external memory system should not be driving the A/D bus.

many of the cases, such as the transitions after writes have
both the data and address driven by the CPU. Thus bus turn
around is not a significant issue after write cycles. Other
transitions may not actually be possible. For example, it is
impossible to have a read followed by aread. Atleastoneidle
cycle is required, to accomodate the internal fix-up cycle
required by the processor (see the R3051 Hardware User's
Manual for more detail).

READ AZ From To | READ WRITE DMA IDLE

WRITE AD READ ZA ZA Y4 ZZ

Note: A — Address, D — Data, Z — Tri-State WRITE D,A D,A D,Zz D,Z
Table 1. R3051 Address to Data Bus Transitional Behavior DMA ZA ZA 2z 2z
Within Memory Cycles IDLE ZA ZA 2z zZ

Inter-Cycle Bus Turn Around

Atypical case of the transition between two memory cycles
occurs on a read cycle that is immediately followed by a write
cycle as shown in Figure 3. In this case, the memory system
is required to turn the bus around by tri-stating the bus before
the next write cycle begins to drive its address onto the A/D
lines. Table 2 lists the R3051’s behavior on each of the cases
of inter-cycle memory transitions. The table lists the state of
the CPU output buffers at the end of the first transaction,
followed by the state of the buffers at the beginning of the next
transaction. Note that if a read or write cycle occurs while the
CPU is executing instructions from its internal cache, the next
external memory cycle might not occur untilmany clocks later,
in which case the A/D bus is tri-stated since it is idle. Also,

Read Cycle

TBTA

Note: A — Address, D — Data, Z — Tri-State

Table 2. R3051 Data to Address Bus Transitional Behavior Between
Memory Transactions

TYPICAL SYSTEMS AND BUS TURN AROUND

To handle the timing associated with the bus turn around
within a memory cycle, the Data Enable output, DataEn is
provided by the R3051. As shown in Figure 1, on read cycles,
DataEn gives an indication when the CPU has tri-stated the
A/D bus. Thus after DatakEn asserts, the memory system can
begin driving data onto the A/D bus. The system designercan
also look for the rising clock edge of SysCIk after Rd asserts
before allowing the memory system to drive data.

Write Cycle

Address Phase Data Phase

Address Phase Data Phase

s« \n_/ N1/ N~V /S S

ALE / \

— —

—

YX——

Data
{trom CPU)

Rd \L /

Wr T1/2SysClk \

. -~ ;

AID(ET:0) e, ) ot )€K 85 X
DataEn
Tpatakn

RdCEn \ /

‘Ack \__/

\n__/

2531drw 03

Figure 3. R3051 Read Cycle Followed by a Write Cycle
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To handle the timing associated with the bus turn around
between two memory transactions, consider the case of a
read cycle immediately followed by a write cycle. The read
cycle output enable control of the memory system must be
such that the output drivers of the memory system turn off
within 1/2 clock before the next address is driven by the write
cycle. If the memory devices have an output disable to tri-
state time (ToEz) of more than 1/2 clock, then they can be
isolated from the A/D bus with a bank of data transceivers
suchasthe 54/74FCT245T, 54/74FCT861, or54/74FCT623T
or with latched data transceivers such as the 54/74FCT543T
or54/74FCT646T as shownin Figure 4. All of these transceiv-
ers have very fast output disable times.

VERY FAST SysClk OR VERY SLOW ToEz AND
BUS TURN AROUND
The majority of systems will use evenly matched memories

relative to the system clock speed or use transceivers. How-
ever, two exceptions may occur:

1. Very Fast SysClk — Even with the highest speed
transceivers, their output disable times (TOEz) are
around 5-8 nsec. Thus at 40 MHz, if DataEn is used, it
has a clock to de-assert time of 4 nsec. (Assume that
the transceiver has two internally And’ed output enable
inputs. For example, as shown in Figure 4, the
FCT543T transceiver bank can use DataEn and the
bank select for inputs to the output enables). If 1 nsec is

allowed for clock skew, this just meets the worst case
timing criterion of:

T1/2SysClk (12.5) = TDataEn + TOEZ + TCIkSkew + TCap
(4+6.5+1+0)

Some choices of transceiver and PLA-based outputenable
control combinations may need more time than is allowed by
the above equation. Solutions to this problem will be givenin
the section below, “Using DMA BusReq to Match CPU and
Memory Speeds.”

2. Very Slow Memories — The second case occurs when
relatively slow ToEz memories are attached directly to
the A/D bus as shown in Figure 5. Such systems require
these memories to turn off within 1/2 clock. A 20 MHz
R3051 has a Tpataen for the de-asserting edge of DatakEn
of 7 nsec. Assume that additional output enable control
circuitry adds an additional delay of 10 nsec. 1 nsec is
allowed for clock skew. Foran inexpensive, slow 120
nsec EPROM, the output disable time is about 50 nsec,
which seems to limit the clock speed to about 7 MHz:

T1/2SysClk (71.4) 2 TDataEn + TOutputEnableControl + TOEZ +
TClkSkew + TCap (7+10+50+1+0)

However, as will be explained below in the section called,
“Using DMA BusReq to Match CPU and Memory Speeds,” the
overall CPU speed does not have to be slowed down just
because a slow TOEz memory is attached directly to the A/D
bus.
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USING DMA BusReq TO MATCH CPU AND
MEMORY SPEEDS

For systems with very fast SysCIk or very slow memories,
a solution exists to the bus turn around timing constraints by
using the Direct Memory Access (DMA) interface on the
R3051. The R3051 DMA interface consists of two pins called
BusReq and BusGnt as shown in Figure 6. Normally these
pins are used for giving an external device control of the CPU
bus instead of giving control of the bus to the R3051. In the
R3051, when BusReq is asserted, DMA always has the
highest priority immediately after the current memory cycle
completes. The BusReq inputis always sampled on the rising
edge of SysClk. After the BusGnt is given, all of the CPU
control line outputs, except SysClk and BusGnt are tri-stated.
When the DMA device is finished with the bus, it de-asserts
BusReq whichthen causes the CPUto de-assert BusGnt. The
BusGntoutput is always asserted on the rising edge of SysClk
and de-asserted on the falling edge of SysClk.

Because a BusReq always has the highest priority, ina very
fast SysClk system or a very slow memory system, asserting
BusReq during the read cycle insures that the DMA request
will always be granted at the end of the read cycle. After this
happens, the BusReq pin can be de-asserted after the desired
number of inter-cycle wait-states have been inserted. For
example, as shown in Figure 7, by attaching the buffered read

line, Rd to BusReq, the R3051 will grant the BusReq and
immediately release it. Note that Rd needs to be buffered to
meet the hold time of the BusReq input. Examine Figure 3,
where a write cycle normally can follow a read cycle after 0.5
clocks and then compare it with Figure 7. In Figure 7, by using
BusReq, it can be seen that a minimum of 1.5 clocks is
guaranteed before the next memory cycle is started by the
CPU.

Note that when using DMA, the system may choose to
resistively pull-up or down its control signals since the DMA
when granted will tri-state the CPU control output signals.
Thus ALE could use a pull-down, while Rd, Wr, DataEn, and
BurstiWrNear could use pull-ups. The resistor value of the
pull-ups and pull-down is not that critical since the R3051
always drives the control signals to their de-asserted states
before tri-stating them. Also, if the BusReq is needed for
conventional DMA, a fixed-priority based arbiter can be used
to allow bus turn around wait-state injection the highest priority
and to allow conventional DMA the next priority.

Various improvements can be made to using the Rd line for
BusReq. For example, instead of using the buffered Rd line,
use the decoded chip select of the particularmemory (e.g., the
EPROM) that has the relatively slow Togz. Thus the extra
wait-states are only asserted as needed (thatis, after the slow
memory is accessed).
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Figure 5. R3051 Memory System Connected Directly to the A/D Bus
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Figure 6. R3051 DMA BusReq and BusGnt Timing
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SUMMARY

The R3051 allows inexpensive systems to be designed
with the high throughput R3000 RISC instruction set architec-
ture. The small 84-pin count is achieved with a multiplexed
address and data bus, called “A/D”. The use of the multi-
plexed A/Dbus allows ASICs and Memory Controllers such as
the R3721 DRAM Controller to have fewer interface pins, with
no real loss of system performance or real added complexity.
However, as forany high-speed bus (either multiplexed or not)
care has to be taken to avoid bus clashes as the bus transi-

tions from one device to another. This applications note
describes these considerations.

As shown in the text, the use of the A/D bus does not
inherently limit the overall clock speed of the system, since
eithertransceivers, or the described method of usingthe DMA
BusReq input gives a solution for memory/CPU mismatches.
Thus any memory or I/O system can use the multiplexed A/D
bus and be designed to run at the full CPU clock frequency.
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FOR FURTHER INFORMATION:

1. IDT79R3051 Family Hardware User's Manual,
Integrated Device Technology, Inc., MAN-RISC-00051,
Santa Clara, CA, 1991. — Describes the H/W features
and functionality of the device as well the bus interface.

2. IDT 1991 RISC Data Book, Integrated Device
Technology, DBK-RISC-00021, Integrated Device
Technology, Inc., Santa Clara, CA, 1991, — Contains
the data sheet with packaging, pinout, AC/DC electrical
and thermal parameters.

3. G. Kane, MIPS RISC Architecture, Prentice Hall,
Englewood Cliffs, NJ, 1988. — Describes the R3000/
R3051 instruction set architecture from a systems and
assembly level programming perspective.

4. IDT 1991 Logic Data Book, Integrated Device
Technologylnc., Santa Clara, CA, 1991. — Contains the
data sheets of many different high-speed FCT transceiv-
ers, latches, and buffers.
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1 USING THE R3081" IN APPLICATION
At R3051™-BASED SYSTEMS NOTE
: AN-109
Integrated Device Technology, Inc.
By Peter McDonald

INTRODUCTION

The IDT79R3081™ RISController™ is the newest member
of IDT’s family of high-performance and price-competitive 32-
bit microprocessors. Designed to provide the high-perfor-
mance MIPS® RISC architecture to low-cost and system
integration-sensitive solutions, this processor adds to the
growing family of RiSControllers from IDT. The R3081
RISController is superset and pin compatible with the R3051/
52, and includes 20kB of cache, a Floating-Point Accelerator,
Hardware Cache Coherency support, and a series of system
integration and interface features.

With its larger caches, FPA and interface features, incorpo-
rating the R3081 inan existing R3051 design can dramatically
increase system performance without adding design com-
plexity. Often upgrading to the R3081 is as simple as placing
an R3081 in the R3051 socket. This applications note
describes common considerations when upgrading existing
R3051 systems with the R3081. As an example, this applica-
tion note describes how to upgrade the 7RS385 evaluation
board from an R3051 processor to an R3081 processor.

NEW FEATURES BROUGHT BY THE R3081

The R3081 is superset pin-compatible with the R3051.
That is, in general it is possible to remove an R3051 from a
system and replace it with an R3081. The system should run
without any hardware or software changes. However, the
R3081 adds additional capabilities to the R3051 family; some
systems may wish to take explicit steps to take advantage of
these new capabilities.

Before discussing system changes needed to implement
the superset features of the R3081, a definition of these
capabilities is needed. As mentioned above, the R3081
includes larger Instruction and Data Caches, a Floating-Point
Accelerator, Hardware Cache Coherency support, and a
series of integrated control options. All the hardware options
are selected by either the mode initialization vectors (values
sampled on the interrupt input lines during reset) or pro-
grammed through the new CP0 Configuration register. Below
is a summary of the new R3081 features. A more detailed list
of these features along with a list of the differences between
the R3051 and R3081 are included in the IDT79R3081/3081E
Integrated RISController Hardware User's Manual.

» Larger Instruction and Data Caches
The R3081 instruction and data caches total 20kB. The
default (reset) configuration is 16kBIl and 4kBD, although
they are dynamically programmable to 8kB apiece. Both
instruction and data caches are parity protected over the

The IDT logo is a registered trademark and IDT79R3051, IDT79R3081, IDT/c, IDT/sim, IDT/it and RISController are of

All others are trademarks of their respective companies.

.
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data and tag fields. This differs from the R3051, in that both
caches are larger than the caches supported by the R3051
or R3052, the cache is configurable and the caches are
parity protected.

Addition of a Floating-Point Accelerator

A full-featured R3010A-compatible floating-point accelera-
tor is incorporated on the R3081 adding single- and double-
precision add, multiply, and divide instructions to the in-
struction set. Which of the six integer unit Interrupts inputs
is used for the floating-point interrupt signal is program-
mable. Int3is the default FP interrupt. Thus, one of the six
interrupt inputs of the R3051 is used for the floating-point
interrupt and coprocessor 1 instructions will be directly
executed by the on-chip floating-point units.

Cache Coherency Interface

The R3081 has a hardware-based cache coherency inter-
face for multi-master systems. If selected, DMA cycles
between memory and I/O can invalidate lines within the
R3081 cache, insuring that there is no stale data and
avoiding software directed cache flushing. This mechanism
can be disabled to achieve full R3051 compatibility; alter-
nately, the system designer can choose to increase the
performance of multi-master systems, by performing hard-
ware cache coherency.

Power Reduction Mode

The R3081 RISController can be dynamically programmed
to reduce its operation frequency. [n this mode the execu-
tion clock, and therefore the output clock, is internally
divided by 16. This function allows the power reduction
benefits of a lower speed clock to be achieved during idle
periods, without requiring external clock shaping logic.
Programmable Halt Mode

This programmable mode forces the R3081 RISController
to stall until either an interrupt or reset is issued. This mode
has two effects: it further reduces power consumption; and,
it allows software to halt until some external event occurs.
Half-Frequency Bus Mode

A selectable mode allows the R3081 bus interface to
operate at one-half the frequency of the processor core. For
example, the execution core can run at 33MHz, and the bus
interface at 16MHz. Given the substantial amount of cache
on-chip, the slow system interface will not dramatically
degrade performance. The end result is a high-perfor-
mance system with very low system cost.

1x or 2x Clock Input

The R3081 can operate with either an R3051 compatible
double-frequency clock input (2x clock mode), or can oper-
ate from a clock at the execution rate (1x clock mode). This
capability both simplifies EMI at high frequency, and also

Device T y, Inc.
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allows for “clock doubling” when used in conjunction with
the one-half frequency bus mode.

Slow Bus Turnaround

A common problem for a high-speed I/O bus is the amount
oftime available for mastership changes. The R3081 allows
software to specify a larger minimumtime whentransitioning
from the memory driving the bus (i.e. read data) and the
processor driving the bus (e.g. writes). This reduces the
speed requirement of data transceivers, with minimal per-
formance impact.

Dynamically programmed data cache refill

The R3081 allows software to dynamically select between
single word and quad word refill on data cache miss. This
allows for additional performance tuning, by enabling the
kernel to select the best algorithm for a given section of
code. The default refill size is selected at reset time, the
same as for the R3051.

POSSIBLE CHANGES

The R3081 hardware options are either mode selectable at
reset or programmed through an internal register. Hardware
cache coherency support and all clocking modes, half-fre-
quency bus mode and 1x or 2x clock input mode, are selected
at reset based on the level of the Int[5:3]. In the R3051,
Int[5:3] are required to be driven HIGH during reset initializa-
tion.

The interrupt inputs, SInt[2:0] are already used by both the
R3051 & R3081 to select data cache refill sizes, tri-state test
mode, and big or little endian system architectures. The
complete table of the R3081 reset mode vectors is listed in
Table 1.

A complete description of these modes is provided in the
IDT79R3081/3081E Integrated RISController Hardware User's
Manual.

Floating-Point Interrupt

The one area where hardware changes may be necessary
are with respect to the Floating-Point Accelerator. Inthe MIPS
RISC architecture, the floating-point interrupt is fed into a
general purpose interrupt. Interrupts cause the processor to
jump to the system'’s exception handler which then decodes
its status to determine the exception cause. One of the six
external R3081 interrupts (by default Int3) is programmed to
be the FPA interrupt. All activity on the external interrupt pin
corresponding to the FPA interrupt is ignored.

Although software can use a different interrupt input other
than the default, it is still the case that only five external
interrupt pins remain available to external peripherals. There-
fore, systems that required six external interrupts will need to
modify their external interrupt structure, perhaps by causing
multiple peripherals to share a single interrupt input. Obvi-
ously, software would then need to decode which device on
that interrupt actually signalled the exception.

Systems that have defined an interrupt other than Int3 for
the FPA need to modify their startup code so as not to ignore

Table 1. R3081 Mode Selectable Features

Interrupt Pin Mode Feature
int5 CoherentDMAEn
Tnt4 TxClockEn
int3 Half-frequency Bus

Sint2 DBlockRefill
Sint1 Tri-State
Sint0 BigEndian

the assertion of Int3.

Some software applications incorporate exception han-
dlers that allow the user to set the FPA interrupt through
software. The IDT/sim™ diagnostics uses this method. This
adds system flexibility at the cost of the extra performance
required to decode the interrupt.

The Config Register

Selecting which interrupt is used by the on-chip FPA, the
cache configuration, power reduction mode, current size of
data cache refill, halt/stall mode, or slow bus turnaround are
all accomplished by writing to the new CPO configuration
register. The Configuration Register data format is shown in
Figure 1.

The reset initialization value of the config register depends
somewhat onthe mode vectors selected atreset. Specifically,
the initial values of the Data Block Refill bit, and of the slow bus
turnaround bit, are dependent on the reset vectors. At reset,
the FPIntfield will correspondto Int3, and the Lock, Alt. Cache,
Halt, and RF bits will be cleared.

Reading and writing all CPO registers is accomplished by
issuing coprocessor load and store instructions. The configu-
rationregister is CPOregister 3. Aninteractive tooltoread and
write the R3081 configuration register, "the R3081 Configura-
tion Tool", is available as a demo tool through your local sales
office, and runs on IDT/sim-based platforms. To insure strict
software compatibility with older applications, the Config
register can beisolated from subsequent writes by writinga ‘1’
to the configuration register "Lock" field.

Software Compatibility

The R3081 will directly execute applications written for the
R3051. The larger on-chip caches will directiy benefit existing
applications, and thus bring an increase in system perfor-
mance. Additional gains are possible, depending on the
application code, by taking advantage of the hardware FPA on
the R3081. Whereas the R3051 must either trap and emulate
floating-point instructions, or perform explicit calls to software
floating-point libraries, the R3081 can directly execute these
operations.

It may be advantageous to generate two distinct binaries
from one source; one, which uses software libraries to emu-
late floating-point operations, and is used with the R3051 or
R3052 and another, which uses the on-chip FPA to perform
floating point. However, if the prospect of two distinct binaries
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31 30 29 28 26 25 24 23 22 0
|Lock|%'ﬁ:’IR2%"| FPInt I Haltl RF l AC | Reserved
Lock: 1 -> Ignore subsequent writes to this register
Slow Bus: 1 -> Extra time for bus turnaround
DB Refill:  1-> 4 word refill
FPInt: Power of two encoding of FPInt <-> CPU Interrupt
Halt: 1 -> Stall CPU until reset or interrupt
RF: 1 -> Divide frequency by 16
AC: 1 -> BkB per cache configuration

Reserved: Must be written as 0; returns 0 when read

Figure 1. CP0 Configuration Register Data Format

is too onerous for a particular application, the binary could
include FPA instructions; with an R3051 processor, a trap will
be generated, and software could emulate the operation.
Although a single binary suffices for both processors, the cost
is reduced performance for the R3051.

Software can dynamically determine whether there is an
FPA available, by performing simple FPA diagnostics. Such
diagnostics is included in IDT/sim, IDT/c™, and IDT/kit™
startup code. Thus, the boot software could check for the
presence of an FPA, and initialize the Coprocessor One
useable bit according to the results. This allows a single
binary to dynamically determine whether a hardware FPA is
available, and can be used to enable the FPA instruction trap
mechanism of the R3051 and R3052.

Manipulating the Cache Characteristics

Another possible performance gain may exist by dynami-
cally manipulating the cache characteristics of the R3081.
The Config register allows the cache configuration to be
dynamically changed from 16kB I-Cache and 4kB D-Cache to
8kB I-Cache and 8kB D-Cache. A kernel may choose to
dynamically change the cache organization, depending on
the nature of the task about to be executed. The only caveat
is thatwhen changing the cache configuration (from 16kB/4kB
to 8kB/8kB orvice versa), both the instruction and data caches
need to be flushed.

In addition, software could dynamically alter the D-Cache
refill size. Changing this bit does not require a cache flush.

Note that to insure compatibility amongst multiple genera-
tions of R3051 family members, cache flushing routines that
assume a constant cache size are discouraged. The R3081
Hardware User's Manual presents an algorithm where soft-
ware can determine the cache size available.

UPGRADING THE RS385 BOARD WITH THE
R3081

Upgrading the RS385 board with the R3081 RISController
is easy toaccomplish. Simply remove the R3051 and replace
it with the R3081. Both share the same footprint and pinout.
The 1xClockEn, Half-frequency bus, and Coherent DMA
modes are all disabled in a default 7RS385, thus no further
hardware modifications are necessary. Int[5:3] are pulled

HIGH during reset disabling these three modes.

The IDT/sim included with the 7RS385 automatically sizes
the cache available; thus, the increased cache sizes of the
R3081 pose no problem. IDT/sim will not, however, write to
the Configregister. Thus, the FPU interrupt will default to Int3,
unless explicit steps are taken.

Currently on the RS385, the R3051 Int3 is used for the
Centronics port interrupt. If using the Centronics port and the
R3081 FPA, the system and/or software must be modified so

thatthe FPA is allowed its own dedicatedinterrupt. Thisneeds

to be done by either re-writing the boot prom to modify the
config register or using a different Centronics interrupt and
modifying the Centronics driver.

Ifthe 7RS385 has been used as a porting target for another
application, the types of software changes needed will be
application dependent. Applications developed with IDT/kit
and/or IDT/c include startup code that resizse the cache every
time they are executed. 1D T/sim startup code does not resize
the cache at each execution. In addition, it may be desirable
to recompile for any floating-point instructions that are imple-
mented with software emulation.

Implementing Additional Reset Modes

When using any of the three reset mode features unique to
the R3081, minor modifications to the RS385 board are
necessary to implement the interrupt input signal multiplexing
duringreset. As a general note, the RS385 uses a tri-statable
interrupt bus to implement the multiplexing for the Sint[2:0].
An asserted MRES# enables the reset mode vector driver. A
modification to the RS385 board was made to enable or
disable any of the six mode selectable features with jumpers,
including the new mode vectors of the R3081. Figure 2 shows
the modified R3051/R3081 interface to allow enabling and
disabling of the six reset modes. A buffer, U1A, was added to
provide the tri-state mux for the three new reset modes.

Other solutions to implement the reset mode selection
abound, depending on one’s application. All R3051 designs
should already pull Int[5:3] HIGH during reset as specified in
the IDT79R3051 Family Hardware User's Manual. Therefore,
only the new modes being selected need to be added to the
current muxing on the RS385. If only one additional mode is
needed, jump the one remaining output on the current
74FCT244 reset mode mux (U37 pin 18) to the appropriate
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interruptinput. The interrupt PAL, U28, can be reprogrammed
to do some of the muxing. (If the PAL can not be easily
removed from the board, an additional device can be added
to the wire-wrap area.)

An Interesting Upgrade

One of the more interesting upgrades possible is to in-
crease the execution speed while decreasing the bus clock.
To do this, select 1x clock mode and half-frequency bus from
the new mode reset logic, and replace the R3051 osciallator
with a 40MHz oscillator. The result will be a CPU core
executing at 40MHz rather than 25MHz, although the bus
speed has been reduced to 20MHz.

UPGRADING OTHER R3051 SYSTEMS

Upgrading any R3051-based system with the R3081 RIS-
Controller is very similar to updating the RS385 board. The
one hardware item that may differ has to do with DRAMs and
their refresh.

Specifically, if the refresh period is based on counting
SysClk cycles, then using the reduced frequency mode of the

R3081 may violate the reset period (reduced frequency mode
also divides the frequency of the output clock). There are two
solutions to this, depending on the application:

* Reprogram the counter to a smaller number of SysClks.
This is possible with devices such as the R3721 DRAM
controller.

*» Use a different reference clock for refresh. Choices include
a UART clock, or the clock used to generate the input clock
to the processor.

The RS385 board refresh request is generated froma clock
independent of SysClk. The clock used is derived from the

UART clock.

CONCLUSION

Incorporating the high-performance R3081 RISController
into existing R3051-based systems is often as simple as
merely swapping processors. Little design complexity is
added, yet system performance increases due to the larger
caches, Floating-Point Accelerator, and other features. Using
more of the R3081 features to increase performance even
more can be accomplished with minimal hardware and soft-
ware modifications.
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Integrated Device Technology, Inc.

UPGRADE STRATEGIES FOR
IDT79R3051™-BASED DESIGNS

APPLICATION
NOTE
AN-113

By Phil Bourekas

INTRODUCTION

The IDT RISController™ family includes various highly-
integrated microprocessors providing high levels of perfor-
mance with low system cost. Currently, the R3051™ family
includes three differentdevices, each providing differing levels
of price performance, yet each pin-compatible with each
other. This allows the system designer to implement a single
base system, yet offer various end products at different
capability levels. The end result to the customer is reduced
time to market for a product family, and the amortization of a
single development effort overa wider variety of end products.
This wide range of pin-compatible performance is not currently
achieved by any other RISC processor family.

This application note describes system design techniques
that insure a high degree of interchangeability with no real
design impact.

THE R3051 FAMILY

Common characteristics of the R3051 family include high
integration at low cost. All current family members are pin-
compatible. All family members include:

» Substantialamounts of separate instruction anddatacaches
integrated on-chip. Although the amount of caches varies
across different family members, all devices contain enough
cache on-chip to achieve extremely high performance with
low-cost memory systems. The caches on the R3052 and
on the R3081™ are actually larger than the cache on the
Intel 80486 high-end processor, enabling these devices to
offer higher performance at lower cost.

¢ MIPS R3000A compatible integer CPU. The R3051 family
was designed by integrating cache and a low-cost bus
interface around the standard MIPS R3000A CPU. This
RISC core is widely recognized as an extremely high-
performance execution engine, with powerful compiler and
developmenttools. Some of the features of the core include
a large register file, single cycle ALU, rich set of branch
instructions (including compare operations as part of the
branch), and separate, autonomous integer multiply and
divide. Since the R3051 was designed using the standard
core, 100% software compatibility is guaranteed. Thus,
compiler tools, real-time operating systems, and other
software tools developed around the standard R3000A
work without modification on the R3051 family.

Optional Translation Look-aside Buffer (TLB). The "E"

(Extended Architecture) versions of the RISController fam-

ily feature a 64-entry, fully associative TLB. The TLB allows

virtual addresses to be translated into physical addresses
ona4kB page basis. The TLBis useful in providingmemory
protection and debug utilities in any application; in other

The IDT logo is a registered trademark and IDT79R3051, IDT79R3081, IDT/c, IDT/At, IDT/sim and RISController are of

All others are of their

applications, such as those using a real-time operating
system, or in an X-windows server, the TLB allows in-
creased system functionality to be provided.

Simple, low-pin countbusinterface. The R3051 family uses
a time-multiplexed 32-bit address and data bus to commu-
nicate with memory. Internal to the processor are 4-deep
read buffer and write buffer FIFO's to decouple the speed of
the internal execution core from the slower speed memory
system. The multiplexed bus arrangement has many ad-
vantages, such as lower-cost interface chips and ASICs,
without impacting system performance.

Currently, there are three family members. These are:
The R3051/51E. This device features 4kB of Instruction
cache and 2kB of Data Cache. There is no hardware
floating-point unit available on this device.

The R3052/52E. This device features 8kB of Instruction
cache and 2kB of Data Cache. As with the R3051, there is
no hardware floating-point unit available on this device.

The R3081/81E. This device introduces a number of new
features to the family. The primary features of interest are
changesto the caches, and inclusion of a hardware floating-
point unit; other features will be described throughout this
application note. The R3081 implements 16kB of Instruc-
tion Cache and 4kB of Data Cache; kernel software can
dynamically reconfigure the on-chip caches as 8kB of

Instruction and 8kB of Data Cache.

POTENTIAL UPGRADE OPPORTUNITIES

A number of possible system upgrades from asingle, base
design are possible. Elsewhere in this application note,
design considerations to assurs interchangeability are de-
scribed.

Possible upgrade strategies include the following tech-
niques:

Upgrading Cache Size

As all devices are pin compatible; it is possible to increase
performance of an application by upgrading the amount of
cache available on-chip. Thus, holding all other components
the same, an R3051 may be removed and replaced by an
R3052 to double the instruction cache. An R3052 can be
removed and replaced with an R3081, doubling both the
instruction and data caches.

Add Hardware Floating-Point

One upgrade to higher performance involves upgrading an
R3051 or R3052 to an R3081 and taking advantage of the on-
chip floating-point accelerator. Laterin this applications note,
software considerations for such an upgrade are described.

Device T Inc.
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This upgrade will obviously substantially increase the per-
formance of software containing floating-point operations;
while the IDT software floating-point environment is very
efficient, the floating-point unit of the R3081 dramatically
outperforms integer emulation, and may result in a significant
speed-up of some applications.

Increasing Frequency

Obviously, one way to increase performance is to increase
the system frequency. This may or may not be easy to do,
depending on the exact system design. Obviously, such an
upgrade will typically require the replacement of multiple
devices on the PCB.

Note, however, that R3051 family packaging insures that
the same footprint and pinout is available across the full
frequency range of the family, and for all of the family mem-
bers. Thus, the same 84-pin PLCC footprint used for a 20MHz
R3051 accommodates the package fora40MHz R3081, even
though that device consumes more power. This obviously
simplifies upgrading a designto a higher frequency processor.
Design techniques for increasing frequency may include:
Using faster memory devices to achieve the same relative
access time.

Using faster control logic, such as faster PALs or transceiv-
ers, to increase set-up time and reduce propagation delays.
Forexample, a 15ns PAL may be replaced witha 10ns PAL,
effectively allowing the clock period to be reduced 5ns.
Re-programming PALs and control logic to increase the
number of wait cycles. While this will reduce the frequency
normalized performance, the absolute performance will be
increased substantially, since the processor will execute
(typically out of its internal cache) at a higher rate.

"Clock Doubler" Operation

The R3081 presents a particularly unique opportunity to
upgrade systems using an R3051 or R3052. This is particu-
larly due to the "half-frequency bus" mode of operation of the
R3081.

A dramatic system upgrade can be achieved by:

1.Removing a 20MHz R3051 or R3052 and replacing it with
a 40MHz R3081.

2.8Selecting the "half-frequency bus" and "1x clock" modes via
the reset vectors.

The resulting system bus will continue to operate at 20MHz,
but the CPU will execute out of its internal cache at 40MHz.
The resulting system will typically see its performance more
than double (recall that the upgrade to the R3081 will also
increase the on-chip caches and add hardware floating-point,
relative to the R3051 or R3052).

Itis also interesting to note that the performance impact of
running a40MHz processor witha 20MHz bus isnotas severe
as one would intuitively guess. This is due to the fact that
memory accesstimeis reallyin units of time, ratherthan in wait
states. That is, 200ns access memory is 4 clock cycles at
20MHz and is 8 cycles at 40MHz; the absolute time is not
improved by running the bus faster.

Intel has estimated that for the 1486 with clock doubling,
running the bus at one-half the CPU execution rate is approxi-
mately 11% less efficient than running the bus at the full CPU

rate on benchmarks such as the SPEC benchmark suite. The
R3081 contains more than twice the amount of on-chip cache
as does the i486, and thus will be even less dependent on bus
performance; thus, the performance degradation should be
even less.

DESIGN CONSIDERATIONS FOR UPGRADING

The remainder of this applications note details specific
techniques which facilitates the interchange of various mem-
bers of the R3051 family. In general, all devices are pin and
footprint compatible, so there are no PCB issues to be
concerned about. In general, the only things needed to
upgrade a design are:

* Designitaround an R3051. The R3081 does include some
superset features relative to the R3051 which simplifies
high-speed systems; however, if a system works for the
R3051, it will work for an R3081.

Make the software independent of cache size. The various
devices include varying amounts of cache on-chip. An
algorithm to determine the amount of cache available is
presented in this applications note.

Have a strategy for software floating-point versus hardware
floating-point. The R3081 adds a high-performance hard-
ware floating-point accelerator, as well as increasing the
cache size. This applications note describes various soft-
ware techniques for dealing with software emulation versus
hardware acceleration of floating-point.

Thus, this application note details specific hardware choices
and software choices which facilitate interchanging CPUs. In
addition, the application note illustrates techniques for de-
termining the presence or absence of the R3081 config
register, the R3081 FPA, and the amount of cache on-chip.

SOFTWARE CONSIDERATIONS FOR
UPGRADING SYSTEMS

Some of the system upgrade considerations should be
accommodated in the application software (especially the
kernel). It is possible to develop a single binary set of code
which performs across all of the family members.

Sensitivity to Cache Size

Obviously, one characteristic difference amongthe various
family members is the amount of Instruction and Data cache
available. Thus, to insure interchangeability among these
devices, the software should be written to be insensitive to the
cache sizes.

Typically, very little of the actual application will be function-
ally sensitive to the amount of on-chip cache; the primary
difference will be in the performance achieved. This is the
primary advantage of caches with respect to memory mapped
zero-wait state RAM; caches are transparent to the software,
and do not affect the memory map.

Typically, the only part of the software that may be sensitive
to the cache size will be the boovinitialization software, which
may perform certain memory (including on-chip cache) diag-
nostics, and which must initialize the on-chip cache by per-
forming a cache flush.
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Figure 1 shows a listing of a routine to perform cache sizing.
This routine uses bits of the on-chip status register to isolate
the cache (to prevent writes or cache misses from propagating
to memory}, and to swap the cache (to perform the algorithm
on the Instruction cache). In orderto determine hit or miss, the
algorithm places a marker in the first word of the cache, and
then looking for the cache size such that a read of the cache
forces a wrap-around to reading location zero. Once this
occurs, the maximum cache size has been exceeded, and
thus the cache size is known. Other algorithms could use the
cache miss bit of the status register, rather than a marker
value. This capability is providedinthe IDT/kit™ and IDT/sim™
software packages from IDT.

Once the cache size has been determined, itis used in the
cache flush routines (for example) to completely flush the
caches. Note that if the only time the cache is flushed is at
system start-up, it is acceptable to assume a worst case
(large) cache size and flush that amount of cache; caches
smaller than the size assumed willmerely be flushed multiple
times, resulting in wasted execution time but correct function-
ality. On the other hand, applications which perform cache
flushing as part of ongoing operation (e.g. to assure cache
coherency when DMA operations are used) would be sensi-
tive to performance, and thus would desire to flush only the
proper amount of cache.

Floating-Point Presence

Another difference between various family members has to
do with the presence or absence of the floating-point. This
distinction may have two impacts on the software environ-
ment:
¢ The initial setting of the coprocessor 1 usable bit should

reflect whether or not a hardware floating-point is available.

It is possible to create a software environment which can

dynamically determine the presence or absence of the FPA.

* The actual binary executable of the application may be best
optimized according to the presence or absence of a hard-
ware floating-point. This is discussed below.

How to Determine Floating-Point Presence

There are at least two different methods for determining
whether a floating-point is present. One way is to perform
floating-point operations and determine whether the results
are reasonable; these operations could be as simple as
moving datainto and out of the FPA registers to see if they are
present, through performing floating-point calculations and
examining the results (or even possibly seeing if an exception
is reported). If the floating-point is detected as present,
coprocessor 1 should be marked as usable by the kernel.

Another method would be to use the CpCond(1)
(coprocessor 1 condition) flag. The hardware could tie the
CpCond(1) to a known state (e.g. HIGH); software could then
perform a compare operation (or move to the fp cscr register)
to cause CpCond(1) to report the opposite polarity. A simple
branch on coprocessor (1) condition will then determine
whether the CpCond(1) signal is driven by an on-chip FPA, or
by the off-chip pull-up resistor.

FPA Impact on the Binary Code

There are two methods for dealing with the software which
may or may not have a hardware floating-point unit. The
optimal method depends on trade-offs between a single
binary set operating either with or without a hardware FPA,
versus a single source set compiled twice resulting in two
binaries (one targeted to a hardware FPA and one targeted to
an integer only environment).

Using a Single Binary with and Without an FPA

If the system designer chooses to implement a single
binary capable of taking advantage of a hardware FPA when
one is available, all that needs to be done is to tap into the
inherent capabilities of the MIPS coprocessor architecture.

Specifically, if the kernel marks the coprocessor 1 FPA as

unavailable, FPA instructions will cause a trap to occur. The

kernel can then perform an integer interpretation of the FPA
instruction. The application software is then compiled to
assume the availability of a hardware FPA: if one is available
in the system fine; if not, traps will occur when FPA operations
are encountered, and the kernel can perform an emulation of
the function.

Using this technique requires two things in the software:
¢ Boot software must perform the diagnostics described

above to determine the appropriate setting for the

coprocessor 1 usable bit.

« The kernel must include the capability to emulate the entire
FPA unit, including the FPA operations, the registerfile, and
the FPA exception mechanisms used by the application.

While this technique has the advantage of resulting in a
single binary which works in either environment, the result is
added complexity and a loss of performance in the environ-
ment in which no FPA is available. Specifically, the kernel
must provide an emulation library of the entire FPA; and,
software FPA operations will include additional overhead from
the CPU exception model and from emulating all aspects of
the FPA, even though a given operation only requires a subset
of the FPA functionality.

Developing Two Binaries from a Single Source

Another technique exists whereby two distinct binaries are
developed from a single source tree. Each of the resulting
binaries is fully optimized for either an integer only environ-
ment, or for an environment in which a hardware floating-point
is available.

This is accomplished by taking advantage of the software
floating-point library capabilities of the IDT/c™ environment.
IDT/cincludes acompile time flag which can be used to control
whether hardware FPA instructions (coprocessor 1 instruc-
tions) are generated, or whether direct calls to a software
floating-point library are generated. Thus, software floating-
point is not forced to emulate the register set and data type
conversions of the hardware FPA, and execution is not forced
to go through the CPU exception model. The resulting binary
operates much more efficiently than one which goes through
the trap and emulation model described above.

A separate applications note describes how to determine
the optimal compilation environment for a given application.
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/*t************************V**********************************************

* %k

** gsize_cache()

** returns cache size in v0

* Kk

*************************************'k*‘k********************************/

FRAME (_size_cache, sp,0,ra)

.set,
mfcO
and
or
mtcO

/‘h

* First check if there is a cache there at all

*/
move
1i
sw
1w
nop
mfcO
nop
.set
and
bne
bne
/*

* Clear cache size boundries to known state.

*/
1i

sw
sll
ble

1i
sw
1i

2: 1w
bne
sll
ble
move
.set

3: mtc0

J
nop

noreorder
t0,CO_SR
t0,~SR_PE
v0,t0,SR_ISC
v0,CO_SR

v0, zero
vl,0xaSa5a5a5
v1,KO0BASE
t1l,KO0BASE

t2,C0_SR

reorder
t2,SR_CM
t2,zero,3f
vl,tl,3f

v0,MINCACHE

zero, KOBASE (v0)
v0,1
v0,MAXCACHE, 1b

v0,-1
v0,KOBASE (zero)
v0,MINCACHE

v1,KOBASE(v0)
vl,zero,3f
v0,1
v0,MAXCACHE, 2b
v0,zero
noreorder
t0,C0_SR

ra

ENDFRAME (_size_cache)

.set

reorder

Figure 1. Cache Sizing Software

/* save current sr */
/* do not inadvertently clear PE */
/* isolate cache */

/* distinctive pattern */
/* try to write into cache */
/* try to read from cache */

/* cache miss, must be no cache */
/* data not equal -> no cache */

/* store marker in cache */
/* MIN cache size */

/* Look for marker */
/* found marker */

/* cache size * 2 */
/* keep looking */

/* must be no cache */

/* restore sr */
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31 30 29 28 26 25 24 23 22 0.
Sl
Lock| e’ R2'2“| FPInt | Halll RF | AC | Reserved
Lock: 1 -> Ignore subsequent writes to this register
Slow Bus: 1 -> Extra time for bus tumaround
DB Refill:  1-> 4 word refill
FPint: Power of two encoding of FPInt <-> CPU Interrupt
Halt: 1 -> Stall CPU until reset or interrupt
RF: 1 -> Divide frequency by 16
AC: 1 -> 8kB per cache configuration

Reserved: Must be written as 0; returns 0 when read

Figure 2. R3081 Config Register

The method of dealing with floating-point operations in an
integer CPU only environment is particularly important in the
evaluation of a compiler platform; techniques such as the "mix
and match" approach supported by IDT/c allows the best
capabilities of the MIPS compiler toolchain to be integrated
with efficient software floating-point emulation.

The obvious advantage of this approach is the optimum
performance achieved for both the integer only system and
the R3081-based (hardware FPA) system. Using distinct
EPROM sets at manufacturing time, or upgrading both the
EPROMs and processor as a field upgrade, are obvious
consequences, but in general are not particularly onerous
(EPROM upgrade can be a replacement of EPROMs, or, for
FLASH EPROM, a re-programming of the EPROMs resident
on the board).

The R3081 Config Register

The R3081 includes, as part of coprocessor 0, an additional
control register called "Config". The R3081 Config Registeris
shown in Figure 2.

The Config register controls various aspects of system
functionality. If these features are used in an R3081 system,
software must first determine whether they are available.

To determine whether the current device is an R3081 (and
thuswhether the configregisteris available), software canuse
various techniques. One straightforward technique is to
determine whether or not there is an FPA,; if so, the device is
an R3081. Similarly, software could determine the cache
sizes available, and see if these correspond to the organiza-
tion the R3081.

Other techniques are also possible; for example, size the
cache, then reconfigure the cache by writing to the config
register; re-size the cache to determine that the change
occurred. Obviously, if the change occurs, the config register
is available.

Note that writes to this register location in the R3051 or
R3052 will have no effect; no side effects occur, and no traps
are signalled. Reads of the config register produce an
undefined data result for the R3051 and R3052.

If the config register is used when an R3051 is in place,
various other considerations exist. These are:

* Floating Point Interrupt. In general, if an R3051 application
intends to also work with an R3081, one of the CPU interrupt
inputs needs to be reserved for the hardware FPA of the

R3081. The default interruptis Int(3), but the config register
allows a different interrupt assignment to be used. The
corresponding interrupt input pin of the R3081 is then
ignored. Thus, the PCB should contain a pull-up resistor at
the interrupt pin; when an R3051 is used in the application,
no interrupt will be signalled.

Reduced Frequency. This mode dramatically reduces the
power consumption of the R3081, by reducing its operation
frequency. This mode is unavailable in the R3051. In
general, the only real functional system change that occurs
is that the SysClk output clock frequency is also reduced;
thus, it DRAM refresh, for example, was derived from this
clock, the counter value should be reprogrammed. If an
R3051 is told to "reduce frequency", nothing will happen.
Halt. This contro! bit forces the R3081 to stall until an
interrupt input is asserted, or a reset is encountered. This
mode is unavailable in the R3051, and no simple software
equivalent exists.

Data Block Refill. The R3081 allows the block size read on
a data cache miss to be dynamically reconfigured by soft-
ware. The initial value is set by the reset value. In general,
this bit may affect the performance of software, but is
unlikely to impact its functionality.

Alternate cache. This bit allows the caches to be dynami-
cally reconfigured for the R3081. A cache flush should be
performed after the cache is reconfigured. An earlier
section of this applications note discussed how to make
software independent of the cache organization.

Lock. This bit allows software to inhibit subsequent writes
to the Config register. Thus, boot software can set up the
operation mode, and then protect it from other software.
Slow Bus Turnaround. This bit allows systems to enjoy
longer time between A/D bus mastership transitions. How-
ever, this software control is not available on the R3051. If
the system designer desires extra time, and also desires to
be able to interchange R3051s and R3081s, the hardware
technique described in applications note AN-97 is appropri-
ate. This technique uses the DMA arbiter interface of the
CPU to insure that new transactions are not begun until
ample time for bus turn-off has passed. This hardware
technique works equally well with both the R3051 and
R3081.
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HARDWARE DESIGN ISSUES

There are various hardware design considerations that
may impact the ability to interchange various members of the
CPU family. With proper design, these considerations can be
dealt with no real system impact.

Slow Bus Turn

Bus turn is the amount of time allowed to change master-
ship on the A/D bus of the processor. In general, a read
followed by a write can cause a change in bus direction in one-
half bus cycle. At 33MHz, this is 15ns.

The system designer may implementan architecture which,
by using appropriate transceivers and control signals, can
tolerate a rapid bus turn. Alternatively, the designer may
desire to increase the minimum amount of time.

Although the R3081 includes a bit in the Config register to
slow the bus, this technique does not work with the R3051.
Instead, the hardware technique of using BusReq to insure a
longer tri-state time is recommended. This technique is
described in applications note AN-97.

Coherent DMA

The R3081 includes a hardware interface to insure cache-
coherency in systems using DMA. This interface is unavail-
able in the R3051.

Many MIPS applications perform multi-master cache co-
herency via software techniques, and thus do not require
hardware-based coherency. While hardware-coherency will
improve the performance of some applications, relying on
software (which may, for example, flush the entire data cache
once a DMA operation is completed to insure coherency. This
technique will function equally well with either the R3051 or
R3081.

Floating-Point Interrupt

The R3081 uses one of the interrupt input pins to report
exceptions to the CPU. The hardware should reserve one of
the input pins for this function, and provide logic or pull-up
resistors to insure that this input is held HIGH for an R3051 or
R3052.

CpCond(1)

The R3081 uses this input to report the results of compari-
sons back to the CPU; thus, the external input pin is ignored.
R3051 systems should provide a pull-up resistor for this pin.
Earlier in this applications note, a method to use this pin to
determine the presence or absence of an FPA was described.

Reset Mode Vectors

Both the R3051 and R3081 use the same basic technique
to perform reset mode selection of various options. Figure 3
illustrates the mode vector logic for the R3081. Note that for
the R3051, Int(5:3) mode vectors are reserved, and must be
held HIGH during reset.

Options include:
» Tri-state. This option is used to perform board testing, and
is available in all devices.
BigEndijan. This option selects the data byte ordering
convention, and is available in all devices.
Data Block Refill. This option selects single versus four-
word refill on data cache misses. Although this option is
available in all devices, software (via the config register) can
dynamically change the value for the R3081.
Coherent DMA Enable. This option enables the coherent
DMA interface of the R3081. Forthe R3051, this input must
be HIGH at reset.

R3081 Mode Vector Logic

§int(0) —» . BigEndian’

Sint(1) —, Tr-state

Sint(2) Traf:?cegem DBlockRefili

Tnt(3) Half-frequency Bus

Tnt(4) »  1XCIockEn

() & —»  CoherentDMAEN

Reset L, CPU_Reset
Syngﬁﬁaertnizer

SysCik - D

Figure 3. R3081 Mode Vector Assignment
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» 1x Clock Mode. This option instructs the R3081 that the
input clock provided is at the CPU operation frequency,
rather than at twice the frequency. In the R3051, only the
"2x" clock is available, and this vector must be held HIGH.
Half-frequency Bus. This option instructs the R3081 to
operate its bus interface at one-half the execution rate. This
option is unavailable in the R3051, and must be held HIGH
at reset.

In order to design a system to accommodate either an
R3051 or R3081, it may be desirable to include jumpers forthe
R3081-only options. Thus, when an R3081 is included in the
design, various of the hardware options may be changed.
This may open up other upgrade strategies, such as the clock
doubling capability described earlier.

SUMMARY

By following a few simple rules, the system designer can
implement a base R3051 system which can easily upgraded
tohigherperformance. Upgrade options include more amounts
of cache on-chip, the addition of hardware floating-point, and
increases of frequency. With the R3081 half-frequency bus
mode, the operation frequency of the execution engine can be
substantially increased while maintaining the same (or even
slower) bus interface frequency.

Thus, the IDT RISController family effectively reduces the
time to market of new product families, and maximizes engi-
neering return on investment by enabling one design effort to
result in multiple end products.
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INTERRUPT HANDLER
FOR THE IDT79R3051
RISCONTROLLER™ FAMILY

APPLICATION
NOTE
AN-131

by Dean Smith

INTRODUCTION

- The reader is encouraged to refer to Chapter 5 of the
IDT79R3051 RISController Hardware User's Manual for a
thorough description of IDT RISController exception handling.
In addition, the MIPS Programmers Handbook illustrates two
alternative methods for interrupt prioritizing. This application
note illustrates a third much faster method specific to the IDT
RISController Family, as detailed in the Appendix - ‘R3051/2
Priority Based Nested Interrupt Handler'. The corresponding
latency cycles for this example interrupt handlerare quantified
in Table 1.

R3051/2 Service Latency Restart Latency
Priority 1 4 9
Priority 2 14 13
Priority 3 16 13
Priority 4 19 13
Priority 5 25 14
Priority 6 25 14

3158 tbl 01
Table 1. IDT79R3051/2 Interrupt Latency (in cycles)

The following assumptions apply to the latencies quantified
in Table 1:
¢ The corresponding algorithm/code is detailed in the
Appendix.
» Service Latency, Restart Latency are as defined in this
application note.
* The code and stack are resident in the R3051 on-chip
cache.
» The R3051 pipeline is in a ‘run’ state at the instant the
interrupt is detected.
A higher priority interrupt is not already in progress.
Service is not interrupted by a higher priority interrupt.
Service is not interrupted by any other type of exception.
Only 1 register is needed by PRIORITY 1,2,3,4 service
routines.
Only 3 registers are needed by PRIORITY 5,6 service
routines.
The interrupt handler detailed in the Appendix is specific to
the R3051/2. However, much of the content detailed in this
application note equally applies to the other RISController
family members with only minor code modifications being
required. Where applicable these differences in the family
members are detailed.

R3051 EXCEPTION MODEL

External interrupts are just one class of R3051 exceptions.
The R3051 implements a ‘precise’ exception model. By
definition, precise exceptions imply that exact processor con-

The IDT logo Is a registered trademark of Integrated Device Technology, Inc.

text and the cause of the exception are known. In addition, the

current process does not advance state (ie. all subsequent

instructions are aborted) until the corresponding interrupt is

serviced.
The following automatically occurs when the R3051 de-

tects an interrupt:

* The current process is haited.

¢ The Exception Program Counter is loaded with the return
address for the current process.

¢ The Cause Register is loaded with exception cause
information.

* The Status Register KUc bitis cleared (ie. enter ‘kernel
mode’).

* The Status Register IEc bit is cleared (ie. disable subse-
quent interrupts).

» Execution is continued at the General Exception Vector.

These activities preserve the necessary processor context
to implement a precise exception model. The R3051 proces-
sor makes no assumptions about an external interrupt cause
orservicingtechniques. Forinstance, R3051 registers are not
automatically stacked upon detection of an interrupt since this
often causes unnecessary service latency. Instead, the
software designer is allowed to fine-tune response to the
corresponding service requirements. This technique allows
for extremely fast interrupt handling.

INTERRUPT SERVICE LATENCY

Interrupt Service Latency is defined as the cycle count from
the assertion of an external interrupt to the beginning of the
corresponding service routine. This latency includes three
components;

1) pipeline latency to the General Exception Vector

2) exception type decode

3) preserving context.

PIPELINE LATENCY:

The R3051 pipeline must be in a ‘run’ state for an interrupt
to be recognized. Thus, pipeline stalls caused by such events
as cache misses and multiply/divide interlock cycles delay
detection of an interrupt. Once an interrupt is detected, the
address of the General Exception Vector will be the next
instruction fetched.

The R3051 has two types of external interrupt pins;
isynchronousi interrupts, and idirecti interrupts. The
ésynchronousiinterrupts are internally synchronized and thus
may be driven by an asynchronous source, with a correspond-
ing pipeline latency to the General Exception Vector of two
cycles. The édirectiinterrupts are not internally synchronized
by the processor, and thus must be externally synchronized.
As a result, these interrupts have only a one cycle pipeline
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latency to the General Exception Vector and are most useful
for interrupting agents which operate off the R3051 SysClk
output.

EXCEPTION TYPE DECODE:

The General Exception Vector is the start address for all
types of R3051 exception handlers (except RESET and UTLB
Miss exceptions) - interrupts being just one classification.
Thus, the exact exception type must first be decoded before
servicing can begin. This is typically accomplished by soft-
ware interrogation of the R3051 Cause Register. The follow-
ing example code details this procedure:

mfcO k0,CO_CAUSE; # kO = CR(Cause Register)
sw t1,t1_OFF*4(sp)  # use delay slot to stack gpr t1
and k1,k0,EXC_MASK; # isolate ExcCode field of CR
Iw  vO,cause_table(k1); # fetch cause start address

and k1,k0,IP_MASK; # isolate IP field of Cause Register

j v0; # go to Exception handler start address
# (v0 = INT_EXTERN, if an interrupt)

sra  k1,k1,8; # shift IP field 8 bits for word address

INT_EXTERN:

lw  vO0,IP_table(k1); # fetch service routine start address

sw  v1v1_OFF*4(sp); # use delay slot to stack gpr v1
j vO; # jump to corrresponding int(n) service
sw t0,t0_OFF*4(sp); # use delay slot to stack gpr t0

Even faster exception type decode can be achieved by
using the R3051’s BrCond(n) input pins. The MIPS ISA
contains conditional branch instructions based upon the value
of BrCond(n). These pins can be physically connected to
interrupt pins for extremely fast decode. The following ex-
ample code details this procedure:

beOt PRIORITY_1; #int(0)?

sw kO,EPC_OFF*4(sp); # stack EPC (use branch delay slot).
beit PRIORITY_2; #int(1)?

sw k1,SR_OFF*4(sp); # stack SR (use branch delay slot)
bc2t PRIORITY_3; #iny(2)?

sw vO,vO_OFF*4(sp); # stack vO (use branch delay slot)
bc3t PRIORITY_4; #int(3)?

sw 10,10_OFF*4(sp);  # stack t0 (use branch delay slot)

The interrupt handler detailed in the Appendix is specific to
the R3051/2 by making use of the four available BrCond(n)
pins. Minor code modifications are required for the other
RISController family members due to the different number of
available BrCond(n) pins for each.

RISController Number of
Family Member BrCond(n) pins
R3051/2 four
R3071/81 three
R3041 two

3158 tol 02

PRESERVING CONTEXT:

Detection of an exception causes the R3051 to automati-
cally disable subsequentinterrupts. This makes it possible for
immediate servicing of the interrupt without preserving Cause
Register, Status Register, or Exception Program Counter
context. Note that care must be taken by the software
designer to ensure that execution of the interrupt handler and
service routine do not generate any other type of exception. If
‘nested’ interrupts are allowed, then the Status Register and
Exception Program Counter must be stacked. Otherwise the
handling of the original interrupt can not be resumed. The
IntMASK field of the Status Register can then be modified to
re-enable higher priority interrupts. The following example
code details this procedure:

bcOt
swW

PRIORITY_1;
v0,vO_OFF*4(sp);

#int(0)?
# use delay slot to stack gpr v0.

# PRIORITY 2,3,4,5,6 - must stack context for servicing of higher
priority interrupts.

subu sp,sp,exc_stack_sz; # Initialize Stack.

mfc0 k0,CO_EPC; # kO reserved for kernel processes
mfc0  k1,CO_SR; # k1 reserved for kernel processes
swW kO,EPC_OFF*4(sp);  # stack EPC.

mfc0 k0,CO_CAUSE; # kO = CR(Cause Register).

sw k1, SR_OFF*4(sp);  # stack SR.

bcit  PRIORITY_2; #int(1)?

PRIORITY_2:

#Stack additional General Purpose Registers needed for servicing.
# re-enable int(0) - higher priority.

li v0,x0000401;

mtcO0 v0,CO_SR;

# PRIORITY 2 service here: ., . .

Note that registers kO and k1 are immediately available for
interrupt handling. These registers need not be stacked since
MIPS compiler and assembler conventions reserve kO and k1
for kernel processes, and since subsequent interrupts are
disabled during any interrupt handleris use of these registers.
However, the interrupt handler must stack any General Pur-
pose Registers to be used for interrupt servicing. The number
of registers required is of course interrupt service specific.
The delay slots immediately following branch and load instruc-
tions are convenient locations to stack context without ad-
versely affecting service latency.

Other features of the R3051 also help to minimize interrupt
service latency. Forinstance, the on-chip cache is ‘physically’
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indexed. This means that virtual-to-physical address transla-
tionis performed priorto cache addressing. As aresult, cache
flushing is not required on a context switch (ie. jump to
interrupt service routine). Other processors implement virtu-
ally indexed caches thereby dramatically slowing context
switch performance. Also of importance is the R3051 PID
(Process ID) field associated with each entry of the TLB
(Translation Lookaside Buffer). The ‘Extended’ memory
management option uses an on-chip TLB as a hardware
cache for software managed page tables. The PID is com-
pared to the contents of each TLB entry at the time of address
translation, thereby providing a mechanism for multiple pro-
cesses to share the TLB evenif identical virtual page numbers
are encountered. As a result, TLB flushing is not required on
a context switch.

INTERRUPT RESTART LATENCY

Interrupt Restart Latency is defined as the cycle count from
the end of the interrupt service routine to the restart of the
parent process. This latency includes two components;

1) context restore

2) pipeline refill.

Context Restore:

Any processor context stacked prior to interrupt servicing
must be restored after servicing is complete. Then the stack
pointer must be restored to its previous value. Finally,
executioncan thenreturnto the parentprocess. The following
example code details this procedure:

IF RD ALU D
IF RD ALU
IF RD

IF

li k0,x000xxx0;
mtcO kO,CO_SR;

w  k1,SR_OFF*4(sp);
Iw  vO,vO_OFF*4(sp); # restore gpr vO

lw  kO,EPC_OFF*4(sp); #acquireparentprocessreturnaddress
addu sp,sp,exc_stack_sz; # restore stack.

mtcO0 k1,CO_SR; # restore SR(Status Register).

] kO; # return to parent process

rfe;

# disable int's prior to context restore.

Note that interrupts must be disabled prior to context
restore. This is because kO and k1 are not preserved prior to
use by the interrupt handler. Otherwise, the context of these
registers would be lost if another interrupt occurs during
context restore for the current interrupt.

Pipeline Refill:

Figure 1 illustrates R3051 pipeline refill following an inter-
rupt. Upon detection of an external interrupt, the three instruc-
tions less advanced than the ALU stage are aborted. These
instructions must be restarted upon return to the parent
process. This three cycle penalty must be considered when
calculating the Interrupt Restart Latency.

WB
o we Must
restart
upon
AL D we return to
parent
RD ALU D wB process
Current processor cycle 3158 drw 01

Figure 1. IDT79R3051 instruction pipeline.

APPENDIX—R3051/2 PRIORTY-BASED
NESTED INTERRUPT HANDLER

# This is an example R3051/2 priority-based nested
interrupt handler.

# Other RISController Family members require minor code
changes due to the different number

# of available BrCond(n) inputs

#  — prioritize up to four R3051/2 interrupts

#  — prioritize up to three R3081 interrupts

#  — prioritize up to two R3041 interrupts

# BrCond(n) is tied to corresponding int(n). This allows for
fast interrupt decode:

# The following interrupt priority is assumed:

PRIORITY 1 = Int(5) = BrCond(0)

PRIORITY 2 = Int(4) = BrCond(1)

PRIORITY 3 = Int(3) = BrCond(2)

PRIORITY 4 = Slint(2) = BrCond(3)

PRIORITY 5 = Sint(1)

PRIORITY 6 = Sint(0)

o3k 3 3 3 oA
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# Exception causes execution to jump here:
General Exception Vector.

.set noreorder # assembler directive—disable
pipeline scheduling.

bcOt PRIORITY_T1; # PRIORITY 1?

subu sp,sp,exc_stack_sz; # use delay slot to Initialize
Stack.

# PRIORITY 2,3,4,5,6: Must stack CPO context
to allow for nested servicing.
sw  vO,vO_OFF*4(sp);  # stack gpr vO.

mfcO0 kO,CO_EPC; # kO reserved for kernel processes
- no need to stack.

mfcO k1,CO_SR; # k1 reserved for kernel processes
- no need to stack.
sw  kO,EPC_OFF*4(sp); # stack EPC.
micO k0,CO_CAUSE; # kO = CR(Cause Register).
sw  ki1,SR_OFF*4(sp); # stack SR.
becit PRIORITY_2; # PRIORITY 2?
and k1,k0,EXC_MASK; # isolate ExcCode field of CR.
bc2t PRIORITY_3; # PRIORITY 3?
Iw  vO,cause_table(k1); #fetch exceptioncause startaddress.
bc3t PRIORITY_4; # PRIORITY 4?

and k1,k0,IP_MASK; # isolate IP field of Cause Register.

# PRIORITY 5,6: Evaluate Cause Register, jump to
Exception cause start address.

# (process already started by using Branch Delay Slots
above)

i vO; # jump to Exception cause start
address.

sra k1,k1,8; # shift right 8 bits to create word
address.

# Exception cause start address = INT_EXTERN if an
interrupt.
INT_EXTERN:

Iw  vO0,IP_table(k1); # fetch Interrupt routine start address

from |P_table.
# use delay slot to stack gpr vi.

# jump to PRIORITY_S or 6, per IP
field of Cause Register.

# use delay slot to stack gpr t0.

sw  vi,vi_OFF*4(sp);
i v0;

sw t0,t0_OFF*4(sp);
PRIORITY_1:

sw v0,vO_OFF*4(sp); # stack gpr v0.

# Stack any additional gpr's needed for PRIORITY 1
interrupt servicing.

# kO & k1 are also available for PRIORITY 1 servicing.
# PRIORITY 1 service here.

# Restore any gpr's used.

Iw  vO,vO_OFF*4(sp); # restore gpr v0.

# Restore Stack and return to parent process.
addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).
mfc0 k0,CO_EPC;
nop;

j ko;
rfe;

# return from int svc.

PRIORITY_2:
#Stack gpr's needed for PRIORITY 2interrupt servicing.
# vO already stacked.
# Re-enable PRIORITY 1 (higher priorty interrupt).
li v0,x0008001;  # re-enable PRIORITY 1—Int(5). 2cycle
inst'n.
mtcO v0,CO_SR;
# PRIORITY 2 service here.
# Restore SR, gpr's used, Stack, and return to parent
process.

li k0,0x00000000; # disable interrupts prior to context

restore. 1 cycle inst'n.
mtcO0 kO,CO_SR;
w k1,SR_OFF*4(sp);
Iw  vO,vO_OFF*4(sp);
nop
lw  kO,EPC_OFF*4(sp);
addu sp,sp,exc_stack_sz;
mtc0 k1,CO_SR;

# restore gpr vO.

# restore sp(Stack Pointer).
# restore SR(Status Register).

i ko; # return from int svc.
rfe;
PRIORITY_3:

# Stack gpr's needed for PRIORITY 3 Interrupt servicing.
# Vo 3!rn-nlu abamnlrnd

Caly StaTrRi.

# Re-enable PRIORITY 1,2 (higher priorty interrupts).
li v0,x000C001;  # re-enable PRIORITY 1,2 - Int(5,4).
2cycle inst'n.
mtcO  v0,CO_SR;
# PRIORITY 3 service here.
.
.
.
# Restore SR, gpr's used, Stack, and return to parent
process.

li k0,0x00000000; # disable interrupts prior to context

restore. 1 cycle inst'n.
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mtc0 kO0,CO_SR;
Iw k1,SR_OFF*4(sp);
Iw vO,vO_OFF*4(sp);  # restore gpr vO0.

w kO0,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).
mtc0  k1,CO_SR; # restore SR(Status Register).
i kO; # return from int sve.
rfe;
PRIORITY_4:

# Stack gpr's needed for PRIORITY 4 interrupt servicing.
# vO already stacked.
# Re-enable PRIORITY 1,2,3 (higher priorty Interrupts).

li v0,x000E001; # re-enable PRIORITY 1,2,3 - Int(5,4,3).
2cycle inst'n.

mtcO v0,CO_SR;

# PRIORITY 4 service hereo.

# Restore SR, gpr's used, Stack, and roturn to parent
process.

li k0,0x00000000; # disable interrupts prior to context

restore. 1 cycle inst'n.
k0,CO_SR;
w k1,SR_OFF*4(sp);
Iw vO,vO_OFF*4(sp);  # restore gpr vO.

Iw k0,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).
mtc0  k1,CO_SR; # restore SR(Status Register).
j kO; # return from int svc.
rfe;
PRIORITY_S:

# Stack gpr's needed for PRIORITY 5 Interrupt servicing.
# vO,v1,t0 already stacked.
# Re-enable PRIORITY 1,2,3,4 (higher priorty interrupts).
li v0,x000F001; # re-enable PRIORITY 1,2,3,4
- Int(5,4,3,2). 2cycle inst'n.
mtcO v0,CO_SR; ’
# PRIORITY 5 service here.
.
.

# Restore SR, gpr’'s used, Stack, and return to parent
process.

li k0,0x00000000;
k0,CO_SR;

Iw k1,SR_OFF*4(sp);
w vO,vO_OFF*4(sp);
Iw v1,vi_OFF*4(sp);
Iw t0,t0_OFF*4(sp);

Iw kO,EPC_OFF*4(sp);
sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

# disable interrupts—1 cycle inst'n.

# restore gpr vO.
# restore gpr v1.
# restore gpr t0.

mtc0  k1,CO_SR; # restore SR(Status Register).
j kO; # return from int svc.

rfe;
PRIORITY_6:

#Stack gpr's needed for PRIORITY 6 Interrupt servicing.
# vO,v1,t0 already stacked.

# Re-enable PRIORITY 1,2,3,4,5 (higher priorty
interrupts).

li v0,x0007F801; # re-enable PRIORITY 1,2,3,4,5

- Int(5,4,3,2,1). 2cycle inst'n.
mtc0 v0,CO_SR;
# PRIORITY 6 service hero.
.
.
L]
# Restore SR, gpr's used, Stack, and retum to parent
process.
li k0,0x00000000;
mtc0  k0,CO_SR;
w k1,SR_OFF*4(sp);

# disable interrupts - 1 cycle inst'n.

w v0,vO_OFF*4(sp);  # restore gpr v0.
Iw v1,vi_OFF*4(sp); # restore gprv1.
Iw t0,t0_OFF*4(sp);  # restore gpr t0.

w k0,EPC_OFF*4(sp);

sp,sp,exc_stack_sz; # restore sp(Stack Pointer).
k1,CO_SR; # restore SR(Status Register).
j kO; # return from int svec.

#assemblerdirective - enable pipeline
scheduling.

.set reorder
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INTRODUCTION

In the past 10 years, the use of computer networks has
increased many fold. Users at home and in the office need
constant access to on-line corporate information such as data
bases, files and email, etc. During the same time frame
advances in low power microprocessors and battery technol-
ogy gave rise to a new class of computing machines. These
Laptop Computers, Notebooks and Personal Digital Assis-
tants (PDAs) need to access a company’s wired backbone
infrastructure LANs to give users complete mobility. Mobile
users can access the company LAN infrastructure through
Wireless LAN access or Digital Cellular access. The Wireless
LAN (WLAN) is used locally within the company office build-
ings or the parking lot. It is a high speed connection (1 - 20
Mbits/sec) with a limited radius of about 50 meters or so.
Cellular access is used when the user is on the road. Cellular
access is at much lower speeds (10 - 50 Kbits/sec) and is
usually provided through cellular carriers, exactly like cellular
phones and pagers. This paper describes the Wireless LAN
implementation.

wireless
Access
Point

Mobile Unit

WIRELESS LANS

Wireless LANs (WLANSs) provide the mobile users access
to the company wired LAN infrastructure. They offer great
flexibility because connection can be established immedi-
ately. There is no need for a wire orawall connector. Users are
notconstrained to a particular work area. They can roam freely
from one location to the other while maintaining full access to
the wired LAN backbone. Furthermore, active sessions don't
get interrupted as users roam around.

WLANS usually consist of two elements: the Access Point -
and the Mobile Unit. The Access Point provides connections
tothe wired LAN infrastructure. The Mobile Unitis the portable
computer with an adapter to the wireless world. Figure 1
illustrates the topology for a WLAN network connected to the
existing LAN backbone.

If connection to the wired LAN is not needed, Ad-Hoc
WLAN networks can be created and dismantled among the
Mobile Units as needed without having to change the existing
wiring network. The WLAN standards are in the final definition
stages in the IEEE 802.11 proposals.

Figure 1. Wireless LAN Topology
802.11 Proposed Standards

The IDT fogo is a regl of

Davice T¢ Inc.
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The IEEE 802.11 proposed standards to be finalized in the
middle of 1995 specify the lower two layers of the Open
System Interconnects (OSl) seven layer model.

The physical layer interface is specified for 1 - 2 Mbits/sec
rates using spread-spectrum techniques. Either direct se-
quence or frequency hopping methods can be used. The
transmission can be carried by any of the ISM (Industrial,
Scientific and Medical) frequency bands. The proposals call
for even higher bit rates in the future (up to 20 Mbits/sec) as
the technology becomes more mature.

There is also another proposal for an infrared physical
layer.

Inthe wireless world itis difficult to deal with collision detect
on the hardware level like wired protocols such as Ethernet.
The main reason for this is that the transmitting station can’t
detect a collision, because its own transmitted signal over-
comes signals from any other stations. Therefore, the collision
detect for WLANSs is implemented in the MAC layer interface,
using a simple handshaking mechanism between the sending
and the receiving stations. The sending station issues a
Request_To_Send signal and waits for the Clear_To_Send
signal from the receiving station. These two signals carry
other embedded information to inform other potential stations
to wait until the transmission is done. The transmitting station
sends the data and waits for the Acknowledge signal from the
receiving end to complete the transmission.

Finally, the proposed standards specify that the WLANs
should function well in both a distributed control or a point
control environment. In a distributed control environment, the
WLAN network control is distributed among all the units
(Access Points and Mobile Units). This allows ad-hoc net-
works among several Mobile Units to be formed without the
need for any additional control or management. In the point
control environment, a centralized node takes control of the
WLAN management and allows only one unit to “talk” at a
time.

THE MOBILE UNIT

The Mobile Unit consists of a host computer (usually a
portable one) and a WLAN adapter. The WLAN adapter
implements several tasks. It negotiates for the access to the
airwaves and implements the MAC layer protocol. It also
shares in the WLAN network control and management in a
distributed environment. The WLAN adapter also plays a
major role in roaming support. Roaming support for the
WLANSsis completely different from that for the cellular phones.
In the cellular world, the base station determines when to
hand-off an active session to the following base station. This
is usually determined according to the quality of the signals
received. In the WLAN world, the Mobile Unit determines
when to switch to another Access Point that it can “hear”
better. Again, this decision is based on the quality of the
signals received. This transition from one Access Point to the
other shouldn't interrupt any active sessions. All these tasks
suggest that the intelligence must be built on the WLAN
Adapter.

There are several implementations for the WLAN Adapt-
ers. Some vendors implement them as add-on cards to host

computers while others implement them as PCMCIA cards for
portable platforms. This paper concentrates mostly on the
PCMCIA implementation. It is important to note that all the
relevant concepts and requirements still apply to the add-on
cards.

The PCMCIA is usually implemented using an “intelligent”
PCMCIA card with an antenna attachment. The “intelligence”
is in a microprocessor or microcontroller on the card. This
implementation relieves the host CPU from the real-time
requirements of servicing the radio. Furthermore, the host
CPU is usually of limited compute power that is used for other
system functionality. The antenna attachment could be part of
the card itself or an external component.

REQUIREMENTS FOR PCMCIA CARDS

The PCMCIA standards place stringent requirements on
the selection of the components. The devices selected must
have low EMI emission and fit inside a Type I, Il or lll card.
They must also consume a minimum amount of power and
have power management capabilities. There is usually a very
limited power budget available from the host computer to the
PCMCIA slot. The power allocated to the PCMCIA slots varies
from vendor to vendor and usually ranges from 1 - 1.25 Watt.
These requirements point toward a reduction in the number of
components used. This favors a software solution where
much of the functionality that was implemented in dedicated
hardware is now implemented in software. This software
approach requires the use of a powerful microprocessor to
implement all the different tasks. It offers the advantage of
greatflexibility and adaptability since only the software changes
to adapt to new standards. Similarly, the use of a high
performance microprocessor allows the software to add more
functionality without incurring the cost of dedicated hardware.

THE IDT R3041

The IDT R3041 is a 32-bit RISC microprocessor designed
for embedded applications. Itis based on the MIPS R3000A
microprocessor and is highly integrated, with large on-chip
caches. There are 2 KBytes of Instruction cache and 512
Bytes of Data Cache. At 10 MHz it has a compute engine of
about 8 MIPS. It is also available at higher speeds, up to 33
MHz. The R3041 features a flexible bus interface that con-
nects directly to 8, 16, or 32-bit devices as well as memory.
Most of the system control signals are also implemented on
chip to reduce the external logic needed. It is available in a
100-pin TQFP package to fitthe form factor of Type Il PCMCIA
cards.
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Figure 2. PCMCIA WLAN Adapter Based on the R3041

PCMCIA WLAN with the R3041

The design of a WLAN Adapter PCMCIA card based on the
R3041 is illustrated in Figure 2. The components require-
ments for this design are minimal. The R3041 and the memory
system are at the center of the design. The EPROMs store the
execution code, while the system memory is implemented
using SRAMs. The PCMCIA interface is accomplished using 0.40 =
a simple PLD combined with a “soft” solution. To the host
computer, the software emulates the I/O space ofthe PCMCIA 0.30 |
cards. The system control logic is also part of the PLD. The )
wireless interface is implemented in a separate ASIC that 0.25
handles the physical layer interface. 0.20 =

A
0.50=—

R3041 POWER CONSUMPTION

The R3041 is designed for power-sensitive applications. At
10 MHz, it only consumes about 0.25 Watts, which makes it
ideal for portable applications. Furthermore, the R3041 can
operate in a “reduced frequency” mode that is under the
control of the software. In this mode, the internal and external
clocks are divided by a power of two factor. By reducing the
frequency to 1 - 2 MHz, the power consumption is almost
halved to about 0.13 Watt, as is illustrated in Figure 3.

Power (Watts)

1 1 1
2 4 6 8 10 12 14 16
Frequency (MHz)

Figure 3. R3041 Power Consumption

This combination of low power consumption and power

management fits extremely well with the WLAN data traffic,
which is bursty in nature. Empirical data shows that, over a
period of time, 25% of the time is spent servicing data (receive
andtransmit), while the remaining 75% is idle time. During this
idle time, the WLAN Adapters only listen to passing traffic.
Software maximizes the advantage of this situation by
putting the R3041 in the “reduced frequency” mode when
there is no data to service. This reduces the average power
consumption to even less than its already low levels. On the
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average, the R3041 will consume about 0.16 Watts. This is
obtained by taking 75% of 0.13 Watts plus 25% of .25 Watts,
This average power consumption is well below the 1 - 1.25
Watts available from the host.

REAL-TIME INTERRUPT RESPONSE

The real-time interrupt response of the R3041 is a major
part of this design. Both the “soft” PCMCIA and the MAC layer
implementations are interrupt-driven and rely on the speed at
which the R3041 responds to interrupts. An interrupt-driven
architecture is much more dynamic than a polled architecture,

Recognize
Exception:

5 |

“Automatic hardware :

since the system responds only to the port that needs service.
Itis a much more efficient use of the system resources.

The R3041 at 10 MHz canrespondto interrupts in less than
3 psec. This includes recognizing the exception, preserving
the state, decodingthe exception and restoring the state atthe
end of the exception. Figure 4 illustrates a sample code that
accomplishes these steps. Thisfast response time, combined
with the interrupt service routine executing from the caches,
removes the need for dedicated hardware to implement the
PCMCIA or the MAC layer interfaces.

kO,except:regs : #etch address of reg save army.
] c‘;r g _co'r‘;ié(kg)) #save AT .
#save 169 v0-
Preserve: VIRVI4(k0) . #saveregvi
State W.COEPC: . #elchEPG
v1,C0:SR #elch status registar
VO,R_EPC™4(k0) - - #save EPC
VO,CO_CAUSE: #felch cause register
! v1,RSR"4| #save slatus register
Decode #now; dispatch service routine
;. a0, A AT 4(k0) ¢ #save a0’ ,
= V1 MOEXCMASK: i+ #lsolate mask: :
ao,caus&tabla(vu, #get address of Intsnum routing
a1, R_A1%4(k0) #usg delay siot to save register 1
s } a0’ #branch to service routine:
Exception KRR AROY FSAVE KT gt
moct) - [Dotherealwork |

- 1500ns

W k0,CO.SR"4(AT) - # fetch status reg. contents
Restore from Mco ‘;g govg :m‘l’) : res{ove ‘rhaq sﬁm o ;

mtco restore the reg. contents;
Exception M KO,R_EPC4(AT) # Get the raturn address

w ATHCAT4(AT). ' # restore AT inload delay

oret # retumn to normal exscution

— ~3.0us

Figure 4. Sample Code for Interrupts

MAC Layer Implementation

The IEEE 802.11 standards specify a unique 48-bit IEEE
device code for WLANSs. A password might also be associated
with a given ad-hoc network. The MAC layer must checks the
hashing table for the address and the password to determine
the validity of the incoming data. Similarly, it must issue the
new address and password when transmitting messages. In
the WLANSs, the collision detect mechanism is also imple-
mented in the MAC layer. A software solution can be much
more flexible than a hardware one. Software can adapt to the
emerging standards, while not becoming locked into dedi-
cated hardware modules.

The “soft” MAC layer implementation takes advantage of
the fast interrupt response time of the R3041. The internal
caches play a major role in speeding up the software execu-
tion. The data cache stores the hashing tables, while the
instruction cache stores the interrupt service routines. In this
case, the external bus is accessed only to bring data into the
R3041 and to write data to the external devices. The data
manipulation is done on the fly while reading and writing to the
external devices.

Receiving the Data

The WLAN Adapter receives the data from the external
world when in the receiving mode. At 1 Mbit/sec interface a
byte will be available every 7.8 psec. The physical layer ASIC
combines the bits into bytes and gathers four bytes before
interrupting the R3041. As a result the R3041 is interrupted
every 31.2 psec. It takes the R3041 about 3 psec to respond
to the interrupt. The remaining 28.2 pusec are used to read the
incoming bytes, manipulate the header and store the data in
memory. It takes about 10 clock cycles to read the four bytes
from the physical layer interface and a similar 10 clock cycles
to write the data into memory. These two operations take
about 2 usec. This interface (excluding the header manipula-
tion) consumes about 16% of the R3041 compute power. The
remaining 26 psec are used to manipulate the incoming data
on the fly. Other functionality such as network management
and roaming support can be serviced during this time.

.
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Transmitting the Data

The transmission operation is the reverse of the receiving
operation. The same analysis applies. WLAN protocols are
full duplex, but since the transmission and reception are
usually asymmetrical, the analysis for either should be used
only. ‘

PCMCIA INTERFACE

Similar to the software implementation of the MAC layer
protocol, the PCMCIA interface is emulated in software. The
basic approach is to emulate the I/O space of the PCMCIA
cards using interrupts to the R3041. When the host requests
a service, aninterrupt is generated to the R3041. The R3041
determines whether it is a read or a write operation and acts
accordingly.

THE SOFT ADVANTAGE

Implementing most of the functionality in software offers
greater flexibility and adaptability. It becomes much easier
and less costly to adapt to new standards without the need for
an entire hardware redesign. Similarly, using a high level
language offers the freedom to port the code developed to
other platforms with minimal modifications. it is also much
easier to maintain.

The “soft” approach allows to add more functionality for
product enhancement and differentiation. For example, soft-
ware compression and decompression can be used to in-
crease the effective bandwidth by requiring less time for
transmissionand reception. Software provides the support for
time-bound data such as voice and video for multimedia
applications. Furthermore, encryption/decryption or other al-
gorithms can be added in software to provide for secure
systems for example transmission and receptions with little
impact on the hardware design.

THE ACCESS POINT

The Access Point implements the same WLAN protocols
as the Mobile Unit with the addition of a wired access to the
company backbone. To preserve the investment in the design
of the WLAN Adapter, most of the Mobile Unit modules should
be reused in the Access Point. The physical layer ASIC is a
good example of this. It saves time if the entire Mobile Unit
code base can be reused for the Access Point. This assumes
the use of the same architecture and/or the same micropro-
cessor. The R3041 offers both of these choices. Itcanbe used
as is in the Access Point design while executing at higher
frequencies. In that case there would be very little modifica-
tions to the software module written. The hardware would be
modified to include the wired interface. Figure 5 illustrates the
design of the Access Point around the R3041.

A second possibility is to use a more powerful microproces-
sor from the same family. The R3041 is 100% software
compatible with the IDT RISControllers™ family. This family
offers a wide selection of price/performance microcontrollers
that fit most of the embedded applications. The family offers
several options including on-chip instruction and data caches,
hardware floating-point unit and a flexible bus interface. The
Access Point can then be redesigned for use with another
member of the family. However, the investment in the soft-
ware will be maintained because the software can be reused
without modifications.

CONCLUSION

The R3041 offers all the advantages of a software imple-
mentation. Itcan be used for both the Access Point design and
the PCMCIA WLAN Adapter with minimum modifications to
the hardware and/or the software. The “soft” approach re-
duces the need for dedicated hardware modules. It offers the
capability to adapt to new standards. Additional functionality
can be added without a major impact on the hardware.




LOW POWER R3041 FOR WLAN APPLICATIONS APPLICATION NOTE AN-138

Physical Layer ASIC

WirelessLan-figs

Figure 5. Access Point based on the R3041

Finally, the RISControllers™ family offers a wide spectrum
of price/performance choices for the embedded applications.
The software investment is preserved 100% across the entire
family.
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INTRODUCTION

The IDT79R3051™ RISController™ family utilizes a high-
performance computing core to achieve high performance
across a variety of applications. Further, the amount of cache
incorporated in the R3051 family allow these CPUs to achieve
very high performance even with simple, low-speed low-cost
memory subsystems.

The R3051 and the R3081™ RISController CPU families
include a full R3000A core RISC processor, and thus are fully
compatible with the standard MIPS processors. in order to
provide high band-width to the CPU core, the families also
incorporate relatively large instruction and data caches. The
external memory interface from the R3051 family is very
flexible and allows a wide variety of implementations depend-
ing on the price/performance goal of the application. The
R3081 is upward compatible to the R3051 family with the
same footprint and bus interface and the benefit of larger
caches and a hardware floating-point coprocessor.

This paper will discuss the cost and performance impact of
various trade-offs, and provide a concrete design of a DRAM
memory subsystem around the R3051 and the R3081. This
paper will specifically address the trade-offs between high-
performance and low-cost memory systems, the impact of a

high-frequency system on the memory interface and the
impact of systems which are intended to be field upgradeable.

DIFFERENT TYPES OF MEMORY

SRAM, DRAM and EPROM are today’s industry standard
for memory subsystems. EPROMs usually provide boot code
in most systems and are much slower and more expensive
than SRAMs or DRAMs. SRAMs are typically less dense and
more expensive than DRAMs; however, they provide faster
memory access time with a simpler interface and can be used
insystems where performance (ratherthan cost) is the primary
criterion. DRAMs are the most popular choice for main
memory because of their position on the cost/performance
curve and the densities in which they are available.

MEMORY SYSTEMS

Most of today’s systems use one of two memory architec-
tures: Non-Interleaved or Interleaved architectures. In this
paper, a memory array is defined as the group of memory
devices that produce a full width CPU data bus. For example
a 16-bit data bus CPU requires 4 “x4” DRAMs to compose a
memory array while a 32-bit data bus CPU requires 8 “x4”
DRAMs to compose a memory array.

32-BIT MEMORY DATA BUS

~JINPUT CONTROL LINES |

INPUT ADDRESS LINES

Figure 1a. Single-Bank Non-Interleaved System

The IDT logo Is a registered trademark and RISController, IDT79R3051 and IDT79R3081 are
All others are trademarks of thelr respective companles.

of Device Ti inc.
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INPUT CONTROL
LINES

ADDRESS CONTROL LINES

32-BIT
MEMORY
DATA BUS

Figure 1b. Two-Bank Non-Interleaved System

In non-interleaved architectures, a memory bank consists
of a single memory array with sequential addresses. Any read
or write to a memory bank accesses a single location. Figure
1a illustrates the architecture of a single non-interleaved
memory bank. Non-interleaved memory architectures are
usually composed of multiple memory banks to satisfy the
memory requirements of the system. In these topologies, the
high order address lines select among the multiple memory
banks and only one memory bank can be selected at a time.
Figure 1billustrates the architecture of a non-interleaved two
banks memory system.

There are various types of interleaved architectures. The
most popular one is the address interleaved. There are
numerous variations of the address interleaved architectures.
Mainly, 2-way address interleaved, 4-way addressinterleaved
and so on. In a 2-way address interleaved architecture two

INPUT CONTROL
LINES

ADDRESS CONTROL LINES

MEMORY

memory arrays are grouped together in parallel to form a
Super memory bank. This Super memory bank thus has
double the data bus width and double the memory density of
a single non-interleaved bank, and consists then of an even
array and an odd array. A memory controller must be able to
select both arrays together or independently based on the
type of access. The memory controller uses the low order
address bit to select between the two arrays. It must be able
todirectthe data path from everymemory array independently
to the CPU through some data buffers. Figure 2 illustrates the
architecture of a 2-way interleaved single Super memory bank
system. In a 4-way address interleaved architectures four
memory arrays are grouped together in paralle! to form a
Super memory bank. This Super memory bank consists thus
of four quarters. The memory controller must be able to select
these four arrays together or independently using the two low

32-BIT

MEMORY
MEMORY | DATABUS
DATA |-l
BUFFERS

Figure 2. 2-Way Interleaved Single Super Memory Bank
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order address bits. It must be able to direct the data bus of
every quarter independently to the CPU through some data
buffers.

Address interleaved memory systems are thus inherently
more expensive than non-interleaved architecture since they
require a much more complex memory controller and wider
data paths. The basic amount of memory banks in address
interleaved architectures is a multiple of the basic memory
bank in non-interleaved architectures; however, for systems
with large amount of memory, the same memory banks could
be configured as interleaved or non-interleaved. The major
advantage of interleaved systems lie in block of data elements
accesses from/to the CPU. Interleaved systems can double or
quadruple the memory band-width and thus dramatically
improve the performance when the CPU reads or writes 4, 8,
16, 32... data elements atatime. Interleaved systems do not
offer any advantage for single independent read or write
accesses. Interleaved architectures are usually used in sys-
tems where performance (rather than cost) is of importance.
For embedded cost sensitive applications, non-interleaved is
usually the architecture of choice.

GENERAL DESCRIPTION OF THE DRAM
SYSTEM AROUND THE R3051

The R3051 is designed around the R3000A MIPS RISC
core and features a high level of integration with large on-chip
instruction and data cache. It incorporates up to 8kB of
instruction cache and 2kB of data cache. These relatively
large caches achieve hit rates in excess of 90% and sub-
stantially contribute to the performance inherent in the R3051
family. The R3051 has also implemented on-chip a four-deep
read and a four-deep write buffers that isolate the high
frequency CPU core from the much slower external memory
and modules. This high level of integration simplifies the
interface between the R3051 and the external memory mod-
ules as is illustrated in Figure 3 and allows the use of low cost
memory subsystems without penalizing the performance.

The R3051 family uses a double frequency input clock for
itsinternal operation and provides a nominal frequency output
clock for the external system. This output clock, Sysclk,
synchronizes the external memory subsystems to the CPU.
Memory transactions from the R3051 use a single, time
multiplexed 32-bit address and data bus and a simple set of

—{ Input Clock

IDT R3051/52
RISController™
SysCIKK
AD(31:0) ALE __ CONTROL LINES
DATABUS &
] CLOCK
J DRIVER
ADTD RESS
LATCHES 5550k
oAt
ADDRESS
BUS I P 6
'~ EPROM and /O
CONTROL [«
LOGIC

! ]

70
EPROMS|I |pevices)|

Figure 3. R3051 RISController Family-Based System
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control signals. External logic then performs address demul-
tiplexing and decoding, memory control, interface timing and
data path control.

The system shown in Figure 3 is a 256MHz system with a
50MHz input clock. The R3051 interfaces to a DRAM system
as the main memory, to an EPROM system and to various
1/0 devices and controllers. Address latches decouple the
address bus from the data bus. Address decoders select
among the various external modules. The output clock from
the R3051 (Sysclk) is usually buffered to reduce the loading
effectandto provide clock drive capability with minimum clock
skew for the system.

The main DRAM memory system is based on 1 to 4 banks
of non-interleaved DRAMs with 80ns of accesstime (trac=80ns).
The DRAMs used are 256k x 4 to provide a maximum memory
space of 4MB. The DRAM memory space occupies the lower
4MB of the physical memory space. Figure 4 illustrates the
architecture of the main DRAM memory system. The DRAM
memory space resides between addresses 0000_0000 and
3FFF_FFFF. Address bits A(21:20) select among the four
banks while the Rdand Wroutputs from the R3051 differentiate
between read and write accesses.

Each memory bank (32-bit array) of DRAM, which corre-
sponds to 1TMB when using 256k x 4 DRAMs, is individually
controlled by a separate RAS signal. RASO controls DRAM
bank 0, RAS1 controls DRAM bank 1,... Each bank of DRAM
is also controlled by an individual WriteEnable signal.
WriteEnable0 controls DRAM bank 0, WriteEnable1 controls

DRAM bank 1,... This architecture enables only a single
DRAM bank for any DRAM read or a write access. The DRAM
banks are arranged so that each bank represents a single,
contiguous range of 1MB.

In an R3051 system, it is possible to perform a 32-bit read
even when smaller data elements are requested. However on
writes, it is important to enable only those bytes which are
actually being written by the CPU. The R3051 bus interface
provides four individual byte-enable signals to indicate which
byte lanes are involved in a particular transfer. The DRAM
subsystem encodes the byte-enable information from the
R3051 into the CAS control signals of the DRAMs. In this
encoding, CASO corresponds to byte lane 0, CAS1 corre-
sponds to byte lane 1, etc. Each CAS signal is connected to
the DRAM devices that correspond to the byte lane under its
controlin all four banks of the DRAM subsystem. That is to say
that CASO is connected to the two DRAM devices that com-
pose byte 0 in every DRAM bank.

Data buffers isolate the DRAM banks from the R3051 data
bus to reduce the loading effect and to prevent contentions
between the R3051 and the DRAMSs. Note that this also
alleviates concerns about the relatively slow tri-state times
associated with DRAM devices. The data buffers selected are
industry standardbidirectional transceivers (74FCT245). These
data buffers actually isolate the data bus of the R3051 from all
the external modules.

DRAM addresses are provided by muitiplexing the latched
R3051 address bus using the IDT FBT2827B memory drivers.
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Figure 4. DRAM Memory Subsystem Architecture
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This device type was selected based onits ability to drive large
capacitive loading, such as found when driving 32 DRAM
devices. A single FBT output has a series resistance incor-
porated in the output driver and is capable of driving all four
banks of the DRAM subsystem. To minimize the signal skew
among the DRAM devices, the address lines and the control
lines to the DRAMs must use the “star” or the “fork” topology
on the PCB board. In this method, all the loads on a given
signal are lumped at the far end of the PCB trace. Series
termination is also well suited to drive lumped (or forked)
CMOS loads (like DRAMSs) at the end of a PCB trace. The
series termination minimizes overshoots and undershoots at
the receiving end and does not add any power dissipation to
the system.

Every DRAM cell consists of a MOS cell and a capacitor
which encodes logic 1 and 0 in its charge. The capacitors in
the DRAM celis tend to loose their charges with time through
leakage. This is why DRAMs require to be refreshed at a
regular time interval. The refresh mechanism is internal to the
DRAMSs where bits (cells) are rewritten with the same value to
keep the capacitors charged. This refresh mechanism is
enabled by the input control signals to the DRAM devices
through the RAS and the CAS signals. In this design a refresh
timer requests the refreshing of the DRAMs every 9.6us. This
refresh timer can be driven by the Sysclk from the R3051 or
from an independent oscillator. The 9.6us refresh interval
chosen is more frequent than is actually required by the
DRAMs. The use of this value simplified the control logic
associated with page mode write. DRAMs require that RAS be
maintained low no longer than 10us; by choosing a refresh
value smaller than this maximum time, the system is assured
that maximum RAS low time will not be violated.

REF_ACK

WR=1 &RD=1

. BURST=1 &
WR=0 &

WRNEAR=1 &

DRAM-CS=0

DRAM-CS=0

REF_REQ=1

ASSERTED,

DRAM STATE MACHINE DESIGN

For the system described in this paper, a simple state
machine performs the major aspects of DRAM control. The
state machine uses a simple four-bit counter (C(3:0)) to
dictate the timing for the DRAM control and CPU response,
and is sequenced using SysClk. There are nine major states
to the state machine as is illustrated in Figure 5. These states
are dictated by the type of transfer requested and the state the
DRAM control logic was left in by the prior transfer.

The DRAM control logic uses the Reset pulse to reset its
internal states and to synchronize its operation to the R3051.
During the RESET state, it also performs one refresh cycle
before entering the IDLE state. In the IDLE state, the DRAM
control logic arbitrates between a refresh cycle and a bus
access. A DRAM bus access is started whenever the DRAM-
Chip-Select and the Rd or the Wr signals are asserted. A
refresh request is detected using the REF_REQ
(Refresh_Request) pulse from the refresh timer. The DRAM
controller supports 4 types of CPU bus accesses: “quad-word
read”, “Single-word read”, “Single-word write” and “Page-
word write”. After a “Single-word write” or a “Page-word write”
access, the DRAM control logic enters the IDLE RAS AS-
SERTED state which is an IDLE state with the RAS signals
kept asserted. The RAS signals need to be precharged upon
exiting this state.

Reset Cycle

Aresetcycleisinitiated by the assertion of the Reset signal.
This is a hardware reset which initializes the control logic to
the correct IDLE state. After the Reset signal is de-asserted,
one DRAM refresh cycle is initiated. Most DRAMs require at
least 8 refresh cycles for proper initialization. This DRAM

RAS
PRECHARGE,

RD =0 OR
REF_REQ=1OR
DRAM-CS=1 OR
WR=0 & WRNEAR=1

WR=0 &
WRNEAR=0 & DRAM-CS=0

WR=1 & RD=t1

Figure 5. DRAM Control State Machine
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Figure 6. Single-Word Read Access Timing

control logic provides only one refresh cycle at reset time. Itis
the responsibility of the software to ensure that no DRAM
access is made prior to the elapsing of 8 refresh periods. This
can be insured by normal operation of the boot PROM;
however, software could “spin-lock” for a predetermined num-
ber of loops to insure that sufficient time has elapsed.

Refresh Cycle

A refresh cycle is initiated every time a REF_REQ pulse
from the refresh timer is detected. The refresh timer issues a
REF_REQ pulse every 9.6us. The DRAM control logic re-
sponds with a refresh acknowledge (REF-ACK) signal which
locks the refresh timer until the refresh is serviced. The refresh
interval has been set to 9.6us which is shorter than the
maximum 15.5us refresh period that most DRAM require.The
9.6us refresh period ensures that for an IDLE RAS AS-
SERTED state, where the RAS signals can be left asserted for
long time periods, the maximum RAS pulse width of 10us is
not violated.

Inthe DRAM controllogic, a refresh requesthas the highest
priority over any other CPU requests. However, if a CPU bus
requested is being serviced at the time the refresh is re-
quested, the refresh cycle will be delayed until the end of the
currentbus cycle. Theinverse is also true when bus requested
are being delayed until the end of a refresh cycle. In this
design, only the RAS-before-CAS refresh method is imple-

<

mented. -

Idle State

The Idle state is when the state machine is not performing
any bus access or a refresh access but is constantly monitor-
ing the bus for any access request. All the signals are
deasserted and the operation of the 4-bit counter is halted.

Single-Word Read Cycle
There are two types of read transactions from the R3051:

quad-word reads and single-word reads. A single-word read
access is initiated by the R3051 by asserting the Rd signal.
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The DRAM controllogic responds by providing the R3051 with
a single data element (32-bit word). Both the Ack and the
RdCEn signals are used to terminate the single-word read
access. Inthe system described in this paper, the Ack and the
RdCERn signals are returned to the R3051 after 4 clock cycles,
as illustrated in Figure 6.

Quad-Word Read Cycle

Quad-word reads from the R3051 occur only in response to
internal cache misses. All instruction cache misses are pro-
cessed as quad-word reads while data cache misses may be
processed as either quad-word reads or single-word reads.
The R3051 indicates quad-word read accesses by asserting
both the Rd and the Burst signals. In the quad-word read
access, address lines Addr(3:2) from the R3051 act as a two-
bit counter to provide the address of 4 consecutive words,
always starting on a word boundary.

The DRAM control logic handles quad-word read accesses
using the Throttled Block Refill mode of the R3051. In a
throttled read, RACEn controls the data rate of the memory
back tothe CPU (latches the data into the on-chip read buffer).
The Ack input is not provided back to the processor until the
read transfer has sufficiently progressed such that the last
word of the transfer is clocked into the on-chip read buffer
(using RACEN) one clock cycle before the processor core
requires it.

In this non-interleaved system, the first word read of a
quad-word read access takes the same time as a single read
while the 3 subsequent words are read into the on-chip read
buffer at the rate of 1 word every two clock cycles. The RACEn
is asserted for every word being read to latch the data into the
R3051 read buffer. The Ack is asserted between the second

and the third-word read. This ensures that for 4 subsequent
falling edges of Sysclk the on-chip read buffer can provide
datato the R3000A core at the rate of a word every clock cycle.
Figure 7 illustrates the timing involved in quad-word read
accesses.

Quad-word read accesses use the page-mode character-
istics of the DRAM to obtain subsequent data word at a higher
datarate. Inthis access, the RAS signal is kept asserted while
the CAS signals are toggled 4 times to produce 4 data words.

Single-Word Write cycle

Unlike instructionfetches and data loads, which are usually
satisfied by the on-chip caches, all write activity to the caches
is seen at the bus interface of the R3051 as single write
transactions. The R3051 indicates a single-word write access
by asserting the Wr signal. The DRAM control logic enables
the writing of the CPU word or partial word into the DRAMs and
returns the Ack signal to terminate the write access. The Ack
signal is returned to the R3051 after 3 clock cycles, as
illustrated in Figure 8.

The DRAMmemory system takes advantage of the WrNear
signal from the R3051 by defaulting to the case that any single
write to the DRAM subsystem will be followed by another write
with the same upper 22 address bits. Based on this informa-
tion the RAS signal must be kept asserted after every write
access to enter the page mode of the DRAMs. The end of a
single-word access is then different from a single read access
in that the RAS signal is kept asserted.

Idle RAS Asserted State

At the end of a write access the DRAM control logic enters
this idle state where a RAS signal is kept asserted while the
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Figure 7. Quad-Word Read Access Timing
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state machine awaits a subsequent transaction. If the next
access is a local write (WrNear from the R3051 is asserted)
the DRAM control logic enters the page write mode. If a
different access type occurs, the state machine exits this
state.

Page Write Cycle

A page write cycle is a single write access from the R3051
following a previous single write access with the same upper
22 address bits. The R3051 indicates a page write access by
asserting the Wr and the WrNear signals.

Thetiming fora page write access is very similarto a single-
write access but shorter since the RAS signal has been kept
asserted from the previous write cycle. The Ack is returned
back to the R3051 after 2 clock cycles. Figure 8illustrates the
timing for a page write access.

Precharge RAS

Any access, except a page write access, following an Idle
RAS Asserted state needs to have the RAS signal precharged
(driven to a level HIGH) before the access is responded to.

PERFORMANCE

The performance of the different types of R3051 bus
accesses to the DRAM memory subsystem is usually mea-
sured by the number of clock cycles it takes to send the Ack

Single Word Write Access

back to the R3051. This time is computed from the beginning
of the external access. The performance of the DRAM system
can be summarized as follows:

* single read: 4 clock cycles
* block refill: 7 clock cycles
o first write: 3 clock cycles
* page write: 2 clock cycles.

This is a relatively high performance for a low-cost and
easy-to-implement DRAM memory subsystem. The perfor-
mance of the system can be improved by using more elabo-
rate DRAM memory controller and/or more complex memory
architectures such as address interleaving. Such systems
should be able to achieve optimum performance.

FIELD UPGRADEABILITY

Many of today’s systems are designed to allow for future
fields upgrades of the base memory system to more memory
banks and/or deeper DRAM devices. The ability to offer a
base configuration (at a lower selling price) with upgrade
capabilities is often a selling feature of the end product.

The system software should then run diagnostics at boot
time to determine the maximum size of the available memory.
Typical strategies for such diagnostics include writing distinct
valuesinto a given location withineach bank, and then reading
the data back to see if any of the writes did not occur properly

Page Write Access
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or altered data previously written. Non-interleaved or inter-
leaved memory architectures should be transparent to the
system software.

The system hardware should make provision for extra
memory banks or deeper memory devices by routing all the
necessary signals to unused pins or sockets of future upgrade
memory. The system hardware should try to minimize the use
of jumpers to make the system much more user friendly.

Inthe system described inthis paper, the usercan upgrade
to deeper memory by replacing the 256k x 4 DRAMs with
deeper 1MB x 4 DRAMs to obtain a maximum memory space
of 16MB. It is also possible to replace the R3051 with the
R3081 to increase the performance of the system since they
both have the same footprint. The R3081 with its on-chip FPA
will have a great impact on the performance of floating-point
intensive applications; a further benefit is the larger on-chip
caches of the R3081.

CONCLUSION

The R3051 and the R3081 RISController families bus
interface was designed to allow memory systems of differing
complexity and performance to be implemented. Even a
relatively simple DRAM system, as the one described here,
offers very high performance. With simple modifications, this
approach is applicable to higher frequencies (33 and 40MHz)
and to interleaved memory systems yielding even higher
performance. The R3081 can also be used for existing R3051
designs to improve the floating-point performance and the
overall system throughput with no modifications of the exter-
nal hardware.
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By An
INTRODUCTION

This article describes the basic concepts behind designing
with the IDT79R4000 System Interface. The System Interface
connects the R4000 CPU to external memory and peripher-
als. Topics include: (1) what the basic read and write memory
transactions look like, (2) the basic architecture for designing
buffers and transceivers into the address and data bus paths,
and (3) explains the convention of using single level read
buffers and multi-level write buffers. The read and write
buffers can obviously be implemented with custom FPGAs or
ASICs. However, read and write buffers can also be easily
implemented using off-the-shelf discrete logic FIFOs and
pipelined registers. Thus to more clearly illustrate a read and
write buffer implementation, brief discrete logic examples are
given using the 18-bit IDT Double-Density FCT16823T regis-
ter with clock enable, the 16-bit IDT 73200 multi-level pipeline
register, and the 8-bit IDT73210 2-level/1-level pipelined
registered transceiver.

drew Ng

THE R4000 MICROPROCESSOR

The IDT79R4000 MIPS CPU brings high performance 64/
32-bit computing to a single chip microprocessor and thus
extends the family of R3000™ compatible parts from the lower
cost 32-bit R3051™ CPU and R3081™ CPU/FPA. Bench-
marks for R4000 systems show their performance to be from
35-54VUPS (VAX Units of Performance) and from 44-72
SPECmarks. Initial R4000 parts are being produced to run
with an external 50MHz clock frequency and future parts with
the same external bus interface are planned with larger
primary caches and for frequencies over 75MHz. As shown in
the block diagram in Figure 1, the R4000 has high perfor-
mance in large part because ofits superpipelined architecture
which allows a 100MHz internal clock speed which is double
the external clock speed. The R4000 also has an on-chip
floating-point accelerator, on-chip write-back primary instruc-
tion and data caches, an optional writeback secondary cache
interface, and on-chip memory management. The Reduced
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Figure 1. Block Diagram of the R4000

R3081, R3051, R3052 and CEMOS are Davice T
R3000 and R4000 are trademarks of MIPS Computer Systems, Inc.
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Instruction Set Architecture (RISC) and its development envi-
ronment of optimized operating systems, compilers, and
rescheduling assemblers place their emphasis on high perfor-
mance and speed. The R4000 has 3 variants: (1) the 179-pin
R4000PC which comes without a secondary cache interface,
(2) the 447-pin R4000SC which comes with a secondary
cache interface, and (3) the 447-pin R4000MC which comes
with a secondary cache interface and also supports multi-
processing coherency.

R4000 Clock Interface

One outstanding characteristic of the R4000 bus, in con-
trast to most microprocessors, is that it uses fully synchronous
timing. Thus, every output is generated relative to a clock
edge, and has the same propagation delay relative to the
clock. Also, every input has the same setup and hold time
relative to the clock.

This allows the simplification of worst case timing analysis,
so that hardware designers can concentrate on functional
issues. Inconjunction with the fully synchronous timing, the
R4000 has a PLL, which allows it to match the input clock,
Masterin to the master (MasterOut), processor (PClock),
system(SClock), and transmit clock (TClock). MasterOutis an
output clock which the PLL matches up to Masterin. PClock is
an internal clock which runs at twice the frequency of the
Masterin clock. SClock is also an internal clock which is
essentially equivalent to TClock and runs at the same fre-
quency as the Masterin clock. The PLL also allows the
alteration of the slew rate of the outputs relative to the clock
and provides an extra receive clock that leads the system
clock by 25%, called RClock as can be seen in Figure 2. The
Syncln and SyncOut pins shown in the Clock/Control Inter-
face of Figure 3 automatically compensate the clocks for
external buffer delays. Finally, options exist which allow the
system, transmit, and receive clocks to be slowed down
relative to the processor clock, such that the bus interface can
run at 1/2, 1/3, or 1/4 of the normal speed. These options
provide flexibility in producing setup, hold, and access times
appropriate for various interfaces.

Masterln,
MasterOut

R4000 SYSTEM INTERFACE

As shownin Figure 3, the R4000 System Interface consists
of the signals that connect the CPU to the outside world of
peripherals and memory. The System Interface has three
major elements:

1. The 64-bit SysAD bus which carries the address and data.

2. The 9-bit SysCmd bus which encodes the type of memory
cycle.

3. The control lines to condition the SysCmd bus and control
the issue rates of the commands.

This article will discuss each of the System Interface
elements in detail.

R4000 SysAD Bus

The SysAD(63:0) Bus is 64-bits wide and has 8 additional
optional ECC/parity bits called SysADC(7:0). The multiplexed
SysAD bus is shared between address and data phases. The
addresses willbe presentduring the clock cycles where avalid
interface command is present on the SysCmd bus. Data will
be present for the clock cycles where a valid data identifier is
present on the SysCmd bus. During the address phase, only
the least significant 36-bits, SysAD(35:0) are used fora 64 GB
physical address space. By convention, the upper 28 physical
address bits, SysAD(63:36) are driven to 0 with appropriate
ECC/parity by the CPU.

R4000 SysCmd Bus

The SysCmd(8:0) bus is 9-bits wide and has 1 additional
optional even parity bit called SysCmdP. The command bus
encodes the type of transaction that is present on the system
interface. For instance, block reads, block writes, single word
reads, single byte writes, etc. are identified by the SysCmd
encoding. The MSB (Most Significant Bit), SysCmd(8), indi-
cates whether the cycle is a system interface command or
data identifier. Thus SysCmd(8) breaks the encodings into
two main cases, as listed in Tables 1, 2, and 3. Only the more
common encodings are listed here, although a complete listis
available in the User’s Manual. Finally, some examples of the
more typical 9-bit commands and data identifiers are givenin
Table 4.

SClock (internat), I m/—l/—
TClock

RClock

output lines

i

—]

Too drw 02

Figure 2. R4000 Clock Interface Timing (PClock to SClock divisor of 2)

124



DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

APPLICATION NOTE AN-114

— 64 128 p——
SysAD(63:0) <784> <712—> SCData(127:0)
SysADC(7:0) 4—794> 4%» SCDChk(15:0)
SysCmd(8:0) -l <—7L> SCTag(24:0) }

[
SysCmdP -— 4_774, SCTChk(6:0) 8
- 1 g
g Vandin —_— %— SCAddr(17:1) E
b= [
2 Vaiidout A — ——<—= SCAddO(wxyz) | S
= o
g ExtRgst _— ﬁL, SCAPar(2:0) >
0 —
@ Release B — — » SCOE g
— (8]
——— ——
Adnay — 2 TWwaya | B
WrRdy —_— —_— o~ SCBhCE
TTar-L3
VdACK —_— Racoo —

| IvdEr?® _— oglc

— 2 Symbol o
TClock(1:0) <72/— — ¢

B — :1)?
RClock(1:0) -~ In(S:1) g
ftt———— -
MasterClock —_— Inﬁ S
-— >
MasterOut —~————— NMi - _‘E
SyncOut -+ —_ W
————
Syncin ModeClock §
- 2
8 100ut -~ Modeln £
& ~———— VccOk s
5 [Oln EE— . kS
= -4——————  ColdReset %
B GrpRun < —— =
= ~4————  Reset £
8 GrpStall >
=2 —
9 Fault -——— —_
3} e JTDI )
VeeP - = §
—_—
VssP —8> JTDO g
e JTMS e
Status(7:0)’ <+— g
- |
VcceSense? - JTeK -
, 1 = R4000SC and R4000MC only
VssSense e E— 2 = R4000PC onl?l .
- 3 = R4000MC only drw 03

Figure 3. The R4000 Interfaces

R4000 System Interface Control Signals

The System Interface Control Signals communicate when
the System Interface busses are valid, and if the external
agent, (i.e., the memory), is ready to accept the command.
Theirdescriptions are given in Table 5. Two signals, the output
ValidOut and the input Validin are used by the CPU and the
memory to indicate when they are driving valid signals onto
the SysCmd and SysAD busses. For example, when the CPU
is driving a valid command/address or write data on the
SysCmd bus, it will assert ValidOut, and when the memory

system is returning a data identifier on the SysCmd bus and
read data on the SysAD bus, it will assert ValidIn. Two input
signals, RdRdy and WrRdy, are used by the memory system
to communicate whether or not it is ready to handle the next
read and write. The output signal Release is used by the CPU
or bus master to indicate to the memory system that the
master is tri-stating the bus on the next clock. After Release
asserts, the memory system can drive the SysAD read data
and SysCmd data identifier back to the CPU. The input signal
ExtRqst is used by a DMA controller or interrupt controller to
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gain control of the bus from the CPU. Finally, the inputs InvAck
and InvErr are used only on the R4000MC version to help
manage cache coherency.

To illustrate the use of the System Interface, the following
sections will give an example for a read memory cycle and a
write memory cycle. The sections follow the custom used in

R3000/R4000 terminology, to use the term “buffer” in the
software sense, meaning, a register location to store data
rather than the hardware interpretation of amplifying or isolat-
ing a signal without storing it. In the following sections,
hardware buffers such as the 8-bit IDT74FCT244T will always
be referred to as a "hardware buffer".

0 System Interface Command
1 System Interface Data

Encoding of SysCmd(8) Command or Data Identifier

Table 1. SysCmd Encoding for SysCmd(8)

Encoding of SysCmd(7:5) Command
0 Read Request

2 Write Request

1 Read Request, Write Request Forthcoming (on the MC/SC only)

Encoding of SysCmd(4:3) for Read and Write Requests attributes
2 Noncoherent block read or write.
3 Double word, single word, or partial word read or write.

Encoding of SysCmd(1:0) for Noncoherent Block Read Requests
or for Block Write Requests Block size

0 Four words.

1 Eight words.

2 Sixteen words.

3 Thirty-two words.

Encoding of SysCmd(2:0) for Double Word, Word, or Partial Word
Read Requests or Write Requests data size

One byte valid (Byte).

Two bytes valid (Halfword).

Three bytes valid (Tri-byte).

Four bytes valid (Word).

Five bytes valid (Quinti-byte).

Six bytes valid (Sexti-byte).

Seven bytes valid (Septi-byte).

Eight bytes valid (Double Word).

~NOO bW O

Table 2. SysCmd Encodings for System Commands

SysCmd(7) Last data element indication

0 Last data element

1 Not the last data element.

SysCmd(6) Response Data indication

0 Data is response data, e.g., read data

1 Data is not response data, e.g., write data
SysCmd(5) Good data indication

0 Data is error free.

1 Data is erroneous, e.g., a bus error
SysCmd(4) Data checking enable (on external agent data only)
0 Check the data and check bits.

1 Don't check the data and check bits.
SysCmd(3) Reserved

SysCmd(2:0) Cache state (on R4000MC only).

0 Invalid

4 Clean Exclusive.
5 Dirty Exclusive.
6 Shared.

7 Dirty Shared.

Table 3. SysCmd Encodings for Data Identifiers
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SysCmd(8:0) Description of Command

876543210

000010001 Read request, Noncoherent block, eight words
000011011 Read request, Double word or smaller, four bytes valid
001010001  Write request, Block, eight words

001011011 Write request, Double word or smaller, four bytes valid
110000100  Read response data not end of block

100000100 Read response last data

100100100  Read response last data ignore ECC/parity
111000101  Write data not end of block

101000101 Write data, last data

Table 4. Examples of Typical SysCmd Commands and Data Identifiers

READ INTERFACE TRANSACTIONS

In Figure 3, the read interface state machine looks for
ValidOut to assert along with one of the read commands as
encoded by SysCmd(8:5). The SysCmd bus in the example is
binary 000010001, which is an eight-word block read. Trans-
actions involving a single double-word read are similar. By
convention, the block size will either be the primary instruction
cache or the primary data cache line size, or if present, the
secondary cache line size. The SysAD bus contains the
address for the transaction on the same clock as the read
request command. The state machine should latch or register
the address since the SysAD bus is multiplexed. Thus, each
read transaction will only issue one start address even if it is
a block read. If the state machine is not ready to handle the
command, it should keep RdRdy de-asserted. RdRdy will delay
the beginning of the read transaction by keeping the address
on the bus. A caveat on RdRdy is that because it is synchro-
nizedto aclock edge, the CPU will not respond toituntil 2 clock

cycles later as shown in the example in Figure 4. The CPU
asserts Release to indicate that the CPU is ready to tri-state
the SysAD and SysCmd bus on the next clock cycle. The
R4000 protocol allows Release to be either a variable number
of clocks after ValidOut or possibly concurrent with ValidOut.
Thus, the memory system must dedicate an extra state to
allow for variable timed Releases. Along with Release, the
memory system must also wait for any writes that are in
progress to finish, since writes in R4000 systems are FIFOed
(use First-In-First-Out buffering). After sampling Release and
checking for on-going writes, the memory system can drive
the bus and return data. In addition to the data, the memory
system must drive a data identifier on the SysCmd bus and
drive Validin to tell the CPU what it is returning. The memory
system has direct control over the data return rate when it
issues data identifiers. Some of the memory system return
commands include data, end-of-data, and bus error (from
Table 3, binary 110000100, 100000100, and 100100100,
respectively).

Pin Name Type Description

ValidOut Output Valid Output
Signals that the processor is now driving a valid address or data on the SysAD bus and
a valid command or data identifier on the SysCmd bus.

Validin Input Valid Input
Signals that an external agent is now driving a valid address or data on the SysAD bus
and a valid command or data identifier on the SysCmd bus.

RdRdy Input Read Ready
Signals that an external agent can now accept a processor read, invalidate, or update
request in both non-overlap (non-secondary cache) and overlap (secondary cache)
mode or can accept a read followed by a potential invalidate or update request in MC
secondary cache overlap mode.

WrRdy Input Write Ready
Signals that an external agent can now accept a processor write request in both non-
overlap (non-secondary cache) and secondary cache overlap mode.

Release Output Release interface
Signals that the processor is releasing the system interface to slave state.

ExtRgst Input External Request
Signals that the system interface needs to submit an external request.

IvdAck, Inputs Invalidate Acknowledge and Invalidate Error

IvdErr Signals on the R4000MC which indicate successful or unsuccessful completion of a
processor invalidate or update request for cache coherency. Must be pulled high on
other packages (SC).

Figure 5. R4000 System Interface Control Lines
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Figure 4, R4000 Block Read Cycle

On a block read, the state machine must increment the
double word (8 bytes) LSB (Least Significant Bit) address bits
of .the block and keep returning more double words until the
block is finished. These double-word LSB address bits are
changed either in a sub-block order [hex (00,08,10,18,...),
(08,00,18,10,...), (10,18,00,10,...), or (18,08,10,00,...)] orin a
sequential wrap-around order [ hex (00,08,10,18,...}, (08, 10,
18, 00), (10, 18, 00, 08), or (18, 00, 08, 18)] depending on the
package type and boot-strap configuration. Sub-block order-
ingrequiresthe original double-word start address to be XOR-
ed with the block counter. Sub-block ordering is used to
simplify the internal controls, since the word that is needed
within a block, (e.g., the instruction), can always be returned
in the same place. Sub-block ordering is required on the
R4000PC and is optional on the R4000SC/MC.

Note thatbus errors on block reads still require the memory
system to return an end-of-data command to signal the end of
the block, thus allowing the memory system to finish the rest
of the block if it desires. Also, uncached memory, and espe-
cially I/O interfaces, canignore ECC/parity generation/check-
ing by using SysCmd(4) to indicate to the CPU that it doesn'’t
want ECC/parity checked.

The Sieve Search Algorithm

Because the address is generated on the same clock as the
command and the ValidOut signal, the address register state
machine usually has to implement a “door-to-door search
algorithm”. In the sieve algorithm, the address registers are
enabled and constantly register new addresses on each
clock. This means the registers are normally clocking in invalid
addresses until the right one comes along. When ValidOut is
detected, the address register should stop clocking and will
hold the address until the end of the read or write. Thus, the
address register is constantly searching for a valid address
and incidentally latching in many of incorrect addresses until
the correct one comes along.

R4000 Read Buffer Size

Toimplementthe read buffer, enough buffer locations must
be present to store the incoming memory. For the R4000PC,
which puts incoming main memory data directly into the
primary cache, the maximum incoming memory read rate of 2
words per clock is matched by the CPU's capability to put
these words into the primary cache. If a secondary cache is

Secondary Cache Write Time

Memory Speed

Max. Buffer Levels Needed

1-2 SCycles,1—4 PCycles

1

3 SCycles, 5-6 PCycles

DDx 1

4 SCycles, 7-8 PCycles

DDxx 1

Table 6. Examples of the Maximum Processor Read Data Rates for the MC/SC
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present, then enough time is needed to put the data/instruc-
tion into the secondary cache. For the R4000MC/SC, the
secondary cache write rates may bandlimit the main memory
read buffer if they are slower than main memory. However,
this often is not a realistic case, since one of the purposes of
the secondary cache is to provide a faster access time than
main memory, in addition to isolating microprocessing sys-
tems from one another. In Table 6, the number of SCycles
(assuming a PClock divide by 2 divisor for SClock) is shown
along with the equivalent number of processor PCycles, since
the on-chip secondary cache interface uses PCycles to time
the secondary cache. The memory speed of the external
system is indicated with a D, which means one double word
per clock, and possibly followed by one or more x’s, which
indicate idle clocks. Thus a DDxx pattern indicates 2 double
words can be returned every four clocks. A case in whichmore
than one level of read buffering may be desired is shown in the
next section.

Secondary Cache Overlap Mode

Some complexity is added to the state machine and the
interface. The R4000MC/SC (but not the PC) uses a second-
ary cache overlap mode along with regular reads and writes
that can issue a read command, which, in turn, issues a write
command between itself and the expected data. Forexample,
when the read command is issued, the write address and the
write data are issued, which must be handled or buffered by
the memory system. Only then can the memory systemreturn
the data for the read. The purpose of the secondary cache
overlap mode is to allow the memory interface to better utilize

SCycle

SClock

| vzl slefsle]7le]o]me]

AYAVAVAVAVAVAVAVAVAVAVAWAVAVAW,

the read access time, if it chooses to do so. Therefore, a
DRAM memory system could begin a RAS precharge for the
read while buffering the write data, as an example.

Figure 5 displays an example of a secondary cache over-
lapped read and write. This example uses a 4-word block size.
For the secondary cache overlap mode, the state machine
should latch/register the read address and then buffer the
write. It must also use a signal to indicate that the write has to
be delayed until the memory system is done with the read. In
these cases, the read buffer needs a set of address registers
separate from the write address registers. Note that since
secondary cache overlapped writes are caused by writeback
misses, the MSBs corresponding to the Secondary Cache
address (minus the block size LSB bits) will be the same fora
secondary cache overlapped read and write. Even though
most address bits must have separate read and write regis-
ters, the Secondary Cache block address bits only need one
set of registers.

Additional complexity exists for the multiprocessing
R4000MC version, such that a potential invalidate or update
might come between the read and write portions of the cluster.
Therefore, R4000MC interfaces may require an additional
address latch/register for the LSB portion of the potential
invalidate/update double word address.

In addition, since the Release is definitely delayed by the
secondary cache overlapped write data, it is possible for very
fastmemory systems to want to begin to return data before the
CPU can possibly accept it. In these cases, a cost/perfor-
mance trade-off having more than 1 level of read buffering can
be made.

|12|13|14|15|
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SysCmd Busl x x gfacg x Block x Write X Write \

[ Rd\ / Rd \
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memaBus | J x X x X 00005008 \ 00005000 X 11117000 X 11117008 }——
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Figure 5. Secondary Cache Overlap Timing
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ADDRESS PATH I
FCT16823
18x2 18x2
SysAD(35:0) / D Q /. MemAddress(35:N+1,2:0)
AddressRegDisable 7 = 7
TClock or RClock _ N:3 _ sub-block MemAddress(N:3)
- > Clk __ incrementer
OE H logic
DATA PATH FCT16244 or
FeTi6827 16x4 or 20x4
16x4 or 20x4 MemData(63:0),
~_SysAD(63:0), SysADC(7:0) / D o / MembDataCheck(7:0)
V4 /
BE | |-

ReadBufferEnable |

drw 06

Figure 6. R4000 Single Level Read Buffer

EXAMPLE OF AN R4000 READ BUFFER

The address latch/register for an R4000 memory interface
can be built from parts such as the 18-bit FCT16823T register
with clock enable. The critical parameter in the latch/register
portion of the read interface is the latch's data hold time for the
R4000 SysAD bus as shown in Figure 2. This can be solved
two ways.

In the first method, the worst case hold time for a typical
latch/register such as 16-bit FCT-T logic is 1.5ns which is
added to the worst case clock skew from the R4000 is 0.5ns.
The 2.0ns total of worst case factors is just met by the 3.5ns
minimum data propagation delay (Tpo) of the R4000. If
additional margin is needed — for instance if external clock
buffering has additional clock skew — then the following can
be done: The characteristic hold time for high-speed CE-
MOS™ 16-bit FCT-T logic is typically Ons or less, especially
at low temperature. Also, the 3.5ns minimum data propaga-
tion timing of the high-speed CEMOS R4000 outputs, which
only occurs at low temperature, can be guaranteed to be
indirectly delayed upto an additional 2.5ns by changing the
slew rate of the outputs. The rise and fall slew rates can be
adjusted by programming the serial boot initialization register
interface at reset time. By using slower slew rates, which
change the rise and fall times and, therefore slightly delay the
outputs of the R4000, enough data hold time can be provided
to memory interface latches/registers, even when consider-
able clock skew is taken into consideration.

A second method for providing additional hold time, espe-
cially forinterfaces made from ASICs and FPGAs, is to use the
RClock, as previously shown in Figure 2. The RClock leads
the TClock by 25% of the TClock and therefore, at 50MHz
provides 5ns of additional hold time. The disadvantage of
using the RClock is either the latches/registers must be
immediately staged with a set of TClock latches/registers and/
or very fast control logic for the clock enable (which typically
is TClock based) must be used.

Since the memory system access time is usually equal or
greater than the secondary cache access time forthe MC/SC
systems and the PC systems can handle data as fast as the
main memory system can return it, a simple hardware buffer
is all that is needed for the data path, such as the 16-bit IDT
FCT16244T or 8-bit FCT244T as shown in Figures 6 and 7.
Alternatively, a pipeline register with clock enable, suchas the
18-bit FCT16823T, could be used for the data path.

In systems with interrupt or external invalidate controllers,
if the controller is isolated from the SysAD bus and on the
memory side of the system interface, then the address regis-
ters may need to be bi-directional. An example of bi-direc-
tional registered transceivers with data clock enables is the
16-bit FCT16952T and the 8-bit 74FCT52T.

R4000 WRITE INTERFACE TRANSACTIONS

A typical write sequence is shown in Figure 8. The write
interface state machine looks for ValidOut to assert along with
one of the write commands, as encoded by SysCmd(8:5) in
Tables 1-3. The SysCmd bus in the example is binary
001010001, which is an eight-word block write. Single double-
word transactions are similar. If the state machine is not ready
to handle the command, it should keep WrRdy de-asserted.
The caveat on using WrRdy is that because it is synchronized
to a clock edge, the CPU will not respond to it until 2 clock
cycles later. Thus, when WrRdy asserts, the address and
ValidOut will remain on the bus for 2 more clocks. The SysAD
bus contains the base address for that transaction on the
same clock as the write request command. Block writes
always increment the address sequentially, i.e., hex
(00,08,10,18,...). The state machine should latch or register
the address, since the SysAD bus is multiplexed. Each write
transaction will only issue one start address, whether it is a
single write or a block write, thus, external logic is needed to
increment the base address for the memory system.

After the address is generated, ValidOut will be asserted
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Y

IRdRdy (Write in Progress)

Idle,
Disable RAM/ROM,
Start Latching Addr Register

Wait for Write Buiffer to Empty

RdRdy

ValidOut and (SysCmd==Read) and |Release

ValidOut and
(SysCmd==Read)
and Release

Stop Latching Addr Register

Release

]

Stop Latching Addr Register,
Enable RAM/ROM,
Count DW (in Block),
Count Out Wait States

|

Done With W.S. Count
and ILast DW (in Block)

|Release

{Done With W.S. Count

v ILast DW (in Block)
Assert Validin, lncremggt Subblock
Drive SysCmd with Data Done with W.S. ress, .
dentifier, Count and ILast Count DW in Block, IDone With W.S. Count
Enable Data Buffer ~DW (in Block) Count Out Wait States

Done With W.S. Count andLast
DW (in Block)

Assert Validln,
Drive SysCmd with End of

- Data Identifier,
Enable Data Buffer
Last DW (in Block)

Done With W.S. Count
and Last DW (in Block)

drw 07

Figure 7. R4000 Read Interface State Machine

along with the first data of the write immediately, or a variable
number of clocks later. The state machine must add a condi-
tion for the variable number of clocks between the address
andthe firstdata. If the data is a block write, the remaining data
will be generated in a pattern selected by the initialization boot
prom as shown in Table 7. In Table 7, Dxx means that a Data
clock is followed by two idle clocks between each of the data
items. However, no idle cycles are guaranteed after the last
Data clock. Because the data rate pattern on writes is

preselected at reset time using the serial boot initialization the
register interface, the memory system cannot dynamically
slow down any further and still control the data rate. Unless
data can be written to memory at this preselected rate, the
data must be buffered until the memory system can handle it.

Thus, data is written at a rate that further requires external
buffering via a FIFO. The major reason for this arrangement
is to allow memory writes from the buffer/FIFO to occur at the
same time as cached reads. This allows the CPU to execute
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cached instructions in parallel with the retiring of write data. In
addition, the data caches use a writeback protocol, where
data stores are always written to cache, but main memory is
only updated when necessary (i.e., when another cache
access needs to replace the cache location that is holding the
freshly written data). Thus cached load and store fetches can
also occur in parallel with the retiring of external system
interface writes.

Incontrastto reads, writes must indicate bus errors through
aninterrupt or some other external hardware mechanism. The
CPU has an internal write buffer and also expects the memory
system to have an additional external write buffer. Therefore,
the CPU cannot match a bus error indication to a precise
address and data pair, because it is decoupled from when the
memory system actually tries the write. The system can
choose to save address and data information with external
hardware if it needs to match the error to the precise address
and data within the write buffer. Uncached writes which are
less than a double word wide, (e.g., 1byte), still produce data
on the other bytes and the appropriate ECC/parity. However,
the data for the unused bytes is pseudo-random, in that the
CPU drives out what was last contained in an internal data
buffer.

R4000 Write Buffer Depth

In general, to implement the write buffer, enough buffer
locations are needed to store all of the double words in the
block write. However, as write data is being written into the
buffer at the preselected data pattern rate, it is possible that
the first few double words in the block write have been retired
to main memory, much like a FIFO. Thus, theoretically, those
buffer locations could be reused for the last few double words
of the block write, as long as the buffer does not overflow. For

memory which has predictable and consistent access time for
eachword (Static RAM) see Table 8. Not all data rate patterns
andbuffer sizes are shown, butthe other cases can be derived
using queuing theory producer/consumer model. Similar to
block reads, the maximum block size is the largest primary or
secondary cache-line size. For most systems, the control
portion of the write buffer is simplified if the number of buffers
matches the maximum block size.

DRAM systems complicate the optimal cases due to the
first word possibly taking longer than the others because of
RAS precharge, RAS address hold time, or because of the
delay from a CAS-before-RAS Refresh. In such cases, de-
asserting WrRdy until the precharge or refresh is done and
then choosing a slow enough data pattern rate to handle burst
DRAM column page accesses prevents having to select a
very deep buffer.

Byte Enables

On the memory system logic, the 8-byte enables must be
generated from the SysCmd and address for writes that are
less than a double-word wide (from 1 to 7 bytes wide). Note
thatin contrast to most microprocessors, the R4000 will never
generate an unaligned write. Thus, the 1 to 8 bytes written will
always be contained within a double-word boundary. In addi-
tion, if only 1 to 4 bytes are written, they will always be
contained within a word boundary. In other words, whenever
5to 8 bytes are read or written little endian/ big endian, either
the LSB/MSB must be at address offset 0 or the MSB/LSB
must be at address offset 7, and whenever 1 to 4 bytes are
read or written little endian/big endian, either the LSB/MSB
must be at address offset 0 or the MSB/LSB must be at
address offset 3.

SCycle |1l2|3l4|5|6|7|8|9|10|11l12|13|14|15|
e NN NN
SysADBus | x K oooosooo  —— owo X ow1 X DW2XDW3)——<: - T T : : : :
R T S v 0 ¢ e
e [\ — /

memaBus [ X x X X X 00005000 X oo00s008 X 00005010 X 00005018 }——
MemD Bus I { owo X owi ) ow2 Y ows j}—o0
wEsy | \ / \
mRy | \ / \
Felease | drw 08

Figure 8. R4000 Write Block Cycle
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Serial Init Bits 14:11 Data Rate Pattern
D
DDx
DDxx
DxDx
DDxxx
DDxxxx

DxxDxx

Njojlo|djw|IN][=]|O

DDxxxxxx

8 DxxxDxxx
9-15
Table 7. Possible Data Rate Patterns for Block Write

Reserved

CPU Rate Max. Buffer

Levels

Cache Line
Size

Memory Speed

4 DD 1 clock

22

DxD <2 clocks

>3

bxxD <3

=4

DxxxD <4

25

8 DDDD 1 clock

23

DxDxDxD < 2 clocks

2

DxxDxxDxxD <3

4-5

6-11

212

DxxxDxxxDxxxD <4

5-7

8-15

>16

w
[--3 IE= SR LCE IR IS AR GG R B B AR e IR B BT IR I eY B BV 3 IR BV

16 DDDDDDDD Max. Case

32 DDD...DDD

—_
(o2

Max. Case

Table 8. Maximum Write Buffer Depth Needed
For Various Cache Sizes

For example, for a little endian system, a five-byte write or
read, with bytes 0 through 4 enabled, could happen, but a five-
byte write or read, with bytes 1 through 5 enabled, could never
happen. A non-reduced PLA equation for one of the eight byte
enablesis shownin Table 8. The otherseven byte enables are
similar, and the equation can be simplified if the endianess is
predetermined, or if it is known that the 64-bit mode won't be
used. The re-alignment load/store-left/write instructions Iwl,
Iwr, Idl, [dr, swl, swr, sdr, and sdw are used to develop the byte
enable equations.

EXAMPLE OF AN R4000 WRITE BUFFER

The address buffer for writes is similar to the address buffer
forreads andcan use the 18-bitFCT16823T. Onthe R4000PC
which does not have secondary cache overlapped com-
mands, the read address buffer can also be used for the write
addressbuffer. The caveat is that RdRdy needs to be asserted
during the write so that any potential reads will wait until the
write is done with the address buffer before continuing. On the
R4000MC/SC, separate registers are needed, as previously
discussed, for the read address and the write address so that
read, followed by write secondary cache overlap clusters, can
be handled. The write address buffer needs to use the same
door-to-door search algorithm to hold the address as the read
address buffer. The primary difference between the two is that
after latching/registeringthe address, the write buffer needs to
increment the addresses for block writes sequentially instead
of sub-block ordering. Similar to read, a write address register
looks for a write SysCmd along with ValidOut before disabling
the clock enable.

The write data buffer could consist of an ASIC or FPGA,
however, the write buffer can also be easily implemented
using discrete logic FIFOs or pipeline registers. An example is
the 1DT73200 pipeline register, 16-bits wide and 8 levels
deep. It can either load a specific register slot through its
instruction pins or automatically ripple data through, similarto
aFIFO. Either method is acceptable with the R4000, because
the block size is known at the beginning of the transaction. The
block size will either be the primary cache line size or, if
present, the secondary cache line size. If 16 or 32 locations
areneeded, thenthe IDT73200 can be expanded by usingtwo
or four in series in the ripple-through mode. Two separate
state machines are needed, one for controlling the CPU-to-
buffer interface and the other to control the buffer-to-memory
interface. Onthe CPU side-state machine, block writes require
the IDT73200 to start latching/registering in new data by
incrementing the write pointer so a new register is selected to
be written. On the last double-word of a block, the IDT73200
needs to be told when to stop latching new data, since re-
pointing to the first location could possibly destroy that data
too early. This can either be controlled with a special hold
command on its instruction pins, I[3:0] = hex F, or by de-
asserting the CIkEn pin after latching the last double word.
The memory side needs to implement a state machine which
checks to see if a read is in progress from a secondary cache
overlapped read. Once ready, the state machine can initiate
the write to the memory and selectthe register to output via the
select pins. The logic to select the output register can also be
used to generate the sequentially ordered least-significant
double-word address bits. WrRdy can be de-asserted during
a write to indicate that the buffer is full and to keep any
subsequent writes from occurring until the IDT73200 (or a
FIFO) can accept more data. A key contro! issue is to de-
assert RdRdy while data is being written to memory, so that
subsequentreads will waitforthe memory bus to becomefree.
Because RdRdy takes two clocks to react, the de-assertion
must take place during the write command.
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Other options include using a 4-deep pipelined register
such as the 74FCT520, or a 2-deep pipelined register such as
the IDT73210. An example using the IDT73210 will be given
in the next section.

EXAMPLE OF AN R4000 INTEGRATED READ
AND WRITE BUFFER

Some systems, as shown in Table 7, can retire their writes
at a fast enough rate to only require a 2-deep write buffer.
These cases are especially prevalentwhen the cache line size
is 4 words. In these cases, the IDT73210 can be used. The
part was originally designed for embedded R3000 read and
write buffering, and also works well for integrated R4000 read
and write buffering. It is an 8-bit transceiver with an extra data
inputwhich cangenerate parity. In one direction itis registered

once, while in the other direction, it is registered twice. Thus,
by setting it up so that the write buffer uses the 2-deep path,
and the read buffer uses the 1-deep path, the part can be used
in R4000 systems. The BEN and SEL pins can be used to
control register ripple-through. The most straightforward way
to use the controls requires Y-register loading by the first
double-word, followed by ripple-through enabling, so the first
double word is put into register Z as the second double word
is loaded into register Y. Thus, the second double word must
come on the clock cycle immediately following the first double
word. This data rate pattern can be achieved by selecting a D
or DDx pattern from Table 7 with the serial boot interface reset
initialization, Othermethods which use features ofthe IDT73210
not detailed here can be implemented to handle other kinds of
data patterns. However, the controls will be more complicated
than the above case.

!BE_B/ {BYTE ENABLE FOR THE LANE FOR DATABITS 55:48}

= ((RESET/ AND !VALIDOUT/ AND SYSCMD[8:5]==b’1X1X) AND

I{BIGEND AND (MEMADDR[2:0])==b’110) AND (SYSCMD[2:0]==b’000) OR {LIT BYTE }
!BIGEND AND (MEMADDR[2:0]==b’110) AND (SYSCMD[2:0]==b’001) OR (LIT 1/2 WD}
!BIGEND AND (MEMADDR([2:0]==b’100) AND (SYSCMD[2:0])==b’010) OR {LIT 3BYTE }
!BIGEND AND (MEMADDR[2:0]==b’101) AND (SYSCMD[2:0]}==b’010) OR {LIT 3BYTE }
IBIGEND AND (MEMADDR[2:0)==b’100) AND (SYSCMD[2:0]==b’011) OR {LIT WORD }
IBIGEND AND (MEMADDR([2:0}==b’011) AND (SYSCMD[2:0]==b’100) OR {LIT 5BYTE }
!BIGEND AND (MEMADDR([2:0]==b’010) AND (SYSCMD[2:0]==b’101) OR {LIT 6BYTE }
!BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’110) OR {LIT 7BYTE }
IBIGEND AND (MEMADDR[2:0]==b’001) AND (SYSCMD[2:0}==b’110) OR {LIT 7BYTE }
BIGEND AND (MEMADDR([2:0]==b’001) AND (SYSCMD[2:0]==b‘’000) OR {BIG BYTE }
BIGEND AND (MEMADDR([2:0}==b’000) AND (SYSCMD[2:0]==b’001) OR {BIG 1/2 WD}
BIGEND AND (MEMADDR([2:0]==b’000) AND (SYSCMD[2:0]==b’010) OR {BIG 3BYTE }
BIGEND AND (MEMADDR([2:0]==b’001) AND (SYSCMD[2:0]==b’010) OR {BIG 3BYTE }
BIGEND AND (MEMADDR([2:0]==b’'000) AND (SYSCMD[2:0]==b‘011) OR {BIG WORD }
BIGEND AND (MEMADDR([2:0]==b’000) AND (SYSCMD[2:0]==b‘’100) OR {BIG 5BYTE }
BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b‘’101) OR {BIG 6BYTE }
BIGEND AND (MEMADDR([2:0]==b’000) AND (SYSCMD[2:0]==b‘110) OR {BIG 7BYTE }
BIGEND AND (MEMADDR[2:0]==b’'001) AND (SYSCMD[2:0]==b’110) OR {BIG 7BYTE }
(MEMADDR [2:0]==b’000) AND (SYSCMD[2:0]==b’111) OR {DOUBLE WD }
(SyscMD{4:3]==b’1X) OR {BLOCK }

(!BE_B/ AND !MEM_ACKNOWLEDGE/)

)i

Table 9. Byte Enable PLA Equation
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Figure 9. R4000 8-Level, 64-bit Wide Write Buffer
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Processor Side
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Figure 10. R4000 Write Buffer State Machine
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Figure 11. R4000 Integrated Read and Write Buffer

SUMMARY

The R4000 uses three groups of signals for its System
Interface between the CPU and main memory, consisting of
the SysAD bus, the SysCmd bus, and a small group of control
signals. Even though the R4000 uses a high-speed 50MHz
bus, worst case timing issues with the R4000 System Inter-
face are greatly simplified because of the completely synchro-
nized bus and control signals. The read and write system
interface on the R4000 uses a concept of multi-level buffering/

registering to maintain high throughput, by preventing unnec-
essary stalls and by allowing operations such as writes to
happen in parallel with cached instructions and data. By using
multi-level buffering on writes, the CPU can continue to run
from cache while the main memory system retires writes at its
own speed. Examples using off-the-shelf interface parts such
as the FCT16823T 18-bit register with data enable, the 16-bit
IDT73200 pipelined register, and the IDT73210 8-bit 2-level/
1-level registered transceiver show how to easily implement
read and write buffers for the R4000.
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INTRODUCTION

This application note is aimed atengineers thatare bringing
up or debugging an R4000 system prototype for the first time.
Various debug techniques, pitfalls, and diagnostics are dis-
cussed that are based on similar experiences of other engi-
neers here at IDT. The discussions will be a mixture of both
hardware and assembly code software, since both hardware
and software skills and techniques are required to initialize the
part. In places, the R4000 User's Manual [2] will need to be
referred to for more detail. The topics will proceed in a
chronological order that begins with power on, continuing
through the Reset sequence and finishing with some simple
diagnostics — similar to the order that one might take when
actually debugging a prototype board.

The first section details the hardware Reset sequencing,
which includes managing the various Reset control lines and
loading the R4000s serial configuration register. After the
Reset sequence, the R4000 issues its initial instruction fetch.
Logic analyzer connections are discussed so that the instruc-
tion fetch and other System Interface reads and writes can be
verified. Then, the firstfew lines of boot assembly code, which
determine some of the software programmable configuration
options that the R4000 can do, are discussed. Some example
assembly code for the initial testing of uncached read and
write cycles to memory and I/O is given. Finally, in the last
section, initialization of the caches is discussed so that block
reads and writes can be executed and debugged. After
reaching this stage of the debug, the chances of an operating
system kernel booting up with a prompt are fairly good.

HARDWARE RESET SEQUENCE

In Figure 1, the R4000 Reset Interface requires the genera-
tion of severalcontrol signals, includingvccok, ColdReset, and
Reset. Primarily, these signals distinguish between power-on
Resets, power-on-cold resets and power-on-warm resets,
and to allow sufficient time for the PLL (Phase Locked Loop)
circuitry to stabilize. Only the power-on reset is discussed in
detail, since the cold and warm resets controls are a subset of
the power-on case.

The firstrequirementis that Vccok, whichindicates that the
supply voltage has reached at least 4.75V for 100ms or more,
be de-asserted. The 100 ms de-assertion time is typically
accomplished by using a power management chip which
delays a power-up signal until a fixed time period or RC
(Resistor/Capacitor) constant has elapsed. The power-up
signal can be double-registered so that it is synchronized for
the assertion of Vccok. ColdReset and Reset must be de-
asserted sometime before Vccok is asserted. De-asserting
Vcceok holds both the ModeClock and the output clocks, such
as MasterOut, HIGH. (Although the ModeClock is guaranteed

The DT logo is a registered trademark of Integrated Device Technology, Inc.

to be HIGH, the value of MasterOut is not guaranteed,
technically, until after the PLL synchronizes). If MasterOut is
used to clock the reset circuitry state machine, ColdResetand
Reset must be de-asserted asynchronously from the output
clocks. Technically, ColdReset and Reset are sampled syn-
chronously when asserting and de-asserting. Therefore, while
using the input clock, Masterlin to clock the reset circuitry state
machine may make more sense than using MasterOut.

In Figure 2, 128 Master Clocks (either Masterin or
MasterOut) after VCCOKk is asserted, the ModeClock will
begin toggling by first going LOW and then 128 Master Clocks
after that going HIGH for the first time. Thus the ModeClock
period is 256 Master Clocks. On the first rising edge of the
ModeClock, the R4000 starts accepting serial data on the
Modeln pin. Many systems use an Nx1 bit serial PROM for this
function. Because the setting of the mode bits canbe somewhat
experimental when first bringing up a system, one might
choose a reprogrammable serial bit EEPROM, or, perhaps,
use a signal generator. Most serial bit PROMs have a built-in
address incrementor/counter which requires a Clock input pin
and a Reset input pin, in addition to the Data output pin. Thus,
the serial PROM has an intermal counter to generate the
address for the mode bit data. When using a signal generator,
one should consider designing in an inverter to invert the
ModeClock, so the pattern generator can synchronize on the
first falling edge of ModeClock, and, thus drive valid data in
time for the first ModeClock rising edge. Using the inverted the
ModeClock also provides ample hold time.

Sometime after the mode bits have been read, the R4000
will begin driving the output clocks. From the point where
VCCOKk is asserted, the R4000 needs to see a minimum of
64K Master Clocks (either Masterln or MasterOut, which is
justenough to read all the mode bits). A time of at least 100ms
is more realistic before ColdReset can be de-asserted, so
internal syncing of the PLL can be completed and fully
stabilized throughout the system. Several ways exist to count
out this period (a 50MHz Masterln clock is assumed). One is
to use a 24-bit counter based off the Masterln clock. Another
is to use a RC circuit to generate a 100 ms delay from VCCOk
and then synchronize the resulting ColdReset signal by
double-registering it. Another is to use a 16-bit counter based
off the ModeClock, which, although not specified, continuesto
toggle, even after the mode bits have been read in. A fourth
method can use some serial PROMs, which have a count/
done pin that asserts LOW after all the bits have been read.
If the number of bits is greater than 32K, then an adequate
delay can be generated.

After ColdReset is de-asserted, then Reset must be de-
asserted after a minimum of 64 Master Clocks have occurred.
This requires a 6-bit counter, since Reset must be de-asserted
synchronously.

138



HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000

APPLICATION NOTE AN-119

The sequence for cold Resets is the same as power-up
Resets, except that VCCOk needs only to be de-asserted for
64 Master Clocks, instead of 100ms. The sequence for warm
Resets requires only thatthe Resethas asserted for 64 Master
Clocks.

After the reset sequence, the R4000 will assert ValidOut
along with an uncached read of the first instruction. The first
instruction fetch will be discussed in more detail after the
following section, which continues to specify the boot Reset
configuration serial bits.

SERIAL BOOT MODE PROM — SPECIFIC
CASES

The R4000 requires that 256 bits be serially loaded into its
initialization logic on its Modeln input pin for the first 256
ModeClocks. Of the 256 bits, only the first 64 are defined.
Although specific systems will have specific values, an ex-
ample of some “workable” values that can be used as a start
for debugging are listed in Table 1 in binary. The rest are
reserved to 0. Most of the bits are described by the R4000

NAVAVAWAW

A —

vee I 475V A
Masterin l—— / \ / \ / \ / \
=100 ms [ L
- > ModeClock period is 256 MasterClocks
VCCOk | — Modeln data is read in for the 1st 256 ModeClocks
ModeClock I /
I——_—\ L = 100msec ;
ColdReset > 64 MasterClocks
Reset | \
MasterOut i /L
i MasterOut, TClock, and RClock are undefined
TClock (dIV by 4) | until after the Mode bits have been read \———
RClock (div by 4) | .

Figure 1. R4000
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{
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Modeln Sample Point Modeln Sample Point

2913 drw 02

Figure 2. R4000 Serial Initialization Timing

Users Manual[2]. However, the values to choose for some bits
can be confusing during initial debug. An example is the
PLLOnN configuration bit. This bit is intended only for chip
testing and should be left asserted. The symptom is that the
MasterOut and other clock outputs will not toggle. The impli-
cationis that the lowest Masterln clock speed thatcan be used
is 25MHz (for a 50MHz part). However, the SClock divisor
configuration bits called SysCkRatio can be programmed to
divide by 2, 3, or 4 which can reduce the System Interface
frequencyto 6.25MHz. One of the mostcommon and perplex-

ing hindrances in finding problems, at 50MHz, is having a
noisy clock line to one of the state machines. This noise can
clock a signal twice, or perhaps not at all. Therefore, reducing
the System Interface frequency during the initial stages of
testing is highly recommended.
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TABLE 1. EXAMPLE OF SERIAL BOOT PROM VALUES.

Mode Setting Value Comments

BlkOrder 1 1 for sub-block ordering if PC, 0 for sequential ordering if SC/MC
EIBParMode 0 ECC

EndBlt 0 Little Endian ordering

DShMdId 0 dirty shared mode enabled

NoSCMode 0 present (depends on package type)

SysPort 00 64 bits

SC64BitMd 0 128 bits

EISplitMd 0 Secondary cache unified

SCBIkSz 1 Secondary block size of 32 words (depends on system)

XmitDatPat 0000 Xmit Data Pattern DD (depends on system)

SysClkRatio 010 system interface bus divided by 4 (see text)

reserved 0

TimIntDis 0 timer interrupt connection enabled

PotUpdDis 0 potential updates disabled

TWrSUp 0011 (SC write de-assertion delay, depends on SC timing, minimum shown)
TWr2Dly 01 (SC write assertion delay 2, depends on SC timing, minimum shown)
TWriDly 01 (SC write assertion delay 1, depends on SC timing, minimum shown)
TWrRc 0 (SC write recovery time, depends on SC timing, minimum shown)
TDis 010 (SC disable time, depends on SC timing, minimum shown)

. TRd2Cyc 0011 (SC read cycle time 2, depends on SC timing, minimum shown)
TRd1Cyc 0100 (SC read cycle time 1, depends on SC timing, minimum shown)
reserved 0000
Pkg179 0 Large Package (depends on package type)

CycDivisor 0011 power down clock divisor

Drv 100 1 clock Drive delay

InitP 0001 pull down di/dt (msb is opposite most fields)
InitN 1000 pull up di/dt

EnbiDPLLR 0 disable di/dt mechanism during cold Reset
EnbIDPLL 0 disable di/dt mechanism

DsbIPLL 0 Enable PLLs (see text)

SRTristate 1 tri-state when Reset or ColdReset is asserted
Bits65:255 0 rest of the bits are reserved

During debug, other serial boot configuration bits that may
be of use are the SCBIkSize, which configure the secondary
cache line size, if present, to 4, 8, 16, or 32 words. This will
control the maximum size of block reads and writes for
secondary cache systems. Also, the XmitDatPat bits config-
ure the system interface data rate with various patterns such
as D, DDx, DDxx, etc. Another design consideration is if the
secondary cache is not used, then sub-block ordering, as
programmed with the BlkOrder bit, is mandatory.

BASIC LOGIC ANALYZER CONNECTIONS

After the serial configuration register is read, the majority of
the debug effort centers around memory bus cycles on the
System Interface. For this reason it is recommended that
most of the System Interface be accessible from a Logic
Analyzer. This includes the information on the SysAD(63:0)
bus.

2913 thl 01

Twoitems should be considered when attaching the SysAD
bus to alogic analyzer. Thefirstis the latching control circuitry
of the SysAD bus as shown in Figure 3. To demultiplex it into
separate MemAddr(35:0) and MemData(63:0) busses is usu-
ally straightforward, but the multi-level write buffering of SysAD
into the MemAddr and MemData is not. Thus, if there are
enough pod connections, one should hook up MemData,
MemAddr, and SysAD. However, the second consideration is
that there usually are not enough pods or probes to do this.
Therefore, in a compromise, attaching SysAD is probably
more useful than attaching MemAddr, since MemAddr is
usually a single level deep register, latch, or buffer. However,
it is essential to look at the least significant MemAddr lines to
verify that the address can be incremented within a block
correctly, especially if sub-block ordering is used. Also, using
MemAddr instead of SysAD only requires 36 probes, and
possibly less, if not all the physical address lines are used. A
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SCAddi(17:0), SysAD(63:0), MemAddr(35:0)
SCTag(24:0) SyeCmd(8:0)
hl MemData(63:0)
Secondary SCData(127:0) Read/ | Main
ValidOut Belease. Write
Cache R4000 |  VadOut, Release Bufier Memory
SCOE. SCWR._ Validin, RdRdy, WrRdy S
SCDCS,SCTCS TClock, RCIock MemOE, MemWr, MemC&;
Secon&ary Cache interface System Interface Memory Interface 2913drw 03

Figure 3. Typical R4000 System

make-shift solution is to hookup only 32 data lines at a time,
either MemData(63:32) or MemData(31:0). The upper/lower
halves can be swapped as needed, since, during the initial
debug, the function of the lines is more important than exam-
ining the sequential flow of instructions and data.

ltis also essential to bring out the entire SysCmd(8:0) bus.
This bus acts as the control and status lines, and determines
whether the transaction is a read or write, etc. Along with
SysCmd bus, ValidOut, Validin, and Release are essential,
since they indicate when the SysAD and SysCmd busses are
valid, and when they can be driven by the memory system.
RdRdy and WrRdy and read/write buffer control lines such as
MemOE and MemWr are also sometimes needed.

If a state analyzer is being used, one should consider
attaching the RClock output, which leads the TClock, that is
usually used by 25% (of the TClock period), as the state clock
to trigger the logic analyzer, so sufficient hold time is provided
(at the expense of having less setup time). Otherwise one of
the other output clocks, either the TClock or the MasterOut,
should be attached.

Thus, the minimum number of logic analyzer probes needed
is 64+9+3+1=77. A typical number would be
64+32+9+3+1=109 and could be as many as
64+36+64+9+3+1=177. Additionalpods willbe needed totest
for specific cases, such as the control lines during Reset, the
ECC bits during fault checking, etc.

If the secondary cache is present, one should be prepared
to examine its interface. However, because of the enormous
number of lines (128 data, up to 36 address and tag, and 4
control lines) and the relative straightforwardness of the
functional design, the secondary cache will probably only
need to be on the logic analyzer temporarily. The secondary
cache lines may require oscilloscope probing to verify the
electrical signal transmission line design. To help follow the
processor flow, leaving the control lines SCOE and one of the
SCWr lines connected to the logic analyzer at ali times can be
helpful.

MINIMAL SOFTWARE BOOT CODE

After Reset, the R4000 will be executing instructions out of
uncached memory kernel segment 1 space at virtual address
‘h bfcO 0000, which is hard mapped to physical address ‘h
01fc0 0000. ValidOut will assert LOW, and the SysCmd(8:0)
bus will indicate an uncached read of 1 word, ‘b 10011011,
and, onalittle endian machine, will expect data on SysAD(31:0)
atthe sametime Validinis asserted. Big endian machines will
expect data on SysAD(63:32). During uncached reads of
addresses divisible by 8, (number of bytes per double word),
SysAD(63:32) will be ignored on little endian machines. Big
endian machines will ignore SysAD(31:0). The second in-
struction fetch will be similar, except it will be at physical
address ‘h 01fc0 0004, and a little endian machine will expect
the datatobe puton SysAD(63:32), with Validin asserted, while
SysAD(31:0) is ignored. Likewise, big endian machines will
expectthe datatobe puton SysAD(31:0), while SysAD(63:32)
is ignored. The minimal boot code discussed here will get the
partinitialized and allow various types of memory accesses to
take place. This includes initializing the caches so that block
reads and writes can be tested.

One common cause of no system commands being gener-
ated (ValidOut never asserts), is the GroupStall input pin (if
present for the particular R4000 version/type) has to be de-
asserted.

The next section will discuss the very first operation soft-
ware should do, namely, initializing the software configuration
registers. After initializing the registers, the software can
execute various kinds of readsand writes to uncached memory
space inorderto testthe ROM, /O and RAM chip selects, byte
enables, and wait-state timing.

Configuration Registers $14 and $16

The first operation that the boot code software needs to
perform s to initialize the software configurable registers. This
includes the Status Register and Configuration Register. Most
of the registers do not have default values on Reset, and must
be programmed before being used. The Status Register,
Configuration Register, and the WatchLo Register have ef-
fects on loads, stores, and processor operations that must
immediately be programmed into a known state. An example
of programming Status Register $14 and Configuration Reg-
ister $16 settings is shown in Listing 1. The other general
purpose and coprocessor registers, including the Timer and
Compare registers must be initialized before they are used.
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set noreorder

li v0,0x30410000 # load constant with CP1, CPO usable,
# BEV, DE set, |E (interrupts) disabled

# an operation is needed between a mtcO and mfc0 instruction
# delay two operations before v1 can be used

# dump Configuration Reg to external memory
# load constant with IB, DB set to 32 byte p-cache line widths

# and KsegO to be non-coherent cachable

mtc0  v0,$14 # move it to the Status Reg

mtcO  zero,$18 # clear R and W trap enable masks in the WatchLo Reg
nop

mfcO  v1,$16 # get Configuration Reg

nop

li a0,0xa0000160 # load address constant

swW v1,0(a0)

li v0,0x00000033

mtc0  v0,$16

# move it back to the Configuration Reg (only bits 5:0 writable)

Listing 1. Software for Reading and Writing the Configuration Registers

Figure 4 shows the register fields. Refer to the User’'s Manual [2] for more detail.

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 543 2 1 0
cu RP|FR|RE| 0 [BEV|TS|SR{ 0 [CH|CE|DE M KX|SX{UX]| KSU |ERL|EXL}IE
2913 drw 04

Figure 4. Status Register $14

Two suggestions on programming these fields duringinitial
debugging are to set the BEV bit and the DE bit. Setting BEV,
bit 22, the Diagnostic Status Field of the Status Register $14
will send any exceptions to the uncached kernel segment 1
bootstrap exception vector base virtual address ‘h bfc0 0200,
instead of to the cachable mapped user segment ‘h 8000
0000, whichrequires thatthe cache and TLB be initialized first.
An exception handler for initial diagnostics, such as the
(unoptimized) one in Listing 2, can put code at physical
address ‘h 01fc0 0200 and offsets ‘h 0000, ‘h 0080, ‘h 0080,
‘h 0100, and 'h 0180, i.e., physical addresses, ‘h 01fc0 0200,
‘h 01fc0 0280, ‘h 01fc0 0300, ‘h 01fc0 0380. The exception
handler should at least dump out the cause register $13, the
exception vector, $14, and the cache error register $27, and
the error exception program counter, $30. Ifthe registerscan’t
be displayed with a UART, they should at least be written out
to uncached memory so they can be observed on a logic
analyzer. In contrast to the R3000 RFE instruction, the R4000
uses an ERET instruction to return back to the code.

mfcO
nop
nop
swW

mfcO
nop
nop
sw

mfc0
nop
nop
sw

mfcO
nop
nop
sw

mfc0
nop
nop
swW

eret

a0,0xa0000000 # load address constant

v1,$13

v1,0x130(a0)

v1,$14

v1,0x140(a0)

v1,$27

v1,0x270(a0)

v1,$30

v1,0x300(a0)

v1,$12

v1,0x120(a0)

# get Cause Reg

# two non-v1 operations needed
#

# dump to memory

#get EPC

# two non-v1 operations needed
#

# dump to memory

# get CacheErr Reg

# two non-v1 operations needed
#

# dump to memory

# get ErrorEPC Reg

# two non-v1 operations needed
#

# dump to memory

# get Status Reg

# two non-v1 operations needed
#

# dump to memory

# return from exception

Listing 2. Software for the Exception Handler
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The DE bit is bit 16 in the Diagnostic Status Field of the
Status Register $14, when set specifies that cache parity and
ECC errors don’'t cause exceptions. This is somewhat neces-
sary when initializing the cache, otherwise a lot of unneces-
sarily confusing jumps to the exception handier will probably
occur as the cache locations are first initialized, since the tag
and data parity haven't been initialized yet.

The WatchLo Register must have its trap on a read/load
mask (bit 1) and trap on a write/store mask (bit 0) disabled
before loads or stores are attempted, so an inadvertent trap
from an address match is not taken. Thus, similar to the
example in Listing 1, the WatchLo register can be cleared.

Reading the Configuration Register and dumping its con-
tents out to uncached space allows one to see if various bits
24 23 22 21 20 19 18 17 16

31 30 28 27

in the boot serial PROM were programmed correctly. Figure
4 shows the Configuration Register fields. For instance, the
System clock ratio and the transmit data pattern can be
checked. The only writable bits are the lower 6, which are also
uninitialized on Reset, and, therefore, should be written to by
software as soon as possible. Of the writable bits, IB and DB
are used to program the primary Instruction Cache line size
and the primary Data cache line size to either 4 words or 8
words. The primary cache line sizes must be smaller than or
equal to the secondary cache line size. Note that if there is no
secondary cache, it is possible to program the data and
instruction caches to different line sizes, which is the one case
where different block sizes will be presented to the system
interface.

15 14 13 12 11 9 8 6 5 4 32

CM EC EP SB [SS|SW EW |SC|SM

BE|EM|EB| 0 bC DB|CU KO

2913 drw 05

Figure 4. Configuration Register $16

PRIMARY DATA CACHE INITIALIZATION

In general, it is much simpler to test the data cache than it
is the instruction cache. Several reasons exist for this. First, if
the data cache readfails, the program can still continue, where
as an instruction cache failure may or may not continue and
could cause the program to get lost. Second, it is simpler to
initialize the data cache since it can be written directly with
stores. Finally, forcing cache miss writebacks is more
straightforward, since it just requires writing to different ad-
dresses as opposed to jumping back and forth in code. As
shown in Listing 3, when initializing the caches, the Cache
opcode is used heavily. The algorithm in Listing 3 is not the
most efficient. However, from a debugging point of view, it

does notdo any unnecessary System Interface block reads or
writes. Theideais to, first, invalidate the tags, and thenfill the
data slots with any data so that ECC/parity can be set
correctly. The base virtual address, ‘h 8000 0000, is used
because it is in the unmapped cachable kernel segment 0,
which does not require the TLB. Note that if an R3000
compiler is being used, which can't generate the R4000
Cache opcode, then a data statement using the “.word”
directive can be inserted into the program with the data for the
hand assembled hex machine instruction.

In a similar manner, by substituting the appropriate cache
instructions, and by adjusting for the cache line size, the
secondary data cache can be initialized.
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set noreorder
li a0,0x80000000
li a1,0x80002000-0x20
mtcO zero,$28
#ifndef R3000asm

1: cache 2"4+1,0x00(a0)

/* fill data slots with good ECC/parity (8 word cache lin

/* turn off assembly rescheduler (no reordering optimization) */
/* primary data cache start pointer */
/* 8K last location - 32 */
/* set TagLo CPO Reg to 0 */

/* Index Store Tag, invalidate cache line (prevent writebacks) */
/* Create Dirty Exclusive (prevent block reads) */

/* use if using R3000 assembler */

e)/

/* Index Store Tag, invalidate cache line */

/*if count is less than last */

/* then jump Back to last label called “1". */

cache 3*4+1,0x00(a0)
#else
1: .word 0xbc890000
.word 0xbc8d0000
#endif
nop
nop
sw zero,0x00(a0)
sw zero,0x04(a0)
sw zero,0x08(a0)
sw zero,0x0c(a0)
sw zero,0x10(a0)
SW zero,0x14(a0)
sw zero,0x18(a0)
sw zero,0x1c(a0)
nop
nop
#ifndef R3000asm
cache 2*4+1,0x00(a0)
#else
.word 0xbc890000
#endif
blt a0,a1,1b
addu a0,0x20

/* branch delay slot, increment addr pointer */

Listing 3. Primary Data Cache Initialization Software

PRIMARY INSTRUCTION CACHE
INITIALIZATION

As shown in Listing 4, the instruction cache is initialized a
little differently than the data cache. First, their data slots need
to be filled from main memory, using the Fill Cache operation,
so the ECC/parity for the data can be set correctly. Then, their
tags are invalidated and tag ECC/parity set. As with the data
cache, the base virtual address ‘h 8000 0000 is used because
it automatically maps to a physical address without requiring
the use of the TLB.

The secondary instruction cache can be initialized in a
similar manner to the primary cache. The initialization can be
accomplished by using the cache fill instruction overthe entire
secondary cache address space, adjusting for the cache line
size, and by substituting the appropriate cache instructions.
Note, that if the secondary cache has a unified instruction and
data memory, then the cache only needs to initialized once.
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.set noreorder /* turn off assembly rescheduler */

/* (no reordering optimization) */

li a0,0x80000000 /* primary data cache start pointer */
li a1,0x80002000-0x20 /* 8K last location - 32 */
mtcO zero,$28 /* set Taglo CPO Reg to 0 */

1:

#ifndef block_reads_are_being_tested_later
cache 5%4+0,0x00(a0) /* fill i-word data slots (8 word cache line size) */

/* 0xbc940000 */

/* note that the fill operation requires that block */

/* reads are working. Thus during initial debug */

#endif

cache 2*4+0,0x00(a0)
blt a0,at,1b

/* one may want to delete the fill operation */

/* index store tag */ /* 0xbc880000 */
/* if count is less than last */

/* then jump Back to last label called “1”. */

addu a0,0x20

/* branch delay slot, increment addr pointer */

Listing 4. Primary Instruction Cache Initialization Software

MINIMAL TEST CODE (BLOCK READS AND
WRITES)

Cachable data loads will read from the internal primary
cache or the secondary cache, unless the cache line location
is invalid or has a non-matching tag. Such cache misses will
generate block reads to the external system interface.

The block reads are tested by doing a cached read, which
misses in the cache. ltis easierto look at cache locations that
are initialized as invalid, so writebacks do not occur.

The data cache uses a writeback protocol. So, when
writing to a cached location, the data is stored only to the
cache, and a dirty bit is set. Main memory is updated later,
when the cache line, where the data was stored, is replaced
for a cache miss. Because the cache is direct mapped, a
cache miss can be created by writing or reading to locations
that are modulo cache block size apar, i.e., every 8K apart.

Code in Listing 5 shows a method that may be needed
early-on, which is to test writebacks without doing a block read
first.

After block reads and writes are tested individually, data
writes to cache block offsets of 8K, as in Listing 6, will force a
writeback. On the R4000PC without secondary cache, this
will be two separate System Interface transactions. However,
on R4000s with secondary cache, the write address and data
will be issued immediately following the read address, such
that the write address and data will come between the read
address and when data is returned by the system. In a typical
system, the write address and data is FIFO buffered such that
after the read is handled, the system issues the write to main
memory.
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/* assume that cache has just been flushed (invalidated) */

/* start addr pointer */
/* Create Dirty Exclusive, otherwise a block read

will occur on the first store so that the entire cache
line is filled */ /* Oxbc8d0000 */

/* store incrementing pattern, i.e., 0x0, Ox4, 0x8, OxC */
/* into cache */

/* 2 operations required between store and cache */

/* index write back invalidate */ /* Oxbc810000 */

Listing 5. Block Write Code with No Block Read

li a0,0x80000000
cache 3*4+1, 0x00(a0)
nop

addiu a1,a0,0x00

SW a1,0x00(a0)
addiu a1,a0,0x04

sw a1,0x04(a0)
addiu a1,a0,0x04

swW a1,0x08(a0)
addiu at,a0,0x04

sw a1,0x0c(a0)
addiu a1,a0,0x04

sw at,0x10(a0)
addi a1,a0,0x04

sw a1,0x14(a0)
addiu a1,a0,0x04

sw a1,0x18(a0)
addiu a1,a0,0x04

sw a1,0x1¢c(a0)
nop

nop

cache 0*0+1,0x00(a0)
li a0,0x80000000
li at, zero

sw a1,0x0000(a0)
li a1,0x2000

swW a1,0x2000(a0)

/* load start addr pointer */

/* load data */

/* read from 0000 and possible writeback to xxxx */
/* load data */

/* read from 2000 and definite writeback to 0000 */

Listing 6. Block Read with Writeback

TESTING ALL THE PHYSICAL ADDRESS
LINES

The R4000 has 36 of the physical address lines imple-
mented. Although unspecified, one can customarily expect
SysAD(63:36) to be 0 during any address phase. Only the
bottom 30 out of 36 physical address bits can be tested within
the unmapped fixed kernel space provided with 32-bit virtual
addressing. One way to test address bits 35:32 is to go into
64-bit virtual addressing by setting the KX (bit 7) in the Status
Register $14 and then using the 64-bit kernel space called
xkphys. Virtual addresses ‘h 9000 0000 0000 0000 to ‘h 97ff
fiff ftff fff are uncached and automatically mapped such that
physical address bits 35:0 are the same as virtual address bits
35:0.

A second, but more tedious way to test address bits 35:30,
is to use the mapped space via the Translation Lookaside
Buffer (TLB) which converts the software program’s virtual

address into the hardware’s physical address. Although
initialization of the TLB is beyond the scope of this application
note, onetipincludes initializing all 48 entries, notjustthe ones
going to be used. This is because the unused entries may
happen to power up with a matching virtual address. Should
two or more TLB entries match, a TLB shutdown may occur
and the CPU does not know which one to choose. In addition,
initialize the TLB virtual pages to an unmappable unmapped
virtual address space such as ‘h 0x8000 0000 as well as
setting the entry’s Valid bit to invalid. This is because the TLB
shutdown logic, when two or more entries match, does not
take into account the valid bit. Since ‘h 8000 0000 is automati-
cally mapped to a physical address space, and does not go
through the TLB, those entries cannot accidently cause a
shutdown.
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SUMMARY

Bringing up the hardware requires a mixture of hardware
and software. The part must be Reset, seriat configuration
registers loaded and software configuration registers written.
Amixture of single doubleword reads, writes, block reads, and
block writes can be checked. Reaching this stage is usually
sufficient to continue with more intensive diagnostics and
operating systems. Continued diagnostics may include inter-
rupt line checks, memory checks, and I/O initialization.

FOR FURTHER INFORMATION

[1] MIPSR4000 Microprocessor Introduction, Integrated
Device Technology, Inc., MAN-RISC-10091, Santa Clara,
CA, 1991. — Gives a brief general overview of the architec-
ture and features.

[2] MIPSR4000 User's Manual, Integrated Device Tech-
nology, Inc., MAN-RISC-00091, Santa Clara, CA, 1991. —
Describes the H/W features and functionality of the device as
well the bus interface. Also describes the R4000 instruction
set architecture from a systems and assembly level program-
ming perspective.

[3] [IDT79R4000 Family Data Sheet, Integrated Device
Technology, Inc., Oct. 1991. — Contains the Data Sheet with
packaging, pinout, AC/DC electrical specifications and ther-
mal parameters.
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TIMERS USING SONIC™ AND
COUNT REGISTER IN ORION™

APPLICATION
NOTE
AN-127

By Sugan Subramanian

INTRODUCTION

This is an Application Note on two timer modules, one
based on SONIC™ running at 20MHz and another based on
COUNT register present in R4600™ running at 50MHz. The
timer-modules are broken up into two groups of functions. The
first group of functions is specific to a particular timer. These
functions are always written in assembly language and do low
level timer specific initialization for starting and stopping the
timer. The second set of functions have generic functionalities.
These functions are written in C and they are used to keep
track of the number of ticks in the timer in microseonds
between the period at which the timer is started and stopped,
to display time, and to set a constant value based on the
current speed at which the processoris setto run. First, we are
going to discuss how to measure time using SONIC. Sec-
ondly, we going to look at how to keep track of time using
R4600's count register. Finally, we will discuss how to use the
timers.

SONIC TIMER

SONICis used to measure time in various boards, including
IDT's 79S460-board (an R4x00 evaluation board) and
795381™-board (a R30xx evaluation board). The SONIC has
a 32-bit downcounter that is controlled by SONIC's 16-bit
registers, watchdog register1 and watchdog register2. In the
SONIC running at 20MHz, each timer-tick represents 200-ns.
In general,

t = (1000/f)*4

where tis the time for each timer-cycle in ns and f is the
frequency of SONIC in MHz. Moreover, (1000/f) represents
time period per cycle. Sonic decrements the counter registers
once every four cycles. Mechanisms involved in starting the
timer, stopping the timer, and displaying time using SONIC
are discussed in the following sections. The following figure
describes the header file "sonic_globals.h" used by SONIC-
timer's high level functions.

/* sonic_globals.h */

/* speed based on user specified
frequency of SONIC */

unsigned int current_speed;

/* speed based on default frequency of
SONIC */

unsigned int def_speed;

/* counter keeps track of the time count
*/

unsigned int counter;

Starting SONIC Timer

Starting the timer involves enabling the ST bit in SONIC's
control register, and initializing 16-bit watchdog registers 1
and 2 with all their bits set to 1 (Oxffff). “TimerStart", a low level
function, does the initialization required for starting a timer.
“"timer_start", a high level function, calls "TimerStart" and
keeps track of the number of timer ticks. Figures 2 and 3
describe "TimerStart" and "timer_start" routines for SONIC.

/*for 798460-board */
#include <r4ksonic.h>
/*for 79s8381-board

#include <r3ksonic.h>

But, don't include both headers */
# LOW LEVEL FUNCTION TimerStart
.globl TimerStart
.ent TimersStart
.set noreorder
TimerStart:
1i v0, SONIC_COMMAND_REG_ST_ BIT
1i t1l, SONIC_COMMAND_REG
nop
nop
sw v0,0(t1)
nop
nop
1i v0, oxffffffff
8w v0, SONIC_WATCEDOGl(tl)
nop
nop
W v0, SONIC_WATCHDOG2(tl)
nop
nop
3 ra
nop
nop
.end TimerStart
Figure 2

SONIC TimerStart routine

#include <sonic_globals.h>

/* HIGH LEVEL FUNCTION timer_ start */

unsigned int timer_start()

{

if (cur_speed)
/* gset cur_speed of the SONIC based on the user
specified frequency */

def_speed = cur_speed;

counter = TimerStart();

return counter;
}

Figure 1
sonic_globals.h

Figure 3
SONIC timer_start routine

The IDT logo is a registered trademark and R4600, 795381, 795460, Orion and IDT/C are trademarks of Integrated Device Technology, Inc.
tor C ion.

SONICisa of National J
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Stopping SONIC Timer

The SONIC-timer is stopped by enabling the STP bit in
SONIC's control register. By enabling STP bit, the SONIC
preserves the previous values of WATCHDOG registers 1 and
2. "TimerStop" returns a 32-bit value that is a concatenation of
16-bit count in watchdog registers 1 and 2. "timer_stop"
function calls the low level "TimerStop" to retrieve the current
timer value. "timer_stop" returns an unsigned integer value
representing the time period between the previous timer
initiation and the current instance of execution (in microsec-
onds). Figures 4 and 5 describe "TimerStop" and "timer_stop"
routines for SONIC.

/*for 798460-board */
#include <rdksonic.h>
/*for 79s838l-board
#include <r3ksonic.h>
But, don't include both headers */
.globl TimexrsStop
.ent TimerStop
.8et noreorder
TimerStop:
1i v0, SONIC_COMMAND_ REG_STP_BIT
11 tl, SONIC_COMMAND_ REG
nop
nop
sw v0,0(tl)
nop
nop
1w vl, SONIC_WATCHDOG1l(tl)
nop
nop
1w v0, SONIC_WATCHDOG2(tl)
sll vi,1l6
addu vi,vi,v0
addu vo,vi,vl
3 ra
nop
.end TimexStop

Figure 4
SONIC TimerStop routine

/* HIGH LEVEL FUNCTION timer_ stop */
extern unsigned int counter;
ungigned int timer_stop()
(

counter -= TimersStop();

/Q'
when counter == i,
i*100 == time in nanosecs
(1/1000) *100 == time in microsecs
*/

return counter/10;

Figure 5
SONIC TimerStop routine

Displaying Time (SONIC)

"disp_time" function displays the time. It is always called
after a call to “timer_stop". It takes a parameter which is
usually zero, otherwise represents current time-count in mi-
croseconds. Itdisplays the timer periodin the following format:

" %dS %dmS %duS" where %d represents the number of

seconds in the time count; mS - represents the number of
milliseconds inthe time count; and uS - represents the number
of microseconds in the time count. Only the non-zero units are
displayed. Figure 6 describes the fuction "disp_time" for
SONIC.

extern ungigned int counter, def_speed,
cur_speed;

void disp_time(unsigned int i)

{
ungigned int temp_counter=counter;

if (1)
temp_counter = i;

printf("elasped time = ");
if (temp_counter >
1000000)
{
printf("%ds ",
texp_counter
/1000000) ;
temp_counter %=1000000;
}

if (temp_counter > 1000)

{
printf ("%dms",
temp_counter
/(1000));
temp_counter %=1000;

}

1f (temp_counter)
{
printf ("%dus ",
temp_counter);
)

printf("\n");

Figure 6
SONIC disp_time routine

Setting Up SONIC timer speed

"set_timer_speed" takes an integer that represents the
clock frequency of SONIC in MHz as its parameter and sets a
constant that represents the speed of SONIC in ns for the
given frequency. This constant is used by the "disp_time" to
display the time correctly. The following figure has the C-
source for "set_timer_speed".

extern unsigned int cur_speed;
void set_timer_speed(int speed)
4

cur_speed = 1000/speed*2;

}

Figure 7
SONIC set_timer_speed routine
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Difference between SONIC timer on 79s460-board and
79s381-board

It'srecommendedtoinclude the headerfile, "timer_sonic.h"
before encorporating the timer routines in his/her code. Only
difference between the SONIC timer routine for IDT's 795460-
board (R4xxx evaluation board) and 79s381-board (R30xx
evaluation board) is the SONIC chip's base address. The
headerfile "rdksonic.h" has R4xxx board specific SONIC base
address and "r3ksonic.h" has R30xx board specific SONIC
base address. The following figures describe these header
files.

/* include file rd4ksonic.h */
#define SONIC_BASE
0xb£600000
#define SONIC_COMMAND_REG
0xb£600000
f#define SONIC_WATCHDOG1
Oxad
#define SONIC_WATCHDOG2
0xa8B
#define SONIC_COMMAND_REG_ST_BIT
0x20
#define SONIC_COMMAND_REG_STP_BIT
0x10
Figure 8
rdksonic.h
/* include file r3ksonic.h */
#define SONIC_BASE
0xb£b00000
#define SONIC_COMMAND_REG
0xbfb00000
#define SONIC_WATCHDOG1
Oxad
#define SONIC_WATCHDOG2
0xa8
#define SONIC_COMMAND_REG_ST_BIT
0x20
#define SONIC_COMMAND_REG_STP_BIT
0x10
Figure 9
r3ksonic.h

Constraints on SONIC timer

The SONIC timer module on a SONIC running at 20mHz is
capable of counting upto 7 minutes. If the SONIC is running at
a different frequency, function "set_timer_speed" should be
called before calling "timer_start".

R4600 TIMER

R4600 microprocessor has a COUNT register in
CoProcessor 0 (CP0). This COUNT register in CPO incre-
ments its count by one on every timer tick of the R4600
processor. In the R4600 processor running at 50MHz, each
timer-tick represents 20-ns. In general,

t = (1000/f)
where tis the time for each timer-tick in nano-seconds, f is
the frequency of R4600 processor in MHz, and (1000/f)
represents the time per cycle. The following figure describes
the header file used by the high level functions of R4600 timer.

/* orion_globals.h */

/* speed based on user specified
frequency of R4600 processor */
unsigned int current_speed;

/* speed based on default frequency of
R4600 processor */

unsigned int def_speed;

/* counter keeps track of the time count
*/

unsigned int counter;

Figure 10
orion_globals.h

Starting R4600 Timer
Timer is started by resetting the value of the COUNT

register in R4600 microprocessor to zero. The following piece
of assembly code and c-code shows how to start the timer.

#include "rdkcp0.h"
# Timer is started by assigning zero to
# COUNT register located in CPO

.globl TimerStart

.ent Timerstart

.set noreorder
TimerStart:

and vo, $0

mtcl v0, CPO_COUNT

nop

nop

3 ra

nop

nop

.end TimerStart

Figure 10
R4600 TimerStart routine

/* rikcpO.h */

#define CPO_CONTEXT $4
#define CPO_BVADDR §8
#define CPO_COUNT $9
#define CPO_COMPARE $11

/* r4kcp0.h ---contd. */

#define vo $2
#define vl $3
#define ra $31
Figure 11

R4600 header file rdkcp0.h
#include <orion_globals.h>

unsigned int timer start()
{
if (cur_speed)
def_speed = cur_speed;
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counter = TimerStart();
return counter;

Figure 12
R4600 timer_start routine

Stopping R4600 Timer

Stopping the timer involves simply getting the contents of
the COUNT register that represents the most recent timer tick
count and converting that timer tick count to microseconds.
The following piece of assembly code and c-code shows how
to stop the timer.

#include "rdkcp0.h"
.globl TimersStop

.ent TimerStop
TimerStop:
mfc0 v0, CPO_COUNT

# The timer is stopped by getting
# the most recent value of COUNT
# register

nop

nop

3 ra

nop

nop

.sat reorder
.end TimerStop

Figure 13
R4600 TimerStop routine

extern unsigned int counter;

unsigned int timer_stop()
{
countexr = TimerStop() - counter;

/R
when counter == i,
i*20 == time in nanosecs
(1i/1000)*20 == time in microsecs
*/

return counter/50;

Figure 14
R4600 timer_stop routine

Displaying Time (R4600)

"disp_time" function is very similar to the one presented
previously for the SONIC timer module. Only difference in this
caseisthatthe time displayed is based on the frequency of the
R4600 in the 79s460-board (50-MHz).

Constraints on R4600 timer

The timer module is capable of counting upto 85 seconds
assuming that the R4600 processor is set to run at 5S0MHz. If
the R4600 processor is set to run at a different frequency,
function "set_timer_speed" should be called before calling
"timer_start" so that "disp_time" displays the correcttime. The
following piece of c-code describes the "set_timer_speed"
function.

extern unsigned int cur_speed;
void set_timer_speed(int speed)
{

cur_speed = 1000/speed;

}

Figure 15
R4600 set_timer_speed routine

TIMER MODULE USAGE

The procedures to use SONIC timer for 79s460-board,
SONIC timer for 79s381-board, and R4600-timer for 79s460-
board are the same. The following figure describes it. More-
over, IDT-C 5.0 is shipped with SONIC-timer/79s460-board
and R4600-timer/79s460-board. InIDT-C 5.0, source code for
SONIC-timer/79s460-board is located under "/IDTC/timers/
SONIC-timer"; and source code for R4600-timer/79s460-
board is located under "/IDTC/timers/ORION-timer”. Figures
16 and 17 give the general procedure to use the timer routines.

#include <timer.h>
main()

{

timer_start();

/* main body */

timer_stop();
disp_time(0);

}

Figure 16
How the timer routine is to be used

/* timer.h */
unsigned int timer_start();
unsigned int timer_stop():;

void disp_time(unsigned int);

Figure 17
timer.h
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INTRODUCTION

The IDT R4600™ Orion™ RISC microprocessor is a full 64-
bit architecture that is fully compatible with numerous 32-bit
and 64-bit Operating Systems and applications. It is a highly
integrated microprocessor designed to serve embedded ap-
plications. It incorporates large on-chip caches (16KBytes for
both the instruction and the data caches); both two-way set
associative. The R4600 implements a large TLB to map 96
virtual pages (raging from 4KB to 16MB in size) to their
corresponding physical addresses. The R4600 has a four
deep write buffer to isolate the high speed internal caches
from the low speed external memory.

The R4600 uses advanced power management tech-
niques to lower the peak and typical power consumption. The
power saving is implemented through an intelligent scheme
which turns off the power from the unused sections of the
device (e.g. the FPU). A standby mode is also available which
shuts down the internal clocks and freezes the pipeline, thus
reducing the consumed power substantially. This feature is
very desirable for power sensitive applications such as por-
table systems and notebooks.

This Application Note explains how to compute the R4600
power consumption under different working conditions and
capacitive loading.

TYPES OF POWER

The data sheet of the R4600 lists three different modes of
power consumption in the lcc table: Standby mode,
Active_Typical mode and Active_Max mode. The R4600
operates in any one of these three modes. The mode of
operation of the R4600 is under the system control (both S/W
and H/W).

Standby Mode

The R4600 implements a Standby mode which is entered
through software control using the WAIT instruction. Execut-
ingthe WAIT instruction enables the interrupts and causes the
CPU to enter the Standby mode. The Standby mode is
actually entered when the WAIT instruction finishes the W
stage of the pipeline. In this mode, the internal clocks are
shutdown and the pipeline is frozen. No instruction advances
through the pipeline and the external bus activity stops.
However, the PLL, internal timer, some of the input pins
(~Int[(5:0], ~NMI, ~ExtReq, ~Reset, ~ColdReset, Syncln and
the MasterClock) and the output clocks (TClock[1:0},
RClock[1:0], SyncOut, ModeClock and MasterOut) continue
to run. In this mode, the R4600 consumes very little power
which is reflected by the standby Icc values in the data sheet.

Once the CPU is in Standby mode, any unmasked inter-
rupt, including the internally generated timer interrupt, will

cause the CPU to exit the Standby mode.

Active_Maximum Mode

In this mode the R4600 is fully functional. The pipeline is
continuously running, instructions are advancing through the
pipeline and the CPU is accessing the internal caches and the
system resources. In this mode, the power to all the internal
units may be turned on. This is achieved if the code sequence
uses and accesses all the internal units (such as the integer
unit, the FPU , etc.) continuously. This mode also represents
the worst case power consumption values, with the supply
voltage at its max limit (e.g. 5.25V). In this mode, the R4600
consumes its max power and this is reflected by the max Icc
values in the data sheet.

Active_Typical Mode

This mode is similar to the Active_Maximum mode with the
exception that the instruction sequence doesn't fully exercise
the internal resources (like the FPU for example). The R4600
implements advanced power managementtechniques totake
advantage of such code sequences. In this mode, the unused
sections of the device are powered down. For example, if the
FPU is not used, it will be powered down to reduce the overall
power consumption. This amounts to substantial power con-
sumption savings compared to the maximum case. In this
mode, the supply voltage is assumed to be at its mid-point
nominal value (e.g. 5V or 3.3V). This mode is reflected by the
typical Icc values in the data sheet. It represents the average
(typical) power the device will consume in a typical application
that is not fully utilizing the internal resources. In such typical
applications, the CPU is usually executinginstructions 75% of
the time and stalled the remaining 25%.

COMPONENTS OF POWER CONSUMPTION

The total power consumption of the R4600 in the previous
three modes includes two components: the internal power
consumption and the output power consumption of the device.

The sum of the internal and the output powers is the total
power consumption of the R4600. The system designer must
calculate these two values for any mode to obtain the total
power consumption of the CPU in that mode.

Note:

In this Application Note, the power examples assume a system with the
following attributes:

* 5V power supply for typical measurement

* 5,25V power supply for max measurement

¢ MasterClock is 50MHz, the pipeline clock is 100MHz and the SysAd bus
operates in the divide by 2 mode (50MHz).

* The examples use the values of Icc published in the March 1994 revision
of the R4600 Data Sheet. For the most accurate results, the system
designershould use the values publishedinthe mostrecent revision ofthe
data sheet.

The IDT Logo is aregistered trademark and RISController, Orion, and R4600 are trademarks of Integrated Davice Technology, Inc.

The MIPS Logo is a registered trademark and R3000 is a trademark of MIPS Computer Systems, Inc.
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Internal Power

The internal power is provided in the data sheet. It
represents the power consumed by the internal logic of the
device. However, it excludes the power consumed by the
output buffers, since that is system dependent. Specifically, it
depends on the capacitive loading of the output pins and the
write pattern supported. The internal power is available in the
data sheet and corresponds to the 0 pF loading condition on
the output clocks and no SysAD activity. The internal power
consumption (IP) is computed using the following equation:

IP = Icc * Voltage (Watts)

For the system example used in this Application Note with
a supply voltage of 5V, the Standby internal power consump-
tion is 920mWatts (175mA * 5.25V). Similarly, the Typical
internal power consumption is 4375mWatts (875mA * 5V)
while the Maximuminternal powerconsumptionis 6565mWatts
(1250mA * 5.25V).

Output Power
The output power is the power consumed by the output
buffers of the R4600. It is completely system dependent. It is
a function of the capacitive loading the output buffer is driving
and the frequency of the signal. System designers should use
the guideline provided in this Application Note to compute the
output power for their particular applications.
The output power per output pin is computed using the
following equation:

OP=C*V2*f{ (Watts)

OP is the Output_Power

C is the capacitive loading on the output pin.

V is the supply voltage

f is the frequency (number of low-to-high transitions / sec)
of the output pin.

The total output power consumed is the sum of the output
power for every individual output pin.

EXAMPLE OF OUTPUT POWER CALCULA-
TIONS

The R4600 has two classes of output signals. The clock
output signals and the bus signals (which include the SysAd
and the output control signals). This example shows how to
compute the output power for each class. Every calculation
has to be done twice: to compute the Typical and the Max
output power consumption. Remember that for the Typical
power consumption, the power supply is assumed to be at its
nominal value (5V in this case) and for the Max power
consumptionitis assumedto be atits max (5.25V in this case).

Clocks Output Power

The R4600 has 6 different output clocks: MasterOut,
SyncOut, TClock[1:0] and RClock[1:0]. The output power
calculation for each clock should be done separately.

SyncOut. Typically SyncOutis connected to Synclnorto a
single buffer to match the delay on the TClock and RClock.
This is about 20pF of loading. The frequency of SyncOutis the
same as MasterClock (50MHz). So the typical output power
consumed by the SyncOut clock is:

OPsyncout=C * V2™  (Watts)
OP_Typicalsyncout = (20¥10°12) * (5)2 * (50*106) Watts
OP_Typicalsyncout = 25 mWatts

The max output power consumed by the SyncOut clock is:
OP_Maxsyncout = (20*10712) * (5.25)2 * (50*105) Watts
OP_Maxsyncout = 27.5 mWatts

MasterOut. Typically MasterOutis connected to a couple of
loads (mostly to the reset logic). This is about 30pF. The
frequency is the same as the MasterClock (50MHz). So the
typical output power consumed by the MasterOut clock is:
OP_TypicalMasterout = (30*10712) * (5)2 * (50*105) Watts
OP_TypicalMasterout = 37.5 mWatts

The max output power consumed by the MasterOut
clock is:

OP_MaxMasterout = (30*10°12) * (5.25)2 * (50*106) Watts
OP_MaxMasterout = 41.3 mWatts

TClock[1:0] and RClock{1:0]. Typically TClock[1:0] and
RCLock[1:0] are connected to several loads; for this example
assume that they add up to about 50pF. The frequency of
TClock[1:0] and RClock[1:0] (fTRClock) depends on the
bus_clock_divisor which is selected at boot time (from 2 to 8).
It is calculated using the following equation:

MasterClock * 2
bus_clock_divisor

fTRClock = (MHz)

The bus_clock_divisor in this example is set to 2. The
fTRClock is then:
fTRClock = (50*106) *2 MHz = 50 MHz
2

There are 4 clocks (two TClocks and two RClocks). So the
typical output power consumed by the TClocks and RClocks
in this example is:
OP_TypicalTRClock = 4 * (50*10°12) * (5)2 * (50*106) Watts

OP_TypicalTRClock = 250 mWatts
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The max output power consumed by the TClocks and
the RClocks is:

OP_MaxTRClock = 4 * (50%10°12) * (5.25)2 * (50*105)
OP_MaxTRClock = 275.5 mWatts

The typical total output power consumed by the clocks is
the sum of the typical output power consumed by the indi-
vidual clocks:

OP_TypicalClock = OP_TypicalSyncout +
OP_TypicalMasterout +OP_TypicalTRClock

OP_TypicalClock = 25 + 37.5 + 250 = 312.5 mWatts

Similarly, the max total output power consumed by the
clocks is the sum of the max output power consumed by the
individual clocks:

OP_MaxClock = OP_MaxsyncOut + OP_MaxMasterOut +
OP_MaxTRClock

OP_MaxClock = 27.5 + 41.3 + 275.5 = 344.3 mWatts

Of course, the system designer should determine the
power estimate for any given system, factoring in the loading,
the clock frequency and the supply voltage.

Bus Output Power

The R4600 bus transactions consist of main memory
accesses (read and write operations). The output power
consumed by the bus signals differs from one transaction to
the other. Read and block read transactions represent the
best case since the R4600 consumes output power only
during the address phase of the transaction. During the data
phase, the system returns the data to the CPU and the R4600
doesn't consume much output power. The output power
consumed in the read transactions can be obtained by com-
puting the power consumed during the address phase of the
bus. This case will not be demonstrated in this example; since
in a typical system, the power contribution of the read trans-
actions is negligible.

On the other hand, the write transactions tend to consume
much more output power because the R4600 is continuously
driving the bus with either the address or the data. The worst
case output power consumption by the bus unit is when the
R4600 does a stream of uncached write transactions or write
-through stores when the address is the complement of the
data. It also assumes that all the SysAd and the SysCmd bits
need to toggle. This case represents the max output power
consumed by the bus. The example in this Application Note
will concentrate on this situation.

Further, there are two major cases to consider when
calculating the bus max output power consumption during
write transactions. The first is the R4xxx compatible bus write
protocol and the second is the write-reissue or the pipelined

write bus protocols.

Before starting the calculations of the bus output power
consumption during the write transactions, a generic formula
to compute the average SysAd_Data_Frequency (fSysAd_Data)
is needed. This is the frequency that is used in the
Output_Power equation. The average fSysAd_Data is com-
puted as follows:

2 bus_clock_divisor m

fSysAd_Data = 1 * MasterClock * 2 * n (MHz)

MasterClock * 2 is the frequency of the output

bus_clock_divisor clocks (TClock and RClock).

n is the number of transitions on the SysAd bus

m s the total number of bus clock cycles to complete
a write transaction

1/2 The output clock frequency is divided in half
because the max transitions on the SysAd bus are
at half the output clock frequency.

R4xxx compatible write protocol. In this mode, the R4600
performs anuncached write transaction every 4 SysAD cycles
(the actual pattern is ADxx). The number of transitions "n" is
2 and the total number of clock cycles "m" is 4 in this case. The
bus frequency in the case of a bus_clock_divisor equals to 2
is:

fCompatible= 1 * (50"105)*2 * 2 =125MHz
4

2 2

There is a total of 81 output signals used during the write
transactions (64 SysAD outputs, 8 SysADC outputs and 9
SysCmd outputs). There is also ~ValidOut which should
toggle once in this case. However, for simplicity reasons it will
not be part of the calculations. On the other hand, all the
SysCmd bits are assumed to toggle which might not be the
case. Assume a 50pF load on each. Then the max output
power consumed by the bus in the R4xxx compatible mode is:

OP_MaxBusCompatible = 81*(50*1073)* (5.25)2 * (12.5*10%)
Watts

OP_MaxBusCompatible = 1395.5 mWatts

Write reissue and pipelined write protocols. Inthese modes,
the R4600 performs an uncached write transaction every 2
SysAD cycles (the actual pattern is AD). The number of
transitions "n" is 2 and the total number of clock cycles "'m" is
2 in this case. The bus frequency in the case of a
bus_clock_divisor equals to 2 is:

fPipelined = 1 * !50*1062*2 * 2

2 2 2

There is a total of 81 output signals used during the write
transactions (64 SysAD outputs, 8 SysADC outputs and 9
SysCmd outputs). ~ValidOut will not toggle in this mode and

=25 MHz
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is not counted. Assume a 50 pF load on each. Then the max
output power consumed by the bus in the write reissue or the
pipelined write modes is:

OP_MaxBusPipelined = 81 * (50*107%) * (5.25)2 * (25*10F)
Watts

OP_MaxBusPipelined = 2790mWatts

Typical-case bus output power. In a more typical system,
the bus output power consumption of the R4600 is much less
than the worst case numbers. In normal operation, the R4600
performs primarily block write transactions. In this case, the
non-block write transactions are a small percentage of the
total bus activity and the output power consumed during non-
block write transactions is irrelevant. The block write transac-
tions represent the typical output power consumed by the bus.

The statistics from standard benchmarks indicate that a
typical application, executing from the internal caches, re-
quires the R4600 to perform a block write transaction every “I*
processor cycles on the average. A processor cycle is execut-
ing atthe speed of the internal pipeline (MasterClock * 2). The
value of I is independent from the write back pattern in the
block write transaction (because it is always 5 transitions no
matter what). The total number of clock cycles to complete the
transaction "'m" is then actually equals to "I divided by the
bus_clock_divisor as stated in the following equation:

m= | (clock cycles)
bus_clock_divisor

The number of transitions in a block write transaction "n" is
5 (address and 4 double words of data). In this case the
frequency of the bus (fBusTypical) in the case of a
bus_clock_divisor equals to 2 and a value of "I" equals to 200
(for example) is:

fBusTypical =1 *(50%10%)*2 * 5 =1.25MHz

2 2 (200/2)

There is a total of 81 output signals used during the write
transactions (64 SysAD outputs, 8 SysADC outputs and 9
SysCmd outputs). There is also ~ValidOut which mighttoggle
or not depending on the write-back pattern selected. In this
case, with a write back pattern of ADDDD, the ~ValidOut
signal doesn't toggle and will not be counted. Assume a 50 pF
load on each. Then the typical output power consumed by the
bus during a typical write back mode (when all outputs switch)
is:

OP_TypicalBusTypical = 81 * (50*10°12) * (5)2 * (1.25*10°)
Watts

OP_TypicalBusTypical = 126.5 mWatts

The typical total output power consumed by the R4600 is
the sum of the clocks typical output power and the bus typical

output power. Similarly, the max output power consumed is
the sum of the max clock output power and the max bus output
power consumptions. The max output power consumption
depends on the bus write protocol (R4xxx compatible or write
reissue or pipelined write transactions). The typical output
power consumption doesn't depend on the write protocol or
the write back pattern.

TOTAL POWER CONSUMPTION

The total power consumption of the R4600 is then the sum
of the internal power and the output power consumptions. It
depends on the system design in terms of the loading on the
bus as well as on the application S/W and the mode of
operation of the R4600. The system designers should com-
pute the output power consumption for their particular applica-
tion to obtain the total power consumption of the device. The
Total Power (TP) is expressed in the following equation:

TP = IP + OP (Watts)

To finish the example started in this Application Note, the
total typical power consumed by the R4600 in the system
described is:

TP_Typicalr4s00 = IP_Typicalrssoo + OP_TypicalR4600
Watts

TP_TypicalRa600=4375+[126.5 + (25 + 37.5 + 250)] Watts
TP_TypicalR4600 = 4814 mWatts

Similarly, the total max power consumed by the R4600 in
the system described using the R4xxx compatible write mode
is:

TP_MaxR4600 = IP_MaxRr4600 + OP_MaxR4600 Watts

TP_MaxRr4600 = 6565 + [1395.9 +(27.5 + 41.3 + 275.5)]
Watts

TP_Typicalras00 = 8305 mWatts

CORRELATION WITH THE DATA SHEET

The power consumption of the R4600 is listed in the data
sheet in the Icc Table. There are several columns in the table
that correspond to the internal pipeline frequency and to the
external bus frequency (100/50MHz column as an example).
For every column, the typical and the max current consump-
tion is listed for the Standby mode and for the Active modes.
The OpF loading with no SysAd activity condition represents
the internal power consumption of the device.

The 50pF loading condition in the Standby mode corre-
sponds to the max power consumed in this mode with the
active clocks loaded with 50pF. Remember that in this mode
only a few external clock signals are active.

The 50pF loading condition for the Active mode for both the
Typicalandthe Max case is the total power consumption of the
device. These values are derived using the equations intro-
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duced in this Application Note. However, the loading on the
bus is different. The clocks are assumed to be driving a load
of 50pF. This is substantially more than the 20 or 30pF
assumed for SyncOut and MasterOut in this Application Note.
Similarly, the R4xxx compatible mode and the pipelined or
write reissue mode assume the number of output signals
toggling to be 81. The ~ValidOut signal is not part of the
calculations. The loading on every output pinisassumedto be
50pF. There is also a small added guard band in the published
numbers.

System designers can use the values provided in the data
sheetas amax upper limitfor the possible power consumption
of the R4600 under the mentioned conditions. However, it is
always recommended for the system designers to compute
the exact power consumption of their particular application.
The values they obtain will be much more accurate than the
upper limit presented in the data sheet, which reflect the worst
case assumptions used during device testing.

CONCLUSION

The R4600 is designed from the ground-up to consume as
little power as possible while achieving very high perfor-
mance. It incorporates advanced power management tech-
niques to turn off the power from the unused units of the
device. This reduces the typical power consumed compared
to other microprocessor in its class. On the other hand, the
R4600 doesn't sacrifice performance for the reduction in the
power consumed. Several systems have shown the R4600 to
outperform the R4400PC by atleast 30% at a given frequency.

This Application Note explains how to compute the output
power consumed for every situation and how to derive the total
power of the CPU under different system conditions. The
system designer should use it as a reference and a guideline
in computing the power consumption for their particular appli-
cation. In addition, the system designer can use this informa-
tion to make power consumption trade-offs during system
design.
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VISIBLE DIFFERENCES BETWEEN
THE R4650 AND THE R4600/R4700
ORION FAMILY MEMBERS

APPLICATION
NOTE
AN-135

By: Ketan Deshpande

INTRODUCTION:

The IDTR4650 is a low cost member of the IDTR4600
(Orion) family, targeted towards a variety of embedded appli-
cations. R4600 features not required in many embedded
systems have been removed in the R4650 to lower device
cost; others have been added to better suit the processor for
its target applications. Given these changes in architecture,
software designed to run on the Orion may need to be slightly
modified to be able to take full advantage of the features of the
R4650.

This Application note discusses the software visible changes
integrated within the R4650; this information is required when
porting existing low-level software (e.g. compilers, debuggers
and other assembly language programs) from the R4600 to
the R4650.

Architectural Differences:

While a complete discussion of the architectural differ-
ences between the R4650 and the Orion is beyond the scope
of this note, the relevant differences will be enumerated and
software issues discussed. Some system control registers
have been deleted, some new ones have been added, and
some have been modified. Also, some exceptions are no
longer generated, and some new exceptions can be gener-
ated.

1. Integer Execution Unit:

The R4650 uses the same ALU as the Orion, with a few
modifications:

a) Faster MULT/DMULT instructions.

As a result of the faster MULT / DMULT instructions,
assemblers or assembly language programmers need
not wait as many cycles as earlier to retrieve the result
from the HI/LO registers.

For MULT instructions (32x32->64 bits) the R4650 detects
the actual size of the operands; the execution time of the
multiply is thus determined by the actual number of
significant bits in the operands. For 16-bit operands, the
time taken to perform a MULT instruction is 2 pipeline
cycles (PCycles) and for 32-bit operands, the time is 3
PCycles.

The time to perform a DMULT operation(64x64->128 bits)
is 5 cycles, irrespective of the size of the operands.

b) New instructions: MUL and MAD.

The MUL instruction can be used to multiply two CPU
general purpose registers (GPRs) and store the result in
another GPR (32x32->64-bits), bypassing the HI/LO pair,
and eliminating the MFHI/MFLO instructions.

The MAD instruction multiplies two (32-bit) GPRs and adds
the product to the contents of the HI/LO registers, storing

The IDT logo s a Device T Inc.
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the result in the HI/LO pair.
MUL and MAD are defined only for 32-bit numbers; there
are no DMUL / DMAD instructions.

2. Control Processor 0 (CP0):

CPO has been greatly changed from the original R4600
Orion. Only two modes: user and kernel are supported (se-
lected by setting the UM bit in the STATUS register). All
addresses (virtual and physical) are 32 bits. There is no 64-bit
virtualaddress mode. All CPOregisters are now 32-bit, and the
DMTCO/DMFCO instructions are no longer valid. However,
these instructions will not generate a trap.

a) PRId Register:

If the same software will be used to support the Orion
and the R4650, CPU-specific code can be separated on
the basis of the Implementation field of the PRId register
in CPO, which is 0x22 for the R4650, and 0x20 for the
Orion.

b)STATUS Register:

The STATUS register has a different format in the
R4650.

i) It has a bit to lock set A of the [-Cache (the IL bit, bit 23),
and one to lock set A of the Dcache (the DL bit, bit 24).
Critical sections of the code / data may thus be locked
into the cache for fast access. When locked, this set will
not be chosen for line refill. However, a line in a locked
set will still be chosen for refill if that line is invalid. Thus
locked sets may be flushed without having to unlock
them first. It takes 5 instructions after setting the IL bit for
refills to be disabled, and 3 instructions after setting the
DL bit.

ii) The FR bit (bit 26) can be set to select 16 or 32 32-bit
floating point registers.

c) CAUSE Register:

The CAUSE register has a slightly different format. It has
two new bits that denote whether the exception was due
to IWatch or DWatch (bits 24 & 25 respectively, dis-
cussed below) and one bit (IV bit, bit 23) to force inter-
rupts to use a different exception vector offset. On reset,
Cause.lV is cleared; thus exceptions and interrupts use
the same exception vector offset (0x180). When
Cause.lV is set, interrupts use a new exception vector
offset (0x200). This can be used for faster decoding of
interrupts. This new exception vector did not exist in the
R4600 Orion; thus, the use of a dedicated interrupt vector
is an option, not a mandate, in the R4650. For systems
whose performance is highly dependent on interrupts,
additional software modifications may be desirable, since
there may be code at that location that now needs to be
moved, as well as moving the interrupt management
code to that location.

3174
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d) TLB:

The R4650 does not include the R4600 Orion Memory
Management Unit (MMU). The CPO TLB registers 0-6, 10
and 20 have been removed. The instructions TLBR,
TLBWI, TLBWR are no longer defined, but will not
generate a trap. TLB exceptions like TLBMiss /
XTLBMiss will never be generated. The exception vector
offsets 0x000 and 0x080 are no longer used.

The R4650 performs virtual address translation based on
Base/Bound register pairs. There are two sets of these
pairs: One for Instruction and one for Data. In user mode,
when an address is generated, it is compared with the
base / bound register pair. If the address is “out of
bounds”, an exception is generated, with the appropriate
ExcCode bits set in the Cause register (0x2 for Instruc-
tion, 0x3 for Data). An MTCO instruction which changes
any base / bound register must be done in unmapped
space and mapped space cannot be entered for 5
instructions following a change to these registers. In
kernel mode, all addresses undergo a fixed virtual to
physical address translation, bypassing the base/bound
pairs. In kernel mode, the base/bound exception will
never be generated.

e) Cache Algorithm Register:

The LLAddr register in the Orion has been replaced with

. the CAlg register, which defines the Cache Algorithm for
each 512 MB region of the virtual address space. On
reset, it gets initialized to 0x22233333, which is consis-
tent with the Orion’s interpretation of the KO bits in its
own CONFIG register. An MTCO instruction should not
change the field corresponding to the address space
currently active. Doing so will cause undefined behavior.

f) Watch Registers:

Two new registers, IWatch and DWatch, greatly facilitate
software debug. By setting the contents of the registers
to the desired watch point and enabling the Watch
Exception, an exception handler can be called every time
the watch point is hit. The exception generated is at the
general exception vector, with ExcCode = 0x23 in the
Cause register. The IW/DW bits in the Cause register are
set to denote whether the exception was caused by a
Data Watch point or Instruction Watch point. The actual
exception will be generated whenever both the ERL &
EXL bits in the STATUS register are cleared. When
DWatch is enabled, the two instructions immediately
following may not be checked for match with the watch
value. When IWatch is enabled, the 5 instructions follow-
ing may not be checked for match with the watch value.

g) CONFIG Register:

The CONFIG register in the R4650 is read-only. The
format has been modified: the IC & DC bits are both now
001, denoting the 8KB:8KB cache sizes. The KO field has
been deleted since this function has been expanded and
is now performed by the CAlg register.

h) Other Registers:

The BadVAddr, EPC & ErrorEPC registers in the Orion
were 64 bits; in the R4650 they are 32 bits wide.

3. Co-Processor 1 (CP1):

This is the Floating point coprocessor on board the R4650.
The single biggest departure from the Orion is that the R4650
supports single precision operations only. The R4650 does
not support double precision operations, which could be
performed by an emulation library, if required. CP1 has a set
of general purpose registers (FGRs) that are 32-bit wide, and
can be accessed as a group of 16 or a group of 32 registers,
by setting the FR bit in the CP0O STATUS registerto O or 1,”
respectively. If STATUS.FR = 0, only even numbered FGRs
can be accessed, and accessing an odd numbered register
generates a trap. Any double precision operation in CP1
causes a trap to occur; thus a trap-based library could be
written to emulate double-precision operations. DMFC1/
DMTC1 instructions will generate a trap.

There are two floating-point execution units in the R4650:
one multiply unit and one unit for add/convert/divide/SQRT.
As a result, multiplies and add/subtracts can be overlapped.

CONCLUSION:

This Application Note discussed the issues involved in
porting assembly code from the R4600 Orion to the R4650.
Some relevant architectural differences were noted, with
implications for software modification.
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By Robert Napaa

INTRODUCTION

In the next few years, the market share of the portable
systems is expected to increase steadily. Furthermore, users
will demand that the performance of these systems matches
the performance of desktop systems. The portable systems
should be able to manipulate data, voice and video in a
multimedia environment exactly like their desktop counter
parts. Unlike the desktop systems, portable systems face
another set of challenges. First, the power consumption of
these systemsis limited by the battery life. Thisimplies thatthe
components used should consume as little power as possible
and have power management capability to reduce the con-
sumed power even more when the system is idle. Secondly,
the portable systems are becoming smaller and smaller,
lighter and lighter. This implies that more functionality is
implemented using a fewer number of devices. The trend is to
implement as much functionality in software as possible to
reduce the need for dedicate hardware solutions.

MULTIMEDIA

The definition of multimedia is somewhat vague. Multime-
dia refers to systems capable of manipulating digital voice,
digital images and digital data such as speech, video and file
transfers. Multimedia systems must be able to manipulate
these applications in either areal time environment orina play
back environment. In the real time environment such as
cellular telephony, the max delay can be 250 - 350 msec,
because delays longer than that will result in a poor quality of
sound. The voice will be chopped and hard to understand.
Similar constraints apply to real time digital video.

The above applications involve large amounts of data to be
manipulated and stored. Usually the data is compressed to
minimize the storage requirements and to increase the effec-
tive bandwidth of the systems. Similarly, the data could be
encrypted to preserve the content of the information. All these
different techniques are based on various Digital Signal Pro-
cessing (DSP) algorithms. As an example, video images are
compressed using different algorithms. Motion-JPEG, MPEG1
and MPEG2 are used for motion video, while JPEG is used for
still images. Similarly several algorithms have been devel-
oped for speech compression such as TrueSpeech™. All
these techniques require a very fast real time DSP engine.

Along with the DSP capability, multimedia systems are
general purpose systems that implement other tasks as well,
such as interfacing to memory, storage devices or other types
of /0 devices. These tasks require the use of a general
purpose microprocessor tailored more towards these usages.

TRADITIONAL SOLUTIONS

Traditionalimplementations for portable systems separate
the general systems functions from the specific functions such
as DSP or graphics. This separation is accomplished both on
the hardware level and on the software level. On the hardware
level, two or more types of different compute engines are
used. At the center of the design is a general purpose
microprocessor or microcontroller responsible for various
system tasks and overall system management. Other dedi-
cated hardware modules such as DSP microprocessors,
graphic accelerators and custom ASICs are used in the
system. Each of these modules serves a particular function.

Onthe software level the same separation takes place. The
general purpose tasks are separated from the specific tasks.
Procedure calls link various tasks together. In mostinstances,
different operating systems (OS) are executing in parallel on
different microprocessors in the system. As an example, a
portable system may be implemented using a real time kernel
for general purpose and system administration while a DSP
specific-OS is used for the DSP tasks.

These traditional solutions are not well positioned to meet
the challenges of the future. Specifically, the power consump-
tion of these systems is notin line with the requirements of true
portable systems. Similarly, the use of multiple devices places
constraints on the form factor, the development time and the
resulting system.

The trend is to merge more and more hardware function-
ality into a smaller number of devices. These devices perform
several independent tasks that once required separate hard-
ware modules. In addition, there is more emphasis on a
software approach. Several independent software modules
are combined together to execute on a single device. The
software solutions are much more flexible than the hardware
ones. Applications can be easily added, modified and custom-
ized at will without the need for a complete redesign of a
hardware module. To be as efficient and as fast as the
hardware modules they are replacing, these combined soft-
ware modules require extensive compute power.

THE IDT ORION™ R4650

The IDT Orion R4650 is the latest member of the
RISController™ family from IDT. It is a derivative of the IDT
Orion R4600 and is based on the MIPS architecture. The
Orion R4650 is a highly integrated microprocessor specially
designed for the embedded market. It includes 8 KBytes of
Instruction Cache and 8 KBytes of Data Cache, both of which
are two-way set associative. The Orion R4650 executes at
speeds up to 133 MHz. The internal core of the R4650 is a full
64-bit implementation of the MIPS Il Instruction Set Architec-

The IDT logo is a registered trademark and RISController and Orion are trademarks of Integrated Device Technology, Inc.
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ture (ISA) with 32 internal general purpose registers. It has a
built-in floating-point accelerator unit. The raw performance of
the R4650 is about 175 Dhrystone MIPS at 133 MHz. With
these capabilities, the R4650 is an excellent general purpose
microprocessor.

Most of the DSP algorithms rely heavily on a fast
Multiply_and_Accumulate operation to perform effectively.
To address the needs for multimedia applications, the Orion
R4650 has a dedicated unit to perform integer
Multiply_And_Accumulate (MAC) operations. This unit per-
forms a multiply and add instruction every two clock cycles.

The Orion R4650 is also designed for low power

133 MIPS 64-bit Orion CPU

System Control Coprocessor

systems. It consume less than 1.6 watts peak at 100 MHz,
even less power at lower frequencies. It also incorporates
active power management mode to further reduce the con-
sumed power. This mode is dynamically invoked through the
software. Figure 1 illustrates the simplified block diagram of
the R4650.

Thus, the Orion R4650 offers the best of both worlds. It is
apowerfulgeneral purpose compute engine for overall control
and management tasks. It also executes DSP algorithms
effectively, reducing the need for a dedicated DSP micropro-
cessor. lts power consumption is very limited and can be
dynamically adapted to the portable applications.

44MFLOPS Single-Precision FPA

64-bit register file Address Translation/ FP register file
Cache Attribute Control
64-bit adder K] I Pack/Unpack
€ i €
Load aligner 8 Except?lr;nl(\:llt?gnasgement §
Q L]
; c c FPAdd/Sub/Cvt/
Store Aligner = T Div/Sqrt
po A o
Logic Unit a o
High-Performance i
Integer Multiply FP Multiply
3 4
] \ Control Bus y
4
/ Data Bus
/
Instruction Bus
? Y
Instruction Cache o
SetA Data Cache
/ \ [ SetA
Instruction Cache :
Set B S 3&(]?3;1?2'2(, Data Cache
(Lockable) S glem Interface SetB
4 (Lockable)
3181drw 01
Figure 1. R4650 Block Diagram
SOFTWARE CONTROL The contents of the caches can also be locked. This means

The R4650 is a true RISC compute engine, where the
software has control over most functionality of the device. The
software can manipulate the internal instruction and data
cache to optimize the performance of the system. By using the
“CACHE"instructions, the software can control the contents of
any cache line. This fine control over the contents of the
caches enables the OS to ensure that the data is always
available for the different tasks it is scheduling.

that a particular section of the instruction cache will never be
replaced. This ensures that a time sensitive routine such as
the interrupt service routine or a dedicated task suchas a DSP
algorithm is always in the cache. This minimizes the time
interval between procedure calls. Similarly, a section of the
data cache also can be locked. This ensures that the data is
available for real time DSP algorithm for example. This mini-
mizes the need to access the main memory and thus makes
the response of the system more predictable, since the
instruction and the data are local to the internal caches.
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133MHz
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Decod #now, dispatch service routine 130ns
ecode a0,R_AT 4(k0é #save a0
Exception v1,v0,EXCMA K#isolatg mask . )
a0,cause-table(v#get address of interrupt routine
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Service B2ER®> | Do the real work
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Restore from Iw vO,S__VO'4(ALI') ) # restore reg. ng
: W mtcO  k0,CO_SR # restore the status reg. contents 50ns
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eret # return to normal execution [ —
~3.0us
3181 drw 02

Figure 2. R4650 Interrupt Response Time
Real-Time Interrupt Response

To combine several independent software modules, such
as a general purpose OS and a DSP algorithm, onto a single
execution engine requires extensive use of interrupts. Usu-
ally, the task swapping is triggered by an external event. The
interrupt driven approach is much more efficient and dynamic
than a polled system. For real time applications, such as
multimedia with large amounts of data to be serviced at high
bandwidth, polling might not even be an option.

Usually an interrupt is asserted to request the R4650 to
swap the tasks. To meet the real time requirements of the
application or external event the task swapping must be
accomplished as fast as possible.

The R4650 at 133 MHz can respond to interrupts in less
than 250 nsec. This time includes recognizing the exception,
preserving the state, decoding the exception and restoring the
state at the end of the exception. Sample code to accomplish
these steps is illustrated in Figure 2.

POWER CONSUMPTION

The components used in a portable system must consume
as little power as possible. The R4650 is designed with this
goal inmind. It is available in both 3.3V and 5V versions. The
3.3V has a peak power consumption of about 1.6 watts at 100
MHz. Furthermore, the R4650 uses an advanced power
management scheme to further reduce the average power
consumed. Inthis mode, the unused sections of the device are
powered down. This mode is entered automatically when the
internal logic determines that are no activity involving some
section of the device. Thus average active power consump-
tion in reduced to about 1 watt.

Finally, the R4650 provides a “Stand-By” mode, which is
invoked by the software. In this mode, all of the internal clocks
and the pipeline are frozen and the bus activity is stoped. This
mode reduces the consumed power to less than 200 mwatts.

The OS can take advantage of all these power saving
features on the R4650 by entering the “Stand-By" mode, when
there is no system activity to reduce the average power
consumption. If on the average, a portable system is active
25% of the time and idle the remaining 75%. The average
power consumed by the R4650 will be in the order of 400
mwatts. Itisimportantto note that the R4650 replaces several
dedicated hardware modules in the system. This means that
the average power consumed is substantially less than the
traditional solutions. In addition, I/O power is alos reduced
because the interface to the system is stopped.

DSP CAPABILITIES

The DSP algorithms are designed to manipulate large
amounts of data effectively. At the heart of any DSP algorithm
is a Multiply_And_Accumulate instruction. The R4650 is de-
signed to execute DSP algorithms efficiently. It has a dedi-
cated integer Multiply_And_Accumulate unit that executes at
133 MHz. A new multiply-accumulate instruction can be
started every two cycles. As a result, the R4650 can perform
66.7 M multiply-accumulate instructions per sec. This integer
DSP performance of the R4650 exceeds the performance of
any other DSP microprocessor available on the market today.
Table 1 illustrates the peak integer DSP performance of
several architectures.

This type of DSP performance allows the R4650 to imple-
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ment all the major DSP algorithms effectively. As an example
the speech compression algorithm TrueSpeech™ from the
DSP Group requires about 10 MIPS or less than 8% of the
R4650 compute power to execute.

TABLE 1. COMPARISON OF VARIOUS DSP
ARCHITECTURES

PRODUCT FIXED POINT MACs
(In Millions)
Tl - TMS320C25 12.50
TI - TMS320C50 40
ATT - DSP16 54
MOT - 56K 40
IDT - R4650 66.7
3181 thl 01

This example illustrates that the R4650 can mix general
purpose tasks along with dedicated DSP algorithms in an
efficient way. This powerful DSP engine reduces the need for
dedicated external DSP microprocessors.

CONCLUSION

The R4650 is a general purpose microprocessor geared
towards the portable applications. It implements a fast multi-
ply-accumulate unit to speed up the different DSP algorithms.
It can mix general purpose control tasks with DSP specific
applicationsin an efficient way. These capabilities reduce the
need for external dedicated DSP hardware modules. These
features, combined with the average low power consumption,
makes it ideal for portable applications.
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by Robert Napaa

INTRODUCTION

The IDT R4650 RISC microprocessor is the third genera-
tion 64-bit architecture targeted for a variety of performance-
hungry embedded applications. It is the second derivative of
the Orion family (also referred to as the R4600). The R4650
removes some of the functional units not frequently used in
embedded applications, such as double precision floating
point arithmetic and a TLB. The R4650 adds new features that
are in line with its target applications, such as a dedicated
integer DSP core, cache locking, improved real-time support
and an optional 32-bit bus interface.

The R4650 is bus- and upwardly software compatible with
the Orion family. It maintains the same bus protocol as the
R4600 in both the 64-bit and the 32-bit external bus options.
The external bus protocol refers to the handshaking between
the CPU and the external logic as well as the timing for the
various bus transactions. This insures that ASICs and system
logic designed to interface to the R4600 will work with the
R4650 without modifications. However, the external clock
structure of the R4650 is different from that of the R4600 which
provides greater flexibility to the system designer.

This Application Note explains: 1) the differences the
internal and external clock distribution tree of the R4600 and
the R4650, and 2) how to convert the R4650 clocks into R4600
compatible clocks to interface to existing ASICs and external
logic.

DIFFERENT CLOCK STRUCTURE

The R4600 and the R4650 have different input and output
clock structures but maintaining the same bus protocol.

R4600 Clocks

The R4600 implements the same clock structure as the first
generation 64-bit devices such as the R4000 and the R4400.
The R4600 uses a single input clock (MasterClock) that is
doubled internally by one PLL to generate the pipeline clock
(PCIk). A second PLL doubles MasterClock, then divides it by
a constant number (from 2 to 8 as programmed during reset)
to generate the output clocks (RClock, TClock, MasterOutand
SyncOut). These clocks are used by the system logic to
interface to the R4600 during read and write operations.
Figure 1 illustrates the architecture of the R4600 internal clock
distribution tree. A more detailed explanation of the usage of
these clocks is presented in the "IDT79R4600 Hardware
User's Manual".

R4650 Clocks

The R4650 uses a completely different architecture for the
internal clock distribution tree. The R4650 uses a single input
clock (MasterClock). MasterClock is multiplied internally us-
ing a single PLL by a constant number (from 2 to 8 as
programmed during reset) to generate the pipeline clock

~ColdReset ! E SyncOut |
I MasterOut
2F 5
Syncin F PLL 1/ Dl\gde TClock
Clock -
Doubler 2F+90| Align
_Do_ +N RClock
Mode Bits
Masterin F ——-—I odeClock
I~ 256 }
L1
PClock (2F)
F 2F \ Clock
PLL 2/ Dist.
Clock ) Tree
> F | Doubler |2F+90
PLLOff

Figure 1. R4600 Clock Distribution Tree and PLLs

The IDT logo is a registered trademark and RISController and R3051 are trademarks of Integrated Device Technology, Inc.

The MIPS logo is a registered trademark and R3000 Is a trademark of MIPS Computer Systems, Inc.
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(PClk). The R4650 does not generate any output clock. The
MasterClock should be used as the system control logic clock.
The R4650 guarantees that the interface signals with the
external system logic will be sampled using the rising edge of
MasterClock. Figure 2 illustrates the internal clock tree of the
R4650.

An advantage of the R4650 is that the MasterClock fre-
quency may be kept small. Similarly, the absence of output
clocks from the R4650 reduces the power consumption of the
device. This architecture allows several systems to synchro-
nize using a single input clock at any frequency without being
locked by the clocks provided by the CPU. This is particularly
advantageous for backplane applications where the input
clock is provided from the backplane to several plugged-in
cards.

GENERATING R4600-COMPATIBLE CLOCKS

Systems using the R4650 can reuse the logic and ASICs
already developed to work with the R4600. This mechanism
requires the generation of MasterOut, SyncOut, RClock and
TClock, or alternatively, a subset of these according to the
system requirements. The functionality of the different clocks
is explained more in detail in the "IDT79R4600 Hardware
User's Manual".

The clock distribution tree has to be implemented at the
input of the R4650. The R4600 clock generation is illustrated
in Figure 3. Inthis case, a bufferis used to delay the input clock
tothe R4650. The output of the bufferis equivalent to TClock,
MasterOut and SyncOut. The input of the buffer is equivalent
to RClock. For a tight delay between RClock and TClock, it is
betterto use a bufferthat has a very narrow window for the min
andthe maxinputto output delays. An example of such a clock
buffer is the Motorola MC10H645 buffer, which guarantees a
single nanosec difference between the min and the max
delays.

~ColdReset F

Mode Bits ModeClock
Masterin F [+ 256 |
|
PClock (nF)
F nE h Clock |
PLL 2/ TD;:;
Clock
} m F Multiplier ‘nF+90
- PLLOff

Figure 2. R4650 Clock Distribution Tree and PLL
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RClock only if needed
by the system

RClock
VN > MasterClock
Clock | TClock
SysAD | & SysAD
ModeClock
R4650 1 ] External Agent
Config Reset
Logic Logic

Figure 3. Generating R4600-Compatible Clocks

It is also important to note that in systems using only the
R4650, the SyncOut to Syncln path is irrelevant, since neither
the R4650 nor the system logic use these clocks. The
MasterOut could be relevant, depending on the system archi-
tecture.

DESIGNING A SYSTEM THAT SUPPORTS BOTH CPUs
Itis possible to design a single system to support either the
R4600 or the R4650 on a single PCB board. The same design
allows using the R4600 for high performance applications,
while using the R4650 to serve the medium performance
segment of the market. This approach preserves the invest-
ment in the ASIC development, the system logic, the system

OE

R4600

RClock
TClock

'805

)

’

Syncln

10H645

R4650

MasterOut

SyncOut

ModeClock

ModeClock

Q

SysAD

SysAD

MasterClock

MasterClock

Board Interface

To System Logic |

7 Clock Buffer

Figure 4. Single System With R4600 and R4650
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software and so on. Figure 4 illustrates the block diagram for
a system that can support both CPUs on the single PCB.

In this implementation, the clock from the external oscilla-
tor, MasterClock, is fed as the input clock to the R4600. Itis
also fed to the clock distribution circuitry that generates
RClock, TClock, MasterOut and SyncOut to be used when the
R4650is used. Itisimportantto note that only one CPU should
be plugged-in at any onetime. The clock distribution circuitry
is tri-statable when the R4600 is used, since it produces these
clocks.

The SyncOut clock is routed on the PCB and returned as
Syncin. The Syncin clock is fed to the R4600 to align the
internal clocks used to sample the system interface, with the
RClockand TClock seenby the system logic. Inthe case of the
R4650 the Syncin clock is used as the input MasterClock to
the CPU. This ensures that the input clock to the R4650 is
aligned to the system clocks (RClock and TClock) that are
generated by the clock distribution circuitry.

Clock

R4600 ‘Conve(sion
_m__\_r Logi ModeGlock
Clocks|

THE 79S461

The 798461 is a small module that supports both the
R4600 and the R4650 on a single PCB. It plugs into the PGA
socket of the R4600 on any design. It allows the system
designer to evaluate the performance of either CPU in the
system without modifications to the existing design. Figure 5
illustrates the block diagram of the 79S461. In addition, the
schematics of the S461 board are attached to the end of this
App Note to provide a better understanding in converting from
one clock architecture to the other.

CONCLUSION

It is relatively easy to adapt a design that is based on the
R4600 to support the R4650 on a single PCB. This approach
offers a great flexibility in selecting the appropriate CPU for the
level of performance needed without redesigningthe system.
The same design allows using the R4600 for high perfor-
mance applications, while using the R4650 to serve the
medium performance segment of the market.

R4650
PQFP

Clocks

—1SysAD
ModeClock b F:fgio
Clocks
SysAD

I ModeClock
SysAD

Figure 5. 795461 Block Diagram
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DESIGN OF A RISC-BASED PC

Conference Paper
CP-11

By Phil Bourekas, Integrated Device Technology, Inc.
and Blaise Fanning, Deskstation Technology, Inc.

INTRODUCTION

Modern personal computers can take advantage of the
processing power inherent in today's high-performance mi-
croprocessors. The emergence of Windows™ NT as a 3rd
generation operating system for PCs enables the power user
to access a wide variety of sophisticated applications simulta-
neously, and provides a user-friendly windowing interface.
This combination means that the modern PC needs to utilize
the highest-performance processors available, and take ad-
vantage of modern memory system techniques, to offer the
performance required for this software environment.

Onthe otherhand, the marketplace desires that these PCs
remain low cost. The market has built an entire infra-structure
to support low-cost PCs, including system chip-sets, add-in
cards, and peripherals.

This paper describes the implementation of a high-perfor-
mance, low-cost RISC-based PC. The systemisimplemented
using standard PC-style components and techniques, but
uses the high-performance R4000PC RISC microprocessor
to achieve ultra-high performance. The resulting system
achieves the performance desirable in a Windows NT envi-
ronment, while meeting the cost constraints of the PC market-
place.

PROJECT GOALS
The goals for the original DeskStation PC were to imple-

menta high-performance EISA-based PC, atlow system cost.
Along with these primary goals, a few secondary goals helped
to shape the actual implementation.
* Maintain PC flexibility. EISA allows a wide variety of add-in
functions, including low-cost ISA cards through high-perfor-
mance EISA master cards.
Design upgradeability. The PC market place both requires
and allows that designs be periodically modified to address
different price-performance points. Thus, the initial imple-
mentation was designed to insure that these degrees of
freedom were maintained.
Ease of design. Again, given the rapid rate of advancement
of the PC marketplace, it made sense to target an imple-
mentation that could rapidly be brought to market. In addi-
tion, ease of design typically reflects on system cost, as
more complex designs typically require more expensive
system logic to implement.

Thus, the implementation chose the following:

* Windows NT as the operating system. This brings PC
flexibility and compatibility, while offering a robust software
environment for sophisticated applications.

* The R4000 RISC microprocessor family. This 3rd genera-
tion RISC processor offers ultra-high performance, a pain-
less upgrade path in the future, and compatibility with
Windows NT. Figure 1 shows a block diagram of the
R4400PC microprocessor.
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Figure 1. R4000PC Block Diagram

Orion is a trademark and the IDT logo is a registered trademark of Integrated Device Technology, Inc.
WindowsNT is a trademark of Microsoft Corp.
{486 is a trademark of !ntel Corp.
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The R4000 features a high-speed pipeline (100 MHz or
greater), while preserving the ability to keep the system bus
at 50MHz or less. High-speed execution is supported by
large on-chip caches: 16KB each of instruction and data
cache for the R4400. Further, the processor is multiply
sourced, and readily available.

Although the R4000 family offers a device with a dedicated
secondary cache port (the R4000SC), this system is built
aroundthe lower costR4000PC. The processor performance
is aided by the use of a discretely-built secondary cache
which resides on the main memory bus, analogous to the
secondary caches constructed for i486™ processors.

A traditional PC system architecture, to take advantage of
the low-cost and ease of design infrastructure of the PC
marketplace. Thus, the design targeted the use of a stan-
dard PC chip set, and standard PC peripherals and add-in
cards.

Since the system design target was foran EISAPC, the Opti
EISA chipset was selected to implement the main memory
and /O systems. Thus, the primary design burden was to
interface between the R4000PC/R4400PC, and the Opti
EISA chip set.

INITIAL DESIGN

In order to minimize time-to-market, and to prove that the
high-performance inherentin the R4000 architecture could be
readily obtained from a PC system architecture, the initial
design utilized discrete parts to interface between the R4000PC
and the Opti PC chip set.

The design uses standard PALs, data buffers, and SRAMs
to construct the processor secondary cache, and to provide
the interface to the Opti chip set. Although the Opti chip set
does feature secondary cache control for an i486 processor,
the design chose to implement a higher bandwidth secondary
cache for the R4000; thus, the secondary cache controller in
the Opti chip set is not utilized. Instead, a discrete secondary
cache controller, using PALs to control standard 32K x 8
SRAMs, is implemented.

The design was partitioned in such a way to to be easily
modified to different chip sets, cache algorithms, and to
simplify debug. In addition, the overall design can be readily
costreduced, by re-implementing the control and/or data path
functions into low-cost, low-complexity ASIC devices.

System Overview

The system overview is shown in figure 2 below. The
system functions are broken down as follows:
* R4000PC and Secondary Cache
» Opti EISA chip set and interface.
* Main memory and EISA expansion bus.

R4000PC and Secondary Cache

The secondary cache on the CPU main memory bus is
designed to provide a balance between ease of design/low
cost and high-performance, high-bandwidth.

In order to achieve high-bandwidth, the cache implements
a 128-bit wide memory array. Thus, a single cache read can
provide four 32-bit words, which are returned to the R4000PC
as two 64-bit pieces of data. The two 64-bit datums are
available in adjacent cycles, minimizing processor latency on
cache hits.

In order to minimize the cost and complexity of the second-

ary cache, a few tradeoffs were made:
¢ The cache is implemented as write-through, rather than
write-back cache. This greatly simplifies both the control
and data path logic. The cache logic is further simplified by
the R4000 "write-behind" operation; that is, on acache miss
that requires a memory writeback, the cache miss read is
processed prior to the cache line writeback; thus, memory
write performance is not a first order contro! of system and
processor performance.
The cache contains 7 tag bits + 1 valid bit. Thus, the total
amount of main memory is relatively limited (relative to the
64GB address space of the R4000). Nonetheless, the
cache architecture allows a main memory of 64MB, which
is much larger than what is found in non-server PC's.

Secondary Data
Cache Path
(SRAMs) Buffers

Control Control
Logic
Main
Memory
Opti |
R4000 EISA
PC ChipSet

Address EISA

and
Data

2922 drw 02

Figure 2. System Block Diagram
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* The cache is implemented using 25ns 32K x 8 SRAM, with
a separate but similar SRAM for the cache tag. Thus,
relatively modest speed SRAMs are used, and no specialty
TAG rams are required.

The cache glue logic is implemented using standard PALs
and data buffer chips. The data buffers sequence the data

between the R4000PC, its cache, and the host bus interface
to the Opti chipset. :

Table 1 shows the Cache Logic control signals, broken
down by group. As canbe seen from this relatively shorttable,
this cache control logic can easily be replaced by a low-cost
ASIC device, to further reduce cost.

TABLE 1. SYSTEM CACHE CONTROL SIGNALS

Host Butfer Control Latch Control Cache Control Tag Bits
HdCIk(1:0) ACIKEn CacheEn SADT(9:0)
HWW(1:0) ACIKEn CBusEn Tag(9:0)

HRD DCIKEn CBOWE TagOE
PDClk CB1WE TagWE
CBOENn Valid
CB1En
CBOOE
CB10OE
CWrite0
CWirite1

i486 Host Bus Interface

The other primary design consideration had to do with
implementing a reasonable 486 host bus interface between
the R4000PC/secondary cache subsystem, and the Opti chip
set.

Fortunately, the relatively large cache resources available
to the processor (both on-chip and in the secondary cache)
serve to largely decouple system performance from the main
memory bandwidth. Thus, a relatively simple host bus inter-
face could be constructed, minimizing both design time and
system cost. The host bus interface in the initial system
requires 8 buffer devices.

The main memory is directly controlled by the Opti chip set,
and provides a relatively modest 40MB/sec of peak band-
width. The main memory system is only 32-bit wide DRAM;
thus, R4000 cache line refill requires four page mode ac-
cesses. Similarly, the memory system does not support a
burst write protocol; cache line writeback is processed as four
separate write transactions.

TABLE 2. HOST BUS INTERFACE SIGNALS

Address Control Arbitration/Cycle
Control
HA(3:2) HCIk Rdy
BE(3:0) HMem BRdy
HWr Hold
HData HoldA
HLock HAdS
Blast
BusReq

The i486 hostbus interface contains 32 address bits, 32 data
bits, and 10 control bits. In this system, it is derived from the
R4000PC interface, which uses a 64-bit data bus whichis time
multiplexed to include 36 address bits, and which uses 18 bits
of control data (actually, the R4000 uses a bi-directional
command bus, and other control signals to coordinate trans-
fers on the bi-directional control and data busses).

Table 2 shows the signals derived from the host bus control
logic interface. Again, the number and types of signals are
small and simple enough to be easily integrated into the same
ASIC which implements the cache control.

The 32-bit host bus address is derived from the processor
36-bitaddress by registering the SysAD bus from the R4000PC.
Since the i486 bus is only 32-bits, the upper four address bits
from the processor are dropped.

The host bus data interface is constructed from a pair of 32-
bitdata transceivers. By sequencing the output enables of the
transceivers, the 32-bits host bus is created by effectively
multiplexing the halves of the 64-bit processor bus. Since a
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cache line write back involves two 64-bit chunks, and since a
cache line read involves four 32-bit datums, the control logic
insures proper data staging occurs between the R4000 SysAD
bus and the host bus 32-bit data bus.

The control bus of the host bus is constructed by simply
converting the various processor requests into the appropri-
ate sequences of host bus requests. This conversion process
obviously also utilizes the datastages, so atomic R4000PC
requests can be broken down into the appropriate series of
host bus transfers, and the data kept consistently timed with
the request.

EISA Bus Interface

The EISA bus interface requires no modification from the
Opti design recommendations. EISA is chosen because it
provides fairly good I/O performance (compatible with a high-
performance RISC processor), yet also allows low-cost ISA
add-in cards to be used.

The system relies on the EISA bus to provide functions
such as networking and SCSI. By relegating these to the
system bus, maximum flexibility but minimal cost is obtained.

SOFTWARE CONSIDERATIONS

Obviously, the introduction of the R4000 as the system
microprocessor does change the software requirements from
those of a typical PC to that of an ARC (Advanced RISC
Computing) system. Fortunately, Windows NT is architected
to allow this kind of flexibility.

Windows NT directly supports the R4000 processor. That
is, Windows NT runs native on the R4000. In addition to
allowing new R4000 applications to be run, Windows NT
allows existing 16-bit DOS and Windows applications to be
run on the ARC system. Thus, Windows NT insures compat-
ibility with older software.

Further, Windows NT allows a wide variety of underlying
hardware implementations to be built, by segregating system
specific functionality into a lower-level of software, called the
Hardware Abstraction Layer (HAL). HAL code is responsible
for machine management functions, such as cache manage-
ment.

Thus, the task of software development for the Deskstation
ARC system was minimized to providing a layer for Windows
NT.

ARCS BIOS Firmware

The BIOS firmware is responsible for certain basic aspects
of system software, including configuration management, OS
installation support, and providing a uniform boot environment
for Windows NT.

The BIOS firmware provides the low-level system 1/O
functions and the processor boot-up software. The firmware
can be shadowed in the main memory, to provide higher
performance than from EPROM accesses. The BIOS re-
quired approximately 40K lines of source code, and is approxi-
mately 200KB of compiled binary.

Hardware Abstraction Layer

The hardware abstraction layer then resides on the hard
disk, along with the operating systemitself. Whereas the BIOS
provides very-low-level, almost OS independent system func-
tions, the HAL is designed to provide the various system
dependent runtime support functions for Windows NT.

The HAL was developed beginning with the HAL kit pro-
vided by Microsoft, and ported to the specifics required by the
underlying hardware implementation.

SUMMARY

The combination of the R4000 microprocessor, the Windows
NT operating system, a standard PC chip set from Opti, and
some clever design work using low-cost discrete components
enabled Deskstation to implement an extremely high-per-
formance PC without incurring substantial system cost.

The system retains maximal flexibility, based on its design
objectives. Future options include:
 Higher frequency versions of the R4000 family. Higher
frequency parts do not necessarily raise the bus interface
frequency, thus raising system performance without raising
system cost.

Lower cost versions of the R4000 family, including the
forthcoming IDT Orion™.

Other PC standard architectures. Once the problem of
mating the R4000 to an i486 host bus interface is solved,
other standard architectures, including ISA and various
Local Bus standards, can be easily implemented.

Cost reduction via "ASIC-ization.”

Performance improvement via cache expansion.

Thus, this system represents a technology baseline for the
rapid adoption of IDT/MIPS RISC into the Windows NT
desktop marketplace.

This paper was presented at the 1993 Windows Hardware Engineering
Conference in Santa Clara, Califomia.
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INTRODUCTION

In recent times, there has been significant expansionin the
number of applications using embedded RISC processors.
Inter-networking equipment is one of the most visible applica-
tions to embrace the price-performance available from em-
bedded RISC processors.

The IDT R4600 (Orion) dramatically increases the perfor-
mance available to this application class, by tripling (or more)
the performance available to the embedded system designer,
while achieving the cost and power goals of an embedded
system. To fully appreciate what the Orion brings to this
application, one must look at what the application requires,
and then examine how the Orion addresses those needs.

INTER-NETWORKING SYSTEMS

Inter-networking applications emphasize different archi-
tectural capabilities than do laser printer or desktop computing
applications. As this market continues to advance, it is ex-
pectedto place higher demands on embedded processors, as
database sizes increase, transmission rates go up, and addi-
tional protocols and media become supported.

ltis clearthat there are a few processor capabilities that will
continue to be valued most highly:
¢ Packet movement will emphasize the available band-
width of the processor. What will be especially important
is the ability of the processor to move the kind of data
found in the packet header into and out of the CPU, for
packet processing. In some systems, it may be important
for the processor to perform the movement of the entire
packet as well, although this is often done by DMA.
Packet processing, including routing and protocol conver-
sion, will continue to require rapid completion of relatively
simple calculations. The single cycle nature of RISC
boolean, ALU, and load/store operations serve this need
well; higher frequencies and larger caches enable more
of the peak performance to be actually achieved.
Interrupt response and task switching times will be key
metrics for the processor. Relatively low interrupt and
task management overhead allows more of the processor
performance to be directed to the packet processing
operation, rather than processor state management.

The Orion speeds each of these key metrics, resulting in
more value (more packets/second and/or more channels)
from the resulting system.

ORION OVERVIEW

The IDT R4600, also well known as the Orion, is the latest
and highest-performance member of the IDT RISController
family.

The IDT logo is a registered trademark and FLEXbus, R3041, R3051, R3052, R3081, R3721, R4600, Orion, and RISController are of

The Orion is derived from the R4000 architecture, and
shares many traits in common with the original R4000 de-
vices. These traits include: 64-bit architecture, high-speed
pipeline, and large on-chip caches. However, the Orion repre-
sents an independent design effort, targeting lower cost, and
lower power consumption, than the R4400.

Key attributes of the Orion include:

¢ 64-bit integer CPU

¢ 64-bit FPA

* 16kB, 2-set associative instruction cache

* 16kB, 2-set associative data cache. The data cache can
be managed with a mix of write back and write through
protocols

5 stage traditional RISC pipeline operating currently at
133MHz, scalable to 200MHz.

64-bit burst interface bus

Flexbus™ allows the bus interface to be run at 1/2 to 1/8
the pipeline clock rate.

Figure 1 gives a block diagram representation of the Orion.

ORION’S PACKET MOVEMENT CAPABILITY
Although RISC processors are typically known for their

computational performance, inter-networking performance is

typically more dependent on the processor’s ability to move

~ data rapidly through the system.

Note that whatis required here is more than just an efficient
block copy: in processing the packet header information, the
processor must be able to rapidly process unaligned Big-
Endian data, and must be able to efficiently handle data
structure accesses. These areas are key strengths of the IDT
Orion.

Most systems utilize external DMA engines to actually
move the packet data between channels. However, other
systems may employ the processor for this task, under soft-
ware control.

If the system approach is to utilize external DMA, then the
processor must be able to rapidly process the packet header
information, perform the routing, and then perform the DMA
channel pointer management. In addition, the processor needs
to allow the external DMA to have significant amounts of
bandwidth left for its data movement.

To support these goals, the Orion implements high-band-
width, both internally and on the bus, to allow the packet
header information to be moved rapidly; large on-chip caches
to speed the routing (including a large data cache, which can
contain significant amounts of routing information), and a
high-speed pipeline. In addition, the large caches (which can
be managed using a writeback protocol) insure that the

grated Davice T Inc.
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processor operates most frequently out of the on-chip memory,
leaving significant amounts of bandwidth available for exter-
nal DMA.

In the case of software controlled data movement, the
processor needs the attributes described above, but also
needs to be able to move data in efficient bursts. To support
this need, the Orion implements high-bandwidth (described
below), anda setof cache operations to allow the programmer
to explicitly access this bandwidth (useful if the data move-
ment is designed to flow-through the CPU). Alternately, the
system can utilize a fly-by technique; when the processor
reads data from a certain address range, external system
logic can sample the data simultaneous with the CPU. This
avoids the need for the processor to later utilize write cycles,
at the cost of some system logic. For these systems, the large

address space of the Orion enables “aliasing” of system
memory, simplifying the design of these fly-by techniques.

The Orion strategy for bandwidth is to implement high-
bandwidth between the on-chip register file/functional units
and the on-chip caches, and separately to implement high-
bandwidth between the on-chip caches and the external main
memory. Ratherthan consume valuable chip real estate (and
slow context switch performance) with a windowing register
file, the MIPS architecture uses a large orthogonal register file,
with the cache feeding the register file at over 1GB/second. In
addition, the cache is able to hold relatively complex data
structures (as is found in complex systems programmed in
high-level languages), rather than being limited to “word” and
sub-word data (as is typically found in a register windowing
system).

Figure 1. IDT Orion Block Diagram
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In addition to raw bandwidth from the data cache, the Orion
implements other techniques to speed packet movement
(especially for key header and routing data) in an inter-
networking system.

Big- or little- endian memory system support. The Orion
directly implements big- or little- endian systems, as well as
systems of mixed byte ordering. Most inter-networking appli-
cations will implement Orion using a Big-Endian system,
which is compatible with the byte-ordering conventions of
networking protocols.

Unaligned datum support. Since packet data is not guaran-
teed to be aligned to word addresses, unaligned data support
is important in achieving the desired bandwidth. The Orion
implements the MIPS “load-word-left/right” instructions, and
complementary store instructions. These instructions are
designed to support 32-bit 64-bit datums which may not be
aligned on the proper modulo byte address. These instruc-
tions eliminate the exception/emulation method required in
other processors, and also eliminate the need to process the
unaligned word through a series of byte-load/shift/OR opera-
tions. Instead, a single pair of instructions can be used to load
or store a 32- (or 64-) bit quantity between a single CPU
register and the memory system. This mechanism allows
these “split’ datums to be loaded in just 2 clock cycles.

These operations can be invoked either through assembly
level programming or from C. For example, the Gnu C com-
piler uses unaligned operations to move data marked with the
“packed” attribute.

Ultra-high on-chip bandwidth. Inter-networking requires
high data-bandwidth, so that packet data can be brought
rapidly in and out of the processor registers. To support this
need, the Orion implements large on-chip caches. With dual
2-set associative, 16kB caches on chip, the Orion delivers
average performance very close to its 133-MIPS peak perfor-
mance, by allowing most instruction accesses to be served
from the on-chip cache. In addition, when packet data is
accessed cacheably, data can be brought into the cache at
over 500MB/sec, and subsequent cached accesses to addi-
tional portions of the packet will occur at over 1GB/second.
Concurrently, instruction fetch bandwidth exceeds 500MB/s.

Many embedded processors provide special mechanisms
for high data bandwidth. However, the effectiveness of these
mechanisms is dramatically reduced if the execution engine is
“starved” of key instruction and data information by insufficient
on-chip caches. The Orion, on the other hand, provides large
on-chip caches, to keep the engine running at full speed.

There is yet another advantage from these large caches;
systems which employ external DMA engines to move packet
data through the memory and I/0 systems will find more of the
bus bandwidth available to them. Since the CPU will be able
to execute for long periods of time from the internal caches,
and since the data cache can be managed with write-back
protocols, the processor will require the bus only infrequently.

Early restart of execution. Tofacilitate real-time processing
of packet data, the Orion restarts execution as soon as the
requested datum is brought on-chip from memory or 1/O
devices, even if additional data is being brought in to fill a
cache line. The rest of the cache line (which usually contains

additional useful packet data) fills the on-chip cache simulta-
neous with the processing of the first datum. This parallelism
allows the bus bandwidth to proceed in parallel with the
execution bandwidth. With instruction cache fetches occur-
ring at over 500MB/sec, and data accesses at greater than
1000MB/sec, and the bus moving data at 500MB/sec, the
Orion represents over 2GBytes/sec of packet movement
horsepower.

64-bit datumn support. Bulk data movement, such as fetch-
ing of packet headers, or block copies, can take advantage of
the 64-bit operations of the Orion. This elevates peak band-
width, and allows more data to be processed in a single
operation. Processing power is also increased, since more of
the packet header or data is processed in a single operation.

Varying cache management protocols. Inter-networking
applications manage diverse types of data, including rela-
tively “static” data such as the program stack, task queue, and
routing table entries, as well as the more “dynamic” packet
data. To speed both types of data, the on-chip caches support
both write-through and write-back operation. In an inter-
networking application, general processing data (such as the
runtime stack) benefit from the cache write-back algorithm,
while packet data, which may later be DMA’d out on another
network channel, are managed using the write-through proto-
col to insure cache and memory coherency. The on-chip
write-buffer allows the execution core to continue processing
additional data, as write-through or write-back data gets
processed out to the memory system. The addressing modes
of the Orion allow subfields from data structures to be rapidly
accessed, using base-address plus sub-field offset address-
ingdirectly in the load or store instruction (and thus eliminating
explicit address calculation instructions).

The varying write protocols, coupled with the large address
space, also enable the system designerto implement “aliased”
physical memory. Eitherthroughthe use of the on-chip MMU,
or through address decode logic, multiple virtual address
spaces can be mapped to a single physical address space. By
assigning differing write protocolsto the various virtual spaces,
the programmer can then choose to reference data as
uncacheable, cacheable with writeback, or cacheable with
write-through, merely by the choice of the virtual address
used. Whenthe MMU is used, the programmer can further use
the multi-tasking capability of the MMU to insure that code is
“well-behaved”, by limiting access to certain virtual address
regions to certain tasks.

Explicit cache management support. To allow the system
to directly control the available bandwidth, Orion provides a
set of “cache operations”. Cache operations can be used to
pre-load the caches with desired data and/or instructions, and
can also be used to initiate the write-back of data to insure
cache and memory coherency before DMA activity occurs.

The Orion cache ops allow the assembly programmer to
explicitly manage the bandwidth between the cache and the
external main memory; they can be used to initiate burst reads
and/or writes of main memory, for example. This facility,
coupled with the fact that the Orion executes multiple instruc-
tions per bus clock cycle, enables the system to achieve
average bandwidth close to the peak bandwidth of the inter-
face.
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PACKET PROCESSING

The Orion really shines in packet processing. The Orion
features 133-MIPS execution, which is typically sustained by
the large on-chip caches. Thus, the Orion can quickly deter-
mine the appropriate routing or conversion for a packet,
perform the operation, and use its high-bandwidth to dispatch
the packet. By reducing the amount of time to obtain the
packet, to process the packet, and to dispatch the packet, the
Orion supports higher “packets-per-second” rates, as well as
higher numbers of channels under the control of one proces-
SOr.

Instruction throughput. Other processors may claim high
peak MIPSrates; however, on closer examination, itbecomes
obvious that these rates are rarely achieved. The effects of
data dependencies and issue restrictions on pipeline through-
put, coupled with the low hit rates associated with small
caches to feed the engine, dramatically degrade actual sys-
tem performance.

To avoid this problem, the Orion architects made certain
fundamental decisions: the pipeline would be a traditional
RISC pipeline, avoiding the issue restrictions found in most
superscalar machines and the pipeline bubbles found in
super-pipelined machines; the pipeline would be high-fre-
quency; and the pipeline would be sustained by large, high-
bandwidth, efficient on chip caches. Thus, the performance
ratio between the “133-MIPS Orion” and other embedded
RISC processors targeted to inter-networking is actually sig-
nificantly larger than the ratios of their peak MIPS rates. Figure
2 shows the Orion pipeline structure.

High-level language programming. This traditional RISC
micro-architecture has other benefits as well. For example,
the Orion architecture, as with the MIPS architecture in
general, is “high-level-language friendly”. The optimization
rules for it are easily supported by modern compilers. Thus,
the system programmer can achieve the performance poten-
tial of the Orion without having to program in assembly,
resulting in code that is more portable and easy to maintain.
The Orion is designed to allow efficient translation of “C”
programs to its object code. The large caches allow the
programmer plenty of “elbow room” for system software,
without requiring assembly level tuning.

64-bit data support. Inter-networking applications can also
find advantage in using the 64-bit ALU and boolean opera-
tions of the Orion, as well as the high-bandwidth from its on-
chip 64-bit wide registers to memory. These operations en-
able the Orion to process more data in a single chunk.

Although the Orion is a true 64-bit architecture, it is equally
adeptwith smallerdata. The system can be constructed to use
32-bitaddresses (reducing the size of pointers, and thus using
less memory) and to use 64-bit operations only for “long” data.
This is accomplished merely by the selection of appropriate
compiler switches, along with the types declared for datums.

lo [11T21]1R2R[1A]2A] 1D] 2D 1W2W/

It [ 2 [iRERAL2A[ DIz IWBW
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Figure 2. Orion Pipeline

INTERRUPT RESPONSE AND TASK SWITCH-
ING TIME

The Orion also excels at minimizing the overhead for
exception processing and task switching. The Orion does not
require explicit pipeline state management, cache flushing,
TLB or MMU management, or register spill management.
Exceptions feature very low latency, and special registers in
the Orion facilitate exception decoding and interrupt service
dispatch. Thus, very little overhead is required in the interrupt
and task switch model, leaving more processing power for
packet movement and processing.

Althoughmany vendors attemptto use the time required for
exception recognition as a measure for real-time efficiency,
this dramatically understates the requirements of a real sys-
tem. True exception latency is a function of exception recog-
nition, exception decode, state preservation, state restora-
tion, service dispatch overhead, and instruction throughput. A
number of these factors are operating system specific (for
example, the amount of state preservation/restoration, and
the overhead for prioritization and task selection).

Exception recognition. In general, the amount of time
required to detect an exception is less thanthe pipeline length.
In the particular case of interrupts, latency is 5-6 cycles. Of
course, the longest CPU stall cycle (e.g. due to a main
memory access) can lengthen the amount of time.

Once an exception is detected, the Orion will (automati-
cally):

» enter kernel mode

* disable interrupts

¢ encode state information in on-chip registers designed for
exception management

 branch to an exception vector location

These activities are automatic, and occur in the few cycles
of exception latency mentioned above. Figure 3illustrates the
exception latency.
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Figure 3. Orion Exception Latency

Exception service dispatch. Once the Orion has branched
to the exception vector, software is responsible for decoding
the cause of the exception, performing whatever state preser-
vation is appropriate, and dispatching the service routine.

The Orion contains registers designed to speed exception
decode and to simplify return to normal execution at the end
of exception processing. These registers show the cause of
the exception, the return address, and other bits of information
for decode. Because of these registers, exception decode,
minimal state preservation, and service dispatch can be
performed in as few as 15 instructions (less than 120ns).
Figure 4 shows the code typically executed at the general
exception vector.

.set noreorder

la k0,except-regs
sw AT,R_AT*4(k0)
sw v0,R_V0*4(k0)
sw v1,R_V1*4(k0)
mfcO v0,CO_EPC
mfcO v1,CO_SR

sw vO,R_EPC*4(k0)
mfcO v0,C0_CAUSE
sw v1,R_SR*4(k0)
SwW a0,R_AT*4(k0)
and v1,v0,EXCMASK
Iw a0,cause-table(v1)
SW al,R_A1*4(k0)

j a0

sw k1,R_k1*4(k0)
.set reorder

#tell assembler not to fill delay slots
#fetch address of reg save array
#save a few general registers

#fetch return address

#fetch status register

#save return address

#fetch exception cause register
#save status register

#save another general register
#get at the actual “cause index”
#get address of service routine
#use delay slot to save another reg.
#branch to service routine
#save one more general register
#re-enable pipeline scheduling

Figure 4. Exception Service Dispatch code

Note that the advantages of the Orion register, cache, and
MMU architecture serve to minimize the amount of state
software needs to preserve. Specifically, the use of unique
process ID’s avoid the need to flush the MMU at context
switch; physically tagged caches eliminate the need to flush
the on-chip caches; and the orthogonal, non-windowed regis-
ter file eliminates the need to manage window overflow.

Return from Exception. Returning from exception is equally
simple and quick. Basically, the software needs to restore the
original machine state registers and any preserved context,
and execute a return to the saved return address. One
additional instruction, the eretinstruction, restores the bits of
internal state designed to be hidden from the programmer. A
minimalreturn/restore from exception sequence can be imple-
mented in as few as 7 instructions (less than 60ns). Figure 5
shows this typical code.

.set noreorder
Iw k0,CO_SR*4(AT)
lw v0,R_VO*4(AT)
mtcO k0,CO_SR
w k0,R_EPC*4(AT)
Iw AT,R_AT*4(AT)
j ko

eret
.set reorder

# by the time we have gotten here
# all general registers have been
# restored (except kO and v0)

# reg. AT points to the reg save array
# fetch status reg. contents

# restore reg. vO

# restore the status reg. contents
# Get the return address

# restore AT in load delay

# return from int. via jump reg.

# the eret instr. is executed in the
# branch delay slot

Figure 5. Exception Return code

179




THE IDT R4600 POWERS
INTER-NETWORKING APPLICATIONS

CONFERENCE PAPER CP-14

Instruction Throughput. As illustrated above, service dis-
patch and return from exception are performed via simple
software functions requiring very few instructions. Thus, the
key to minimal exception service latency is to keep instruction
throughput high.

As discussed above, the Orion is able to sustain extremely
high instruction throughput rates, based on its 133MHz pipe-
line fed by its large internal caches. Various techniques,
including cache locking, fast local memory, and appropriate
data cache protocols, can also be used to sustainthe high-rate
of instruction throughput.

Special techniques. Note that it is possible to use the on-
chip registers reserved for the on-chip FPA as a high-band-
width backup store for processor state in certain exceptions.
Software canbe written to use these registers as a small stack
for key machine state. Since the Orion implements sophisti-
cated dynamic power management on chip, these registers
can be used without incurring a large increase in CPU power
consumption.

SUMMARY

The Orion serves as an excellent device for inter-network-
ing applications. With over 2 GB/sec total bandwidth, efficient
management of packet data (including unaligned data), and
133 MIPS processing power, the Orion provides the CPU
resources necessary to support the increasing requirements
of inter-networking, imaging, printing, multi-media, and desk-
top computing applications, while maintaining the cost and
power goals required by these applications. As the Orion
frequency continues to increase, the performance gap with
other architectures will widen further.
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INTRODUCTION

This article describes the basic issues related with the
design of a system using either the IDT79R4400 or the
IDT79R4600 64-bit CPU. It will cover the concepts of the
system interface between the CPU and the rest of the system
and give an example of a zero-wait state SRAM based
memory system. The major focus will be on the system
interface, how it relates to the rest of the system and the new
features of the R4600 to improve performance. To end the
article, | will discuss some of the issues of a zero-wait state
memory system for the R4600.

THE R4X00 SYSTEM INTERFACE

The system interface connects the R4x00 CPU to external
memory and other peripherals. This section will discuss the
various aspects of the system interface including the signals
used.

The system interface consists of three main elements:
1) The 64-bit multiplexed address and data bus;
SysAD[63:0]
2) The 9-bit command bus; SysCmd[8:0]
3) The 6 handshake signals to control issue rates and
validate requests;
RdRdy, WrRdy, ValidOut, Validln, ExtRgst and Release

THE SYSAD BUS

The SysAD bus is shared for both addresses and data
cycles. It will present addresses during cycles where a valid
interface command is present on the SysCmd bus. Data will
be presented during cycles which have a valid data identifier
on the SysCmd bus. During the address cycles, only the 36-
bit physical address will be driven on SysAD[35:0] allowing up
to 64GB to be accessed. For the R4400, the unused address
bits will be driven as zeros. The R4600 will drive zero on
SysAD[55:36] and will drive virtual address bits 19..12 on
SysAD[63:56].

THE SYSCMD BUS

The 9-bit SysCmd bus is used to encode the type of
transaction that is present on the SysAD bus. SysCmd[8] will
indicate whether the current driven cycle is a command
(SysCmd[8} = 0) or data (SysCmd[8] = 1). During the address
cycles, the other bits encode the type of cycle (read, write or
null) along with the amount of information to be transferred.
For the data cycles, the remaining bit determine if the current
datumis the last of the transfer, if the datais foraread request,
if there is an error and if the CPU should check the parity.

THE SYSTEM INTERFACE CONTROL SIG-
NALS

The system interface control signals are used to communi-
cate when buses have valid data and when the external
system is ready to accept a command. The output, ValidOut
and the input, Validin are used by the CPU to indicate when
there is valid information driven on the bus either by the CPU
(ValidOut) or the external system (Validln). Two input signals,
RdRdy and WrRdy, are used by the external system to
indicate to the CPU that it can accept a command. The CPU
output, Release indicates to the external system that the CPU
has releasing the SysAD and SysCmd buses and it can start
driving these buses after a bus turn-around cycle. The exter-
nal system will indicate to the CPU that it need the system
buses by asserting the ExtRqst signal to the CPU.

SYSTEM INTERFACE PURPOSES

The major purpose of the system interface is to handle
requests that arise from system events. The system events
include; Load Misses, Store Misses, Store Hit on a write-
through page (R4600 Only), an uncached Load/Store or
CACHE operations. These system evente will translate into
one or more requests from the processor, Processor Re-
quests, or the external agent, External Requests. There are
two Processor Requests; a Read Request and a Write Re-
quest. There are three External Requests; a Read Request
(although there are no readable CPU resources), a Write
Request (to write the interrupt register) and a System Inter-
face Null Release Request.

PROCESSOR REQUESTS

Processor requests are used to transfer data between the
processor and the external system. The processor will issue
areadrequesteitherforacacheline sized block (a Block Read
Request) or for an uncached datum (a Word Read Request -
can be either a doubleword, word or partial word access). A
processor write request can also be of a Block or Word type.
The Block Write will be of a cache line that is possibly being
replaced. A Word Write can result from either an uncached
store or from a store hit to a cache line whose page attribute
is write-through (this is for the R4600 only). Each processor
request will have an “Issue” cycle after which the CPU will
finish the rest of that transaction.

PROCESSOR REQUEST ISSUE

The processor samples the RdRdy and WrRdy signals to
determine when a read or write request has issued. These
signals are sampled at the rising edge of the S Clock (the
system interface clock). The actual issue cycle will be the

The IDT logo is a registered trademark and IDT/sim, R3041, R3051, R3052, R3081, R3721, R4600, and RISController are trademarks of Integrated Device Technology, Inc.
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cycle two S Clocks after the respective control signal (RdRdy
forread and WrRdy for write) was sampled as asserted. Figure
1 shows this for a read request issue cycle.

lssue
sowal | 1+ [ 2 | o | e ] e ] e
SysAD Bus Xm
RdRdy* \

3108 drw 01
Figure 1: Read Request Issue Cycle

PIPELINE RESTART FOR READS

When a cache miss occurs, the pipeline will stall until some
or all the data for the miss is returned. For the both the
Instruction and Data caches of the R4400 and the Instruction
cache of the R4600, the pipeline will stall until after the entire
cache line is returned. The first returned doubleword will
contain the missed instruction or data. In the R4600, when a
Data cache is serviced, the pipeline will restart after the first
doubleword is returned. This first doubleword contains the
missed data. The rest of the missed cache line is returned in
parallel. This can result in significant performance increase
due to the data streaming and also resultsinmore efficient use
of the CPUs resources.

PROCESSOR READ REQUESTS

When the processor needs some information from the
external system or need the next instruction(s) to execute, it
will use a read request to get it. A read request begins by
driving the address on the SysAD bus and the appropriate
read command on the SysCmd bus. For a block read, the
command will indicate that a block is needed and the size of
the block; thiscan be 4 or 8 words for the R4400 while the block
size is fixed at 8 words for the R4600. For a word read, the
command will indicate this along with the number of bytes it
expectsreturned. With the valid address and command driven,
the CPU will assert the ValidOut signal to let the external
system know that there is valid information on the buses and
that the external system is expected to service the request. If
the RdRdy signal has meet the requirements for an issue, the
valid address and data is driven for that cycle only, otherwise
the CPU wijll continue to drive the same information until the
issue requirement is meet. For the R4600, the CPU will further
indicate anissue cycle by asserting the Release signal in the
issue cycle. After the Release signal is asserted for the one
cycle, the CPU will 3-state the buses to allow the external
system to start driving them. The R4600 guarantees that the
Release will assertin the issue cycle. For the R4400, the cycle
for the Release to be asserted can be the issue cycle but may
be delayed by several cycles based on internal activity.

Afterthe release cycle, the buses will “turn-around” to allow

the external system to drive the read response data back to
the CPU. The external system will drive valid data on the
SysAD bus along with a command on the SysCmd bus to
indicate the this is read response data. The command will also
tellthe CPU otherinformation aboutthe returned data such as:
if the data is erroneous, if the CPU should check the data and
check bits and, for a block read, if this is the last data element
for the block. Once the external system has the valid informa-
tion onthe buses, it will assert the ValidIn signal, this indicates
tothe CPU that it can now sample the buses for the requested
information. After the external system returns the last data
element, it wili 3-state its drivers and turn the buses around for
the CPU to start driving after a one cycle delay.

BLOCK READ REQUESTS, MORE DETAILS

When the R4x00 issues a block read request, it expect the
data to be returned in “sub-block ordering”. The idea behind
sub-block ordering is to start with the doubleword at the miss
address, the address driven by the CPU to start the read
request. The external system will determine the next
doubleword address to return by the XOR of the start address
with the value of a binary counter. The number of bits in the
binary counter are determined by the line size the CPU uses.
For example, with 8 word lines, one needs a 2-bit counter and
will XOR the count with address bits 4..3 to determine which
double word to return next. This scheme works well with
interleaved memory systems. The overall, the algorithm is:
* Get the doubleword which missed first;

« Next, get the doubleword which will fill out the quadword
containing the missed data;

= Then get the quad word filling the octalword, in the same
order as the previous quadword.

PROCESSOR WRITE REQUESTS

As with the read request, a write request can be either a
block or a word write. For a block write, the CPU will first drive
the start address on the SysAD bus and the block write
command on the SysCmd bus with the ValidOut signal as-
serted. For the R4600, the CPU will start sending the data out
in the cycle immediately following the address issue cycle.
The address issue cycle follows the rules stated before with
respect to the assertion of the WrRdy signal. The number of
cycles between the doublewords is programmable at boot
time. This is the data write-back pattern and can be as fast as
adoubleword every cycle to adoubleword every 4 cycles. The
setting used is determined by the speed at which the external
system can handle the write data. Forthe R4400, there can be
a delay between the address issue cycle and the first
doubleword out but the remainder of the write-back will occur
at the programmed rate. One thing to note is that once the
write has issued, there is no way to stop the write-back and
there is no way to dynamically throttle the number of wait
cycles between the doublewords.

For single writes, the address issue cycle is the same as
that of the block write. The R4400 can then have an unused
cycle after which it will drive the data out and follow this by
another unused cycle. This results in a 4 cycle minimum fora
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single write and is due to the internal state machine implemen-
tation.

The R4600 can perform single writes in the same manner
or it can use one of the two new write modes. These write
modes are programmed at reset. In the R4x00 compatible
mode, the R4600 will issue the write address, immediately
follow this with the write data and finish the write cycle with 2
unused cycles during which it will continue to drive the valid
data on the SysAD bus but will only have the ValidOut signal
asserted for the first data cycle. This again results in 4 cycle
writes. The new write modes are Write Re-issue and Pipelined

|Issue I No |

SCycle | | | Issue

Writes, both of which result in 2 cycle writes.

Forthe Write Re-issue protocol, the CPU will firstlook at the
WrRdy signal as with other writes to see that it is asserted two
cycles previously butin addition, the WrRdy signal must still be
asserted in the issue cycle for the CPU to consider the write
to have issued. If the WrRdy was deasserted in the issue
cycle, the CPU will retain the address/data pair in the write
buffer and re-issue the write once the WrRdy is again asserted
at the appropriate times. The Write Re-issue is shown in
Figure 2.
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Figure 2

The Pipelined write protocol maintain the issue rules of the
R4x00 compatible writes but eliminates the two unused cycles
between back-to-back writes. The external system is there-

fore required to accept one additional write after the WrRdy is
deasserted for a stream of back-to-back writes. The Pipelined
Write is shown in figure 3.
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Figure 3

EXTERNAL REQUESTS

External requests are used by the external system to
transfer information to the CPU. There are four possible
external request for the R4x00: Read Response, Read, Write
and Null. The Read Response is used for the return of data
requested by a processor read request. The external Read
request is intended to allow the external system to read data
from internal CPU resources but there is currently nothing to
read from. The external Write request is used to directly write
to internal CPU resources with the Interrupt register the only
currently implemented write-able resource. The external Null

request is used by the external system to return the system
buses to the CPU when the external system is finished with
them. The Null request is only required if the external system
isnotsendingdatatothe CPU, i.e.,itisnotneededforthe read
response or external write request, only if the external system
has requested the system buses for some other use that the
CPU is not involved with such as a DMA.

The external system must arbitrate with the CPU for the
control of the system buses. This is initiated by the external
system by first asserting the ExtRgst signal to the CPU. Some
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time after the ExtRqst is asserted, the CPU will signal to the
external system that it is giving up mastership of the system
buses to the external system by asserting the Release for one
cycle. One cycle after the CPU asserted the Release, the
external system can start issuing its request(s). For a read
response, external read and external write request, the CPU
will regain mastership of the system buses once the external
request is completed. If the external request does not involve
the CPU, the external system will need to drive a Null request
to the CPU in order to return mastership of the system buses
to the CPU.

R4X00 CLOCKING

The R4x00 CPUs have several clocks that are involved in
various aspects of operations. The input clock is MasterClock.
The MasterClock is used by the internal PLLs to generate the
other clocks. The MasterClock frequency is 1/2 the pipeline
frequency. The MasterOut clock signal is aligned and at the
same frequency as the MasterClock. This clock is used for the
synchronous assertion and deassertion of the reset control
signals. There are two internal only clocks, PClock and
SClock. The PClock is the actual pipeline clock and is 2x the
MasterClock frequency, i.e., if MasterClock is 50MHz, the
PClock is 100MHz. The SClock is the system interface clock
anditis used to clock all the into or out of the system interface.
The frequency of the SClock is determined at reset through
the programmable divisor which can be from 2 - 8. All the
external timing, drive-out, setup and hold, are with respect to
the SClock.

There are4more externally accessible clocks. The SyncOut-
Syncln pair are used as the feedback path one of the internal
PLLs and is used to model the delays and loading of the
external system. If the other two external clocks, TClock and
RClock, are buffered, then an identical buffer is placed in the
SyncOut to Synclin path to aflow the PLL to align the external
clocks with the internal SClock so the user willknow when the
CPU will sample inputs and drive outputs. The other external
clocks are used to sample outputs from the CPU or to clock
signals to the CPU. The RClock is the receive clock and can
be used by the external system to register the driven outputs
from the CPU. The RClock is at the same frequency as the
internal SClock but its phase leads the SClock by 25%. The
TClock is the transmit clock are can be used to clock signals
to the CPU. The TClock is also at the same frequency as the
SClock and is aligned to the SClock.

R4X00 MEMORY INTERFACE EXAMPLE

As an example memory system, | will discuss a 0-wait state
SRAM based memory. By O-wait state | mean that the CPU
requests run atthe maximum speed. This means thatthe CPU
requests complete in following number of cycles:

Block Read 3-1-1-1

Single Read 4

Block Write 2-1-1-1

Single Write 4 (2 for the R4600 new write modes)

The memory system will be 2-way interleaved with each
back 64-bits wide. The address path will consist of a first level
register that registers the address on the rising edge of the
RClock, followed by a latch to provide a one-level address
buffer to allow for the read following a write case of back-to-
back CPU requests. For the registers, we use the
IDT74FCT162823ET 18-bit registers and the latches are the
IDT74FCT162841ET 20-bit transparent latches.

The data path consists of IDT74FCT162501 18-bit regis-
tered transceivers acting as registers for data to the memory
and latches for data from the memory, and the
IDT74FCT162260 12-bittri-port bus exchangers to control the
data from the 162501 to the even and odd banks of the SRAM
memory.

Because the memory is interleaved, the read access is the
limiting time, writes can overlap to some extent with the next
transaction. To determine the read access time, we need to
return the data to the CPU in at most 3 clock cycles (60ns for
a 50MHz system interface bus). From this maximum time we
first subtract the propagation delay times for the clock-to-out
of the register and the address latch. Finally, we must subtract
the propagation delay for the data to get to the CPU and the
setup time required by the CPU. The result is the maximum
read access time for the SRAMs.

For the given components, we get the following for a
50MHz system:

Access Time = 60ns - (address time) - (data time)

=60- (4.4 +7.5)-(3.5+7.4)=19ns

For this design we will use 15ns SRAM SIMMs to allow for

a margin.

CONCLUSION

The R4x00 system interface has many features that can
make a design challenging but with a little common sense and
some careful planning, one can take advantage of the system
interface and design and build a high-performance system.
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INTRODUCTION

The IDT79R4x00 tamily supports a wide variety of proces-
sor based applications including 32-bit Windows™ NT desk-
top or notebook systems. It is also suited for a variety of
embedded applications, such as laser printers and data
communications. R4x00 provides complete upward applica-
tion software compatibility with the IDT79R3000 family of
microprocessors.

IDT79R4x00 family extends performance range for em-
bedded applications performing greater than 68 SPECint92
and 60 SPECfp92 at 100Mhz. Migrating earlier generation
designs to R4x00 family of microprocessors is of great impor-
tance.

This paper describes various aspects of porting software
from R3000 embedded system to a R4x00-based system.
The discussion will start with changes in the software model
from R3000 to R4x00 and associative changes in the kernel
model. Next, various software modules that needs modifica-
tion will be discussed. The IDT’s System Integration Manager
(IDT/sim™) software will be used as an example to empha-
size major changes in the kernel model.

Finally, some of the compatibility issues between R4600
and R4400 will be explained to provide the better understand-
ing as how to apply the modifications to R4600 system.

MIPS R4X00 FAMILY

IDT's R4x00 family is the extension of IDT’s RISC road
map. It targets various segments of embedded market such
as disk arrays, color printers and routers. The architecture
integrates full 64-bit integer and floating point units which are
supplemented by larger caches. it is fully upward compatible
with R3000 instruction set.

The changes in the software model depicts that only kernel
model needs to be modified when earlier generation code
(R3000) is migrated to the R4x00 architecture. User applica-
tions do not need to be modified even though some perfor-
mance improvement by taking full advantage of MIPS [Il ISA.
Changes in the software model include:

» System control coprocessor (CPO)
* Exception processing

* Memory management

* Instruction set

* Cache organization

SYSTEM CONTROL COPROCESSOR

System control coprocessor (CP0) has been has been
completely changed. Existing R3000 status register has been
modified along with the introduction of some additional regis-

The IDT logo is a registered trademark and [DT/sim, Orion, R3041, R3051, R3052, R3081, R3721, R4600, and RISController are of

NTisa of Microsoft Corp

ters. Changes in the status register reflects changes in the
exception, memory management and cache organization
from R3000 architecture. The new registers are:
Exception handling: Cache error register
Xcontext register
Error EPC register
Page Mask register
EntryHi and EntryLoO,
EntryLo1 register
Index register
Random and wired registers
Cache Tag registers

Memory Management:

Cache management:

EXCEPTION PROCESSING

Besides changes in the exception model, newer excep-
tions were defined in R4x00 architecture. New exceptions are:
* Trap exception
¢ Floating point exception
* Reference to WatchHI / WatchLo address
* XTLB refill
¢ Cache error exception

Floating point errors are no longer mapped to Interrupt.
Floating points errors are reported by an exception. Also
exception vector locations has been changed. The R3000
exception vector base location for non-cache access has
been changed from 0xbfc00000 to 0xbfc00200. Along with
new exception vector base address, the location of exception
vectors with respect to the base address has been changed.

They are:
* TLB refill  0x000
o XTLB refill 0x080
» Cache error 0x100
* General 0x180

The ‘rfe’ (return from exception) instruction which is ex-
ecuted as the last instruction of exception handler has been
replaced with ‘eret’ (exception return) instruction. These
changes require major modification to the exception handling
code. Again, this does not affect the user application as this
code runs in kernel mode only.

MEMORY MANAGEMENT

In addition to 32-bit addressing mode, 64-bit addressing
mode has also been introduced in R4x00 architecture. More-
over, three levels of security have been implemented. They
are:

» User mode, for user applications

» Supervisor mode

Device T Inc.
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* Kernel mode

Each mode’s memory map can be configured as 64-bit
virtual addressing space, or 32-bit virtual addressing space.
Memory management logic maps this 32-bit or 64-bit virtual
address space to 36-bit physical address space.

R4x00 hasintegrated ‘fully associative’ TLB. Unlike R3000
which has 64 entries, R4x00 has 48 entries, each mapping a
set of odd and even pages. This effectively allows mapping of
96 pages atatime. Moreover, 256 process |Ds allows multiple
processes share the TLB without the need of flushing it at
context switch.

R3000 has fixed page size of 4kB, whereas R4x00 allows
variable page sizes, varying from 4kB to 16MB. Coherency
attributes can be set for a page which allows the selection of
cacheablity of the memory on a page by page basis.

INSTRUCTION SET ENHANCEMENT.

New instructions have been added to fully use 64-bit
architecture. Additional instructions have been added for
cache management, exception handling, 64-bit data move-
ment, and data manipulation. These additions include:

* New CACHE operation instruction which allows cache
management functions described later

« Double word load and store operations (LDL, LDR...)

* TRAP instruction for software trap exceptions.

* Double word arithmetic operations (DADDI, DADDIU...)

« Double word load and store operations to and from
floating point coprocessor.

* Exception handling ‘rfe’ instruction has been replaced
by ‘eret’ instruction.

CACHE ORGANIZATION.

Two level of caches are supported. On R4x00PC and
R4600, only primary caches are supported. The caches are
integrated on-chip and are separated as instruction and data
caches. The cache size has been increased. R4x00 architec-
ture can support maximum of 32kbytes. In case of IDT79R4400
and IDT79R4600, size is fixed to 16kbytes, both forinstruction
and data caches. Line size of the caches can be configured as
4-wide or 8-word wide. In case of R4600, line size is fixed as
32-byte.

Unlike the R3000 caches which has write-through update
policy, the R4x00 has write-back caches. Caches are Direct
map except for R4600, which has 2-way associative caches.

MODIFYING CODE

The porting of the R3000 code to R4x00 environment
needs major modification to low-level kernel code. The user
application can remain the same even though some perfor-
mance gain can be achieved by taking advantage of MIPS IlI
ISA.

IDTsim can be used as an example to explain the modifica-
tionrequired. IDT’s System Integration Managerisa ROMable
software product that permits convenient control and debug-
ging of RISC systems built around R30001SA CPUs. Facilities
are included to operate the CPU under controlled conditions,

examining and altering the contents of memory, manipulating
and controlling CPU resources. IDT/sim runs in kernel mode
and was developed originally for the R3000 environment. In
order to port the code to R4x00 platform, minimal modification
is required to the kernel and will be used as an example.

Inordertodiscuss IDT/sim, itis important tounderstand the
execution flow of IDT/sim and see which modules need
modification.

IDT’S SYSTEM INTEGRATION MANAGER
(IDT/SIM)

IDT/sim starts by executing startup code and then jumps to
the main program which runs command line interpreter.
Commands can be entered on-line to execute functions of the
monitor program.

Startup code performs several functions and then passes
the execution control to the main program. This includes
initializing caches, TLB, memory and configuring and initializ-
inginternal registers of the processors. The following diagram
graphically explains execution flow of the startup code.

Startup code

- -

initmem
config_cache
flush_cache

init_dev_tab

initialize
move_exc_code

L - pecsu_idts

init_io

init_memory

init_cmd_tab

clear_brkpts

- ——-

main
output signon message

:_ - p=imain.c

-=d

™ command line interpret r(cli)
preter(c!

| command1

1
1
!
command?2 1
]
1

L iclic

'
J
'
!
‘ commandn :
1

R

1
----Y 3109 drw 01

IDT/sim's Global Execution Flow
The startup code begins by initializing CPU registers. This

includes writing to the status register which disables the
interrupts globally.
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The next step is ‘initmem’ routine which does cache ma-
nipulation operations. Precisely, it configures and sizes the
caches, then caches are flushed. This part of the code needs
major modification as cache architecture has been completely
changed for R4x00.

STARTUP CODE OF IDT/SIM
After initializing the status register, IDT/sim determines the

size of the caches. In case of R3000, cache sizes are deter-
mined by isolating and then writing and reading different data
patterns to the caches.

In case of R4x00, cache size and line size can be deter-
mined by reading the IC and DC bits and IB and DB bits of the
status register, respectively.

D-cache organization

28 27 26 25 24 23 0
(wlw|ler] e | PTag |
oot 2 71 64 63 24 0
w’ Even parity for the write-back bit
w Write-back bit 54 -
P Even parity for the PTag and CS fields 8109 v 02
CSs Primary cache state: 0 = Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive
PTag Physical tag
DataP Even parity for the data
Figure 1
26 25 24 23 0
P 0 v PTag []
L 24 65 64 63 0
DataP Data
l-cache organization DataP Data
PTag Physical tag DataP Data !
v Valid bit DataP Data g
Data cache data
P Even parity, for PTag and V fields 2 64 3109 drw 03
DataP Even parity; 1 parity bit per byte of data
Figure 2

Caches are invalidated in R3000 architecture by isolating
and writing partial words to the them. In case of R4x00, cache
operation instructions are provided which perform operations
on caches, and when used in certain sequence, perform
cache invalidation.

Figures 1 and 2 explain the organization of R4x00 instruc-
tion and data caches. Note that both data and tag parts of the
caches are parity protected. At power-up, the states of the
parity bits and the data plus tag fields are unknown. If caches
are accessed in this state, we may get parity error and, unlike
the R3000 architecture where parity errors are treated as

cache miss, the R4x00 processor will take cache error excep-

tion. Therefore, invalidating the caches in the R4x00 architec-

ture also involves forcing good parity in both the data and tag
fields.
The invalidation involves following steps:

a) First, tags are initialized. The software first disables the
cache error exceptions by writing to the DE bit of the
status register. This is to make sure that cache error
exception does not occur while the caches are being
accessed. Then the value of zero is loaded into TagHi
and TaglLo registers and is transferred to all the entries of
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the tags (both | and D caches). This is done by issuing
‘Index store tag’' command. This forces good parity into
the tags and also clears the V and CS fields of instruction
and data cache tags, respectively. The index values are
determined by the size of the caches and the line size.
However, this operation does not initialize the W' and W
field of data cache tags.

b) Once tags have been initialized and invalidated, the next
step is to force good parity into the data part of the
caches. In the case of Instruction cache, ‘Fill_I' command
is available which allows moving data directly from the
main memory into the caches on line by line basis. This
operation brings data into the cache, and writes corre-
sponding valid parity.

c) For the case of data cache, where corresponding ‘Fill’
command is not available, different means are used to
force good parity. First, the state of the cache is changed
from ‘invalid’ to ‘dirty exclusive’ by issuing ‘Create Dirty
Exclusive’ command. Once all entries in the data cache
have been validated, known value (say zero) is stored to
all locations of the cache. This stores valid data and
forces good parity. This also sets the W' and W bits of
the tag.

Both caches are in a valid state at this point. In order to
invalidate these caches, ‘Index invalidate’ command for In-
struction cache and ‘Hit invalidate’ command for data cache
are issued. The index values are determined by cache size
and cache line size of respective caches.

The next software module of the startup code which needs
attention is ‘initialize’ routine, which is responsible for moving
exception code to the DRAM and initializing TLB. This part of
the code needs modification because, for the R4x00, some
new exceptions have been defined and the vector locations
have been changed. The code is moved using processor's
block write mode. The code is read into the internal registers
from EPROM as an uncached read, and then is stored into the
cache using the store operation. Once the code is written to

the D-cache, DRAMSs are written by issuing ‘Hit Writeback
invalidate’ cache commands.

The nextimportantfunction of the module isinitializing TLB.
For the R3000, known values are stored in EntryHi and
EntryLo registers. Then the index value of the entry is written
to index register which is then shifted by 6 bits. Atthe end, the
‘tlbwi’ instruction is issued which writes the values in the
EntryHi and EntryLo registers into the TLB entry.

TLB entries for R4x00 are different than R3000 entries.
Values are written to EntryHi, EntryLo0 and EntryLo1 regis-
ters. Page sizes are set by writing to the page mask register.
The index value is written into index register, and then the
‘tlbwi' instruction is issued. Note that in the case of the R4x00,
shifting the contents of the index register by 6 bits is not
required.

COMPATIBILITY WITH THE R4600 ORION

Atthe conclusion of this paper, itis important to discuss the
compatibility-related issues affiliated with the R4600. The
processoris software-compatible with earlier generation R4x00
architecture processors, such as R4000 and R4400. The
processor provides some additional features which enhance
the performance of existing R4x00 designs. The points to note
are:

Unlike the R4400, the R4600 has 2-way associative caches
with line size fixed to 32-bytes. Operations which uses index
values need to access set 0 by setting virtual address bit 13
equal to zero and set 1 with virtual address bit 13 equal to 1.

In addition to new cache organization, a WAIT instruction
has been added for power management.

CONCLUSIONS

This paper has presented the modifications required when
an R3000 code is ported to an R4x00 platform. Specifically,
only the kernel mode code needs modification, whereas the
user application can remain the same. The source code of
IDT/sim has been used as an example to explain minimal
modifications. This allows the design upgrade within a mini-
mal amount of time.
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INTRODUCTION

The Fast Restart feature of the IDT R4600 RISC CPU has
changed the way that databus error detection is handled. This
tech note will explain the change and describe ways to
implement robust error detection in R4600-based systems.

“FAST RESTART” IN THE R4600

When the R4600 experiences a data cache missin the data
fetch stage of the execution pipeline, a stall condition stops the
pipeline until the required data is supplied from the external
system interface. Since the R4600 uses only sub-block order-
ing for block reads, the data requested by the fetch will always
be returned in the first doubleword in the read response from
the external agent.

As discussed in the R4600 Hardware User’s Manual on
page 3-7 under “Stall Conditions”, the R4600 will resume
processing as soon as this first doubleword is returned. This
behavior is new to the R4600. The R4000 and R4400 wait until
the entire cache line is refilled before the pipeline is restarted.

BUS ERROR DETECTION IN THE R4600

The R4600 takes a bus error exception if the active-low
Good Data Indication bit, SysCmd(5), is set to 1 when the first
data element is returned in a block read response. If no error
is reported, the execution pipeline is restarted and the remain-
der of the cache line is loaded while processing continues.

If the external agent were to report an error with these later
data elements, the error could not be correctly associated with
the instruction which caused it, and a proper Bus Error
exception could not be generated. For this reason, the R4600
does not evaluate the Good Data Indication bit on data
elements after the first data element in block read responses.

ENSURING DATA INTEGRITY

Systems which implement parity on the SysADC bus

Block read response data is loaded directly into a cache
line, along with the parity from the SysADC bus. If the external
agent detects an error in the first data element in the block, it
may optionally set the Good Data Indication bit to 1 to
generate a Bus Error exception.

Ifthe Good Data Indication bit is set to 0, the Data Checking
Enable bit (SysCmd(4)) is also set to 0, and the first data
element contains a parity error (i.e., the external agent does

not signal the error to the processor), the processor will take
a Cache Error exception and indicate that the error came from
the SysAD bus by setting bit 26 of the CacheEtr register.

If any of the subsequent data elements in the block read
response contain parity errors, the bad parity will be stored in
the cache, and later accesses to them will generate a Cache
Error exception. The exception handler can examine the
CacheErr and ErrorEPC registers to determine where the
error occurred.

Systems without parity on the SysADC bus

If external logic is used to test for data errors and parity is
not passed through to the R4600, the Data Checking Enable
bit must be set to 1 during read responses. Parity will be
generated internally by the R4600, stored in the cache along
with the read response data and checked normally during
processor operation. This allows the R4600 to use parity on
the cache even if parity is not used on the external interface.

An error in the first data element in a block read response
may be signalled to the R4600 by setting the Good Data
Indication bitto 1. Errors in subsequent data elements mustbe
signalled using a different mechanism. The Non-Maskable
Interrupt (NMI) exception is recommended, since it cannot be
masked. However, it is not normally possible to continue
program execution after servicing an NML.

It would also be possible for an external agent to retry a
main memory read if a parity error is detected, and submit the
data along with the Validin* control signal only if the data is
error-free. This would add significant complexity to the state
machine. It will generally be easier to connect external parity
to the R4600 SysADC bus.

Systems without parity on main memory

In systems where parity is not provided on main memory,
the Data Checking Enable bit must be set to 1 and the Good
Data Indication bitmustbe setto 0 duringread responses. The
R4600 will generate parity internally and store the parity and
data in the primary cache. Parity will be tested each time the
cache is read, ensuring cache integrity even though the
integrity of externally supplied data is not testable.

COMMAND BUS PARITY

The R4600 does not check parity on the SysCmd bus. The
SysCmdP signal is not checked when the system interface is
in the slave state (for example, during read responses).
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INTRODUCTION

The IDT79 R4600™ (Orion™) is a true 64-bit microproces-
sor; the internal registers, data paths, and arithmetic units are
all 64-bits, and the processor directly implements various 64-
bit operations (such as arithmetic operations) as single cycle
operations.

The R4600 allows great flexibility in how this capability is
used, insuring both compatibility with 32-bit applications, and
insuring that new applications can easily take advantage of
the higher bandwidth and throughput available from 64-bit
operations. This technical note is intended to provide an
introductory look at how the Orion, and its support tools,
accomplish these objectives.

THE R4600 64-BIT ARCHITECTURE

In all respects, the R4600 is a 64-bit microprocessor.
Consider:

- The register file of the processor contains 32 64-bit wide
registers, for the most part used orthogonally by the
instruction set.

- The functional units, including logical and arithmetic
functions, multiply and divide, and memory management,
operate directly on 64-bit datums.

- The R4600 MMU manages full 64-bit virtual addresses.

- The R4600 directly moves 64-bit datums between its
internal caches and its internal execution core in a single
cycle; that is, the cache data path is 64-bits wide.
Although not strictly a pre-requisite for a “64-bit processor”,

the system interface is a 64-bit wide multiplexed address/data

bus. However, to facilitate migration of existing software, the

R4600 64-bit architecture is directly compatible with 32-bit

operations. Also note that for the R4600, memory remains

“byte addressable”. Load and store operations can specify the

operand size as 8-, 16-, 32-, or 64-bit in size.

NUMERIC COMPATIBILITY BETWEEN 32-BIT

AND 64-BIT OPERATION

The R4600 operates seamlessly with various 32-bit appli-
cations. The MIPS architecture insures this interoperability by
defining that 32-bit operations will sign extend their results to
fill 64-bit registers. Thus, using a 2's complement numeric
representation, the value of the results appearsidenticalwhen
viewed as either a 64-bit or a 32-bit value.

VIRTUAL ADDRESS MODE

In addition to being able to directly utilize 32- and/or 64-bit
numeric values, the R4600 can directly support 32-bit or 64-
bit addressing. The mechanisms provided allow varying OS
and applications strategies, including 32- or 64-bit applica-
tions running on a 64-bit operating system. To facilitate this

operation, the R4600 offers two virtual addressing modes:

- 32-bit virtual addressing mode. In this case, all virtual
addresses are considered to be 32-bit values. This
affects the operation of the address translation unit {the
MMU), and also affects the selection of the TLB excep-
tion vectors. Specifically, virtual addresses whose upper
32-bits are not equal to all “0” or all “1” are considered
invalid addresses and will cause an address error.

- 32-bit virtual addressing mode is only available to user
and supervisor tasks: the kernel always executes in 64-
bit virtual addressing mode. This mode is selected via
the UX (user mode)} and SX (supervisor mode) bits of the
CPO status register.

When operating in 32-bit virtual addressing mode:

- 64-bit operations (the MIPS-3 instruction set) are invalid.
This prevents software from generating pointer values
larger than 32-bits.

- the “Regular” TLB refill exception vector is used. By
separating the 32-bit and 64-bit vector locations, the OS
is able to quickly perform software TLB refill without
worrying about the operating mode of the task.

- physical addresses remain 36-bit.

As noted above, the kernel always operates in 64-bit virtual
addressing mode. However, the R4600 does support an
operating bit (KX) which enables the kernel to use the “regu-
lar’, rather than extended, TLB refill exception vector. This
was originally provided to enable existing R3000 OS and
compiler support to be migrated cleanly to the R4xxx architec-
ture; this bit may be used to implement operating systems
which only provide mapping support for 32-bit virtual ad-
dresses.

- 64-bit virtual addressing mode. In this case, all virtual
addresses are considered to be 64-bit values (Note,
however, that the Orion only maps 40 bits of the 64-bit
address space. Mappable virtual addresses whose
upper 24-bits are not all “0” or all “1” are considered
invalid). In 64-bit virtual addressing mode:

- 64-bit operations (the MIPS-3 instruction set) are avail-
able.

- the “Extended” TLB refill exception vector is used.

- Physical addresses remain 36-bit.

COMPILER SWITCHES
Most R4600 compilers offer similar flexibility in their treat-

ment of 64-bit vs. 32-bit data. For example, IDT/C™ offers
switches to selectively manage:

- whether the MIPS-3 instruction set extensions will be
generated by the compiler (compatible with the choice of
UX/SX described above).

- the treatment of datum size by the compiler. For ex-

The IDT fogo is a registered trademark and R4600, Orion, and IDT/C are trademarks of Integrated Device Technology, Inc.
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ample, depending on switches selected, integers could
be 32-bit or 64-bit values, and types such as “long” can
be defined to be the appropriate width.

The IDT/c compiler supports various switches, including
the following:

- MIPS-3 switch. If this switch is activated, the compiler will
generate MIPS-3 instructions where appropriate. In this
case, the full register width of the integer and CPU units
is used (64-bits); types “int” and “long” are 32-bits;
addresses or pointers are 32-bits; and the type “long
long” specifies a 64-bit datum.

- mlong64. This switch (used with “mips3”) makes all
“long” variables and pointers 64-bits, but integers remain
32-bits.

- mint64. This switch makes all variables of type “int”",
“long”, and “long long" to be 64-bits, and activates the “-
mlong64” switch automatically.

With this flexibility, the programmer can implement a vari-
ety of schemes, including applications which use 32-bit point-
ers referencing 64-bit datums; 64-bit pointers and datums; 32-
bit pointers and datums, etc. This capability enables systems
to take advantage of the bandwidth available from the 64-bit
processor without rewriting the entire application (and using
up memory resources).

SUMMARY

The R4600 is a true 64-bit microprocessor. However, the
processor architects have implemented it in a fashion that
allows 32-bit applications to readily take advantage of the
100+ MIPS capability of the device, without forcing compli-
cated changes to the application or the operating system.
Although the Orion does NOT implement a “32-bit mode”, the
use of 32-bit virtual addressing mode, along with the tech-
nique of sign-extending 32-bit values so that they are compat-
ible with 64-bit operation, allows software to readily take
advantage of the performance available in the Orion.
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INTRODUCTION

The IDT79R4600™ Orion™ RISC microprocessor is a full
64-bit architecture that brings desktop-like performance at a
fraction of the price. It is pin-compatible with its predecessor
the R4400PC™ and uses the same instruction set. It provides
complete upward application-software compatibility with the
IDT RISController™ family. The R4600 maximizes the perfor-
mance by implementing large on-chip two-way set associa-
tive caches, a five stage pipeline with fewer stalls and an early
restart mechanism for cache refills during data cache misses.

This Technical Note addresses the initialization of both the
instruction and data caches. It includes the basic assembly
code needed to do this task and also addresses any issues
pertaining to cache initialization.

THE R4600 CACHES

The R4600 contains two 16KByte caches, one for instruc-
tions and the other for data. Both caches are two-way set
associative with 8 word (32-byte) line sizes. The caches are
virtually indexed (part of the virtual address is used to index
into the cache array) and physically tagged (the tag in the
array is compared with the physical address to determine a hit
or miss).

ORGANIZATION OF THE PRIMARY INSTRUC-
TION CACHE (I-CACHE)

Each line of primary |-cache data (although it is actually an
instruction, it is referred to as data to distinguish it from its tag)
has an associated 28-bit tag that contains a 24-bit physical
address, a single valid bit, a reserved bit, a single parity bitand
the FIFO replacementbit. Word parity is used on |-cache data.

Figure 1 shows the format of a primary I-cache line.

27 262524 23 0
HERIN PTag
11 11 24 65 64 63
DataP Data
DataP Data
DataP Data
DataP Data
2 64
3127 draw 01
PTag Physical tag (bits 35:12 of the physical address)
\' Valid bit
F FIFO Replacement Bit. Complemented on refill.
P Even parity for the PTag and V fields
DataP  Even parity; 1 parity bit per 32-bit word of data
Data  Cache data

Figure 1: Instruction Cache Line Format

ORGANIZATION OF THE PRIMARY DATA

CACHE (D-CACHE)
29 28 27 26 25 2423
[Flwiw|p] cs | PTag
T111 2 24
716463 9

64 3127 drw 02

Figure 2: Data Cache Line Format

F FIFO Replacement Bit
w’ Even parity for the write-back bit
w Write-back bit (set if cache line has been written)
P Even parity for the PTag and CS fields
CS Primary cache state:
0 = Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive
PTag Physical tag (bits 35:12 of the physical address)
DataP  Even parity for the data; 1-bit per byte
Data  Cache data

Each line of primary D-cache data has an associated 30-
bit tag that contains a 24-bit physical address, 2-bit cache line
state, a write-back bit, a parity bit for the physical address and
cache state fields, a parity bit for the write-back bit and the
FIFO replacement bit.

Figure 2 shows the format of a primary D-cache line.

CACHE INITIALIZATION

CACHE STATE DURING RESET

The contents of the primary caches are undefined at the
end of the reset sequence. Not only are the tags in an
undefined state but the data arrays are also undefined. Itis
therefore necessary to properly initialize both the TAG and
Data arrays before the caches are used. Properly initialized
means: 1) there is valid parity, tag data and array data and 2)
the tag is in the invalid state. This task is further complicated
by the 2-way set associativity of the caches in that the system
designer must make sure that both sets are initialized cor-
rectly.

This was the reason that the CACHE instruction was
defined. It allows the kernel to perform the tasks of cache
initialization and maintenance. There are two basic types of
CACHE instructions: indexed and hit. The indexed operations
use part of the virtual address to specify a particular cache
block (VA [12:5]) and VA[13] to specify a particular set. The
“hit" operation accesses the specified cache as normal data

Device T , Inc.
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references and performs the specified operation if the cache
block contains valid data with the specified physical address (a
hit). If both sets are invalid or contain different addresses(a
miss), no operation is performed.

PRIMARY DATA CACHE INITIALIZATION

ltis in general much simpler to test the data cache than the
instruction cache. One reason for this is that if the data cache
read fails, the program can still continue where as an instruc-
tion cache failure can resultin the program getting lost and not
finding its way back to the correct code. The TagHiand TagLo
registers are used for managing the tags. The format for the
Taglo and TagHi registers is shown in figure 3.

31 87 65 321 0
Taglo | PTaglLo [Pstate] RWNT] F] o] P]
24 2 3 111
31
TagHi | 0
—
2
Field  Description 127 drw 03
PTaglo Specifies the physical address bits 35:12
PState Specifies the primary cache state
P Specifies the primary tag even parity bit
F The FIFO bit used to implement FIFO refill of the cache
RWNT Read/Write bits required for Windows NT
0 Reserved. Must be written as 0; returns 0 when read

Figure 3: TagHi and TagLo Format

The basic procedure to initialize the data cache is to first
turn off error checking (if not already off). Next, use the TaglLo
and TagHi registers along with the CACHE instruction to place
the known good tag into the array (rememberto get both sets).
Setthe TaglLo and TagHi both to zero. Next, the base address
and loop counter are setup. The base addressis where known
good (initialized) data is loaded from and the loop counter is
anindicator of when the procedureisfinished. Now, invalidate
all the tags using the Index_Store_Tag CACHE instruction
(again on both sets). Next, place known good data into the
data array using a load word instruction (because both sets
are now invalid, the resultis block reads from memory for each
load). Finally, re-invalidate the tags.

Example code is shown in Table 1.

li r2, 0x8000_0000  /* Setup base address*/

li 25, 255 /* Setup loop counter to # lines*/

mtcO0 10, CO_TAGLO /*Setup Taglo to invalidate tags */
2

cache 0x9, 0x0(a0) /* Index Store Tag - Set0 */

cache 0x9, 0x2000(a0) /* Index Store Tag - Set1 */

Iw 10, 0x0(r2)
lw 0, 0x2000(r2)
cache 0x9, 0x0(a0)

I* clear dirty bits and set data and parity */
/* to known good values */
/* Index Store Tag - Set0 */

cache 0x9, 0x2000(a0) /* Index Store Tag - Set1 */
addu r2, 0x20 /* increment address pointer */
bgtz 25, ib /* see if loop done */

addi 25, -1 /" decrement loop counter */

Table 1: Data Cache Initialization

PRIMARY INSTRUCTION CACHE
INITIALIZATION

The primary Instruction cache is initialized in a similar
manner. Because there is no way for a load to place data into
the I-cache data array directly, a CACHE operation is provided
("FILL_I") to allow for data to be placed in the I-cache data
array from memory.

The basic procedure to initialize the I-cache is to first turn
off error checking (if not already off). Next, use the Tagl.o and
TagHiregisters along with the CACHE instruction to place the
known good tags into the array (remember to get both sets).
Setthe TaglLo and TagHibothto zero. Next, the base address
and loop counter are initialized. The base address is where
known good (initialized) data will be loaded from and the loop
counter indicates when the procedure is done. Now, invali-
date all the tags using the Index_Store_Tag CACHE instruc-
tion (again on both sets). Next, place known good datainto the
data array using FILL_I CACHE instruction (because both
sets are now invalid, the result is block reads from memory for
each FILL_| instruction). Finally, re-invalidate the tags.

Example code is shown in Table 2.

mtcO 10, CO_TAGLO /* Setup Taglo to invalidate */

i r2, 0x8000_0000  /* Setup base address */

li 25, 255 /* setup loop counter to # lines*/
2

cache 0x8, 0x00(r2) /* Index Store Tag, Set0 */

cache 0x8, 0x2000(r2) /* Index Store Tag, Set1 */

cache O0x14, 0x00(r2) [* fill Icache data from memory */

cache 0x14, 0x2000(r2)  /* fill Icache data from memory */

cache 0x8, 0x0(a0) /* Index Store Tag - Set0 */

cache 0x8, 0x2000(a0) /* Index Store Tag - Set1 */

addu r2, 0x20 /* increment address pointer */

bgtz 25, 1b I* see if loop done */

addi  r25, -1 /* decrement loop counter */

Table 2: Instruction Cache Initialization

CONCLUSION

The R4600 is a high-performance CPU and achieves this
through several methods, one is using 2-way set associative
caches. The use of set associative cache adds some steps to
the initialization of the cache but help is provided with the
CACHE instructions. Also, to avoid problems, one must make
sure that the caches are correctly initialized in both the tag and
the data arrays with valid data in the tag, parity and data array
and that the state of the line is set to invalid.
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INTRODUCTION

The IDT79R4600™ Orion™ RISC microprocessor is a full
64-bit architecture that brings non-desktop performance ata
fraction of the price. Itincorporates advanced power manage-
ment techniques to lower the peak and typical power con-
sumptions. It features an impressive performance at a rela-
tively low power with about 35 SPECint92/Watt. With its low
power and high performance, the R4600 supports a large
base of processor applications, including 32-bit Windows™
NT desktop or notebook systems. It is well suited for a
multitude of embedded applications including laser printers,
color printers, color X-terminals, routers, data communica-
tions, disk arrays and set-top cable boxes.

The R4600 is pin compatible with its predecessor the
R4400PC™ and uses the same instruction set. It provides
complete upward application-software compatibility with the
IDT RISController™ family. The R4600 maximizes the perfor-
mance by implementing large on-chip two-way set associa-
tive caches, afive stage pipeline with fewer stalls and an early
restart mechanism for cache refills during data cache misses.
The power saving isimplemented through an intelligent power
management scheme which turns-off the power from the
currently unused sections of the part. A standby mode is also
available through software control which shuts down the
internal clocks and freezes the pipeline, thus reducing the
consumed power drastically.

This Technical Note addresses the differences between
the R4600 and the R4400PC. It mainly highlights the subtle
differences that might cause system incompatibilities when
swapping the two parts.

NOT AN R4400PC CLONE

The IDT R4600 is a independent design that implements
the MIPS-lIl Instruction Set Architecture (ISA). It is not an
R4400PC clone; itdoesn't use the R4400PC design data base
or internal architecture. It is a complete new design that
implements majorinternal architectural differences to achieve
higher performance over the R4400PC with a smaller die area
and a lowerpower consumption. It also implements additional
bus interface protocols to speed the main memory interface
and improve the overall performance of the system. The core
of the R4600 is fully static and implements several power
management techniques to reduce the overall system power
consumption. The integer and the floating-point execution
units of the R4600 share some of the internal resources ( such
as the multiplier and the divider) to reduce the die size and the
power requirements.

The R4600 is designed to maintain full compatibility (hard-
ware and software) with the R4400PC but with a better

execution engine and bus interface protocol to enhance the
overall system performance.

COMPATIBILITY WITH THE R4400PC

The R4600 is plug, pin and software compatible with the
R4400PC. This compatibility is guaranteed for systems that
are designed to the specifications of the R4400PC data sheet
("Within-Specs"). For such systems, the R4600 is a one-to-
one replacement of the R4400PC. Software applications
should execute without modifications and the hardware plat-
form should be used as is. However, even for systems
designed "Within-Specs®, there are some differences be-
tween the R4600 and the R4400PC that the system designer
and/or the code developer must be aware off. These differ-
ences are well documented in the data sheet of the R4600.
These differences are mainly due to the different
microarchitecture of the two devices, their implementation
and their behavior.

In systems that violate the R4400PC or the R4600 data
sheet specifications ("Outside-Specs"), the behavior of the
two parts might be (and most of the time will be) completely
different. For example, systems which rely on empirical obser-
vations of the R4400PC behavior might not run properly with
an R4600. These situations create serious systems incompat-
ibilities for the system designers and/or the code developer.

DIFFERENCES "WITHIN-SPECS"

The differences "Within-Specs" between the two parts are
primarily due to the different microarchitectures. All these
"Within-Specs" differences are well documented in the data
sheet of the R4600. These differences are not considered
"bugs” and will not be modified. Systems that are designed to
support both parts interchangeably must take these differ-
ences into account. The hardware platform has to be de-
signed in a way to take advantage of the additional bus
capabilities of the R4600 for example. Similarly, the software
applications have to be able to take advantage of the two-way
set associative primary caches and a shorter pipeline. With
these differences inmind, it is possible to design systems that
support both parts seamlessly.

Architecture

There are several architectural differences between the
R4600 and the R4400PC. These architectural differences
enable the R4600 to improve the overall system performance
by 20% to 30% compared to R4400PC based systems. The
internal architectural differences include different implemen-
tation of the primary caches, the pipeline, the Co-Processor
0 and the Co-Processor 1. These implementations allow the
R4600 to achieve a higher performance on the same applica-

The IDT Logo Is a registered trademark and RISController and R4400, R4600, and Orion are trademarks of Integrated Device Technology, Inc.
The MIPS is a registered trademark and R3000 and MIPS-111 are trademarks of MIPS Computer Systems, Inc.

Windows is a rﬁlslered trademark of Microsoft Corporation.
—

194



R4600™/R4400™ "OUTSIDE-SPECS" DIFFERENCES

TECHNICAL NOTE TN-23

tions. Furthermore, the R4600 bus interface unit is designed
to maximize the bus utilization through the added bus write
protocols. These new protocols increase the overall system
performance without relying on re-compilation.

Implementation

Thereare very few differences (betweenthe R4600 and the
R4400PC) in the implementation of the MIPS-IIl ISA set.
Mainly, the R4600 conforms to the MIPS specifications re-
garding the timing hazards when accessing some of the Co-
processor 0 registers.

Behavior

The R4600 matches the behavior of the R4400PC even
when this behavior is different from the published MIPS
architectural specifications.

DIFFERENCES "OUTSIDE-SPECS"

The R4600 is not an R4400PC clone. The internal logic of
the R4600 is completely different from that of the R4400PC.
This is mainly due to the differences in the microarchitecture
between the two parts and the added bus protocols on the
R4600. This means that outside the specifications of the data
sheet ("Outside_Specs") of both parts, the behavior of the
R4600 can be completely different from that of the R4400PC.
This different behavior might cause serious systems incom-
patibilities when swapping the two parts. Systems designers
must be very careful not to violate the data sheet specifica-
tions of either part to ensure total compatibility and avoid
unpleasant surprises.

Definition of "Outside-Specs"

The definition of "Outside-Specs” refers mostly to the
violations of the data sheet specifications of the R4600 or the
R4400PC. The most common cases are the violation of the
setup and/or hold time of the data or control signals. Another
common one is the misinterpretation of the timing diagrams.
There are other more subtle violations that might be harder to
detect. For example asserting the control signals to the CPU
(such as ~ValidIn) for more than the required time can cause
the state machine of the bus interface unit to lose synchroni-
zation. Further, any "between-the-lines" interpretation of the
R4400PC or the R4600 data sheets can also become a
violation of the specs. This list is not all inclusive and should
be used aguideline to possible violations or misinterpretations
of the data sheets of either part.

Why different behavior?

The internal logic of the two parts is completely different
because of the architectural differences between them. Such
architectural differences include different primary caches,
pipeline, Co-Processor 0 and Co-Processor 1. Mainly, the
two-way set-associative primary caches, support for data
streaming, and the five stage pipeline on the R4600 require a
total different set of internal logic and state machine. Further,
the additional bus write protocols, such as pipeline write and

write re-issue require more internal logic than the bus inter-
face unit of the R4400PC.

The two parts will, most probably, react differently to
erroneous stimulus and to violations of the data sheet speci-
fications. The scope of the reaction of each part is not
guaranteed and depends on the internal state of the logic.

The internal logic architecture of the R4600 is designed to
be compatible with the specifications of the R4400PC data
sheet but will respond differently to deviations from these
specifications.

First Symptoms

The very first symptoms appear when the two parts are
swapped in a system and the system doesn't work. This
usually indicates a "Within-Specs" incompatibility rather than
an "Outside_Specs" one. Such problems are usually easily
traced to improper S/W initialization of the internal register or
caches. Similarly, incorrect reset vectors or the wrong usage
of any part can cause this type of problems. These problems
are easily fixed when using the proper initialization sequence
or the proper reset vector and so on.

On the other hand, "Outside-Specs" prablems are much
harder to trace, to determine and to solve. They are usually
very time consuming and very frustrating. The usual scenario
is that the system works fine with either CPU. However, the
system might crash from time to time when using one partand
not the other. Most of the time this is a clear indication that
there is a data sheet violation somewhere in the system. It
could be hardware or software. This behavior of the system is
in line with the expectation that two parts will respond differ-
ently to erroneous stimulus. One part could cope perfectly with
violation of the specs while the internal state machine of the
other is being driven to an unknown, undefined or undesired
state. Such problems are the hardest to find and usually
require additional searching and experimenting to be re-
solved.

CONCLUSION

The R4600 is plug and software compatible with the
R4400PC "Within-Specs". However, even "Within-Specs",
there are some differences that are well documented in the
data sheet of the R4600 and the errata of the different
revisions of the device. These differences are mainly in the
microarchitecture of the part. System designers and software
developers mustbe aware off these differences and take them
into considerations when designing systems that will support
both parts. These differences are not considered "bugs" and
will not be modified.

Onthe otherhand, if the specifications of the data sheetare
violated, the behavior of the two parts will be different, creating
incompatibilities when swapping the two parts. System de-
signers and software developers must avoid violating the
specs to ensure a proper design and minimize the time
discovering the incompatible modes between the two parts.
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SUMMARY:

Designing in highly integrated, high clock rate microprocessors such as the R4600 requires careful consideration of thermal
management. To ease this burden IDT utilizes an integral heat slug technology in its pin grid array packages. This heat slug
is made of thermally conductive material such as CuW which is embedded into the ceramic base of the package. In the process
of selecting a heat sink, designers should be aware of some of the constraints associated with industry standard PGA's to avoid
potential mechanical problems while affixing heat sinks to the integral slug.

Heat slug is at Vcc potential:

The Integral heat sink used in 179, 161, and 447 PGA packages allows maximum heat transfer (minimum theta jc) from
the back of the die to the external surface of the heat sink. This puts the heat slug at Vcc potential which must be taken into
consideration when selecting external finned heat sinks and EMI shields.

Clips and EMI shields can damage package edge:

Industry standard ceramic package construction techniques used by leading package vendors for electrolytic nickel and
gold plating of internal traces leaves microscopically fine pattern of electrically active metallic contacts on all four edges of the
ceramic package body. Sufficient abrasion of the package edges can result in unintentional electrical connection between the
internal traces of the package and any metallic material touching the package edge; thus, the use of a metallic clip to attach
an external heat sink to the package or a heat sink design that contacts the edges of the package is not recommended and
must be taken into consideration for heat sink selection and attachment method.

Recommendation:

Avoid use of heatsink clips or EMI shields which contact the PGA package edge. Consult your heatsink vendor about the
proper heat sink for you application.
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ORION™ SYSAD OUTPUT
TIMING ISSUES

TECHNICAL
NOTE
TN-26

by Robert Napaa

INTRODUCTION

The IDT Orion™ Family of 64-bit microprocessors supports
a wide variety of processor-based applications, including 32-
bit Windows NT desktop or notebook systems and embedded
systems. The Orion™ family includes several members such
as the R4600, the R4700, and the R4650. New products are
continuously under development and introduced regularly.

This Technical Note focuses on the SysAD output timing
parameters for the Orion™ family which appear in the "AC
Electrical Characteristics System Interface Parameters" tables
in the data sheets for these products.

BACKGROUND

The data sheets for the different devices in the Orion™
Family listthe systeminterface AC parameters in the "System
Interface Parameters" table. This table lists the AC param-
etersthat specify the outputtiming for the datamovementfrom
the CPU to the external memory (t,,, and ). It also lists the
AC parameters that specify the input timing for the data
movement from the main memory tothe CPU (t andt,,). The
t,s Parameter specifies the minimum data setup time that the
system must guarantee before the rising edge of SClock for
the CPU to sample the input data properly. Similarly, the t,,
parameter specifies the minimum data hold time that the
system must guarantee after the rising edge of SClock to
ensure that the CPU sampled the input data properly.

I

DATA OUTPUT TIMING PARAMETERS

There are two parameters, t,,, and t_, that specify the AC
parameters for the output signals (address and data) provided
by the CPU.

Definition

The output signals (address and data) from the CPU
become stable a minimum of t,,,ns and a maximum of t, ns
afterthe rising edge of the Clock (the SClockin the case of the
R4600/R4700 and the MasterClock in the case of the R4650).
This drive-time is the sum of the maximum delay through the
processor output drivers together with the maximum clock-to-
Q delay of the processor output registers.

tDO

t,, specifies the maximum time it takes for the data issued
from the CPU to reach valid signal levels (1.5V) after the rising
edge of the Clock (SClock in the R4600/R4700 case and
MasterClock in the R4650 case). During that time frame, the
external system should not sample these lines because the
voltage levels might chane before the final levels are reached.
The t, parameter is specified by the maximum values in the
"System Interface Parameters' table. The two values listed
provide a range that corresponds to the levels of the output
drivers strength programmed during the boot sequence of the
CPU. Figure 1 illustrates the t,, parameter.

SCLock [
(R4600/R4700)Master
Clock (R4650) |

|

TCLock(Or Equivalent)~/|_—\_—/_—\-—
|

RCLock(Or Equivalent) /w
I

SysAD |

>< DATA

| ——
tDM

3209 drw 01

Figure 1. The t,, Parameter

The IDT Logo is a registered trademark and RISController, R3051 and Orion are trademarks of Integrated Device Technology, Inc.
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t

DM

tou SPecifies the minimum time it takes for the data issued
from the CPU to reach valid voltage levels (1.5V) after the
rising edge of the Clock (SClock in the R4600/R4700 case and
MasterClock in the R4650 case). During that time frame, the
voltage levels on these data lines might change before the
final levels are reached. The t,,, parameter is specified by the
minimum values in the "System Interface Parameters" table.
The two values listed provide a range that corresponds to the
levels of the output drivers strength programmed during the
boot sequence of the CPU. Figure 2 illustrates the t,, param-
eter.

The t,,,, parameter should not be considered as data hold
time from the CPU (there is no parameter that specifies the
data hold time from the CPU to the system). The t,,, parameter
specifies when the voltage levels have stabilized notwhenthe
CPU starts changing the data. This actually implies that the
CPU could start changing the data earlier than the t,, value.

Data Sheet Testing

The devices are tested to data sheet specifications prior to
shipment. On the tester, only the t,, parameter is measured
and characterized for both the minimum and maximum val-
ues. The t,, parameter is not measured and is only guaran-
teed by design.

Practical Considerations

For system designers, the parameter that should be taken
into consideration is t,, which specifies the maximum time
before the data is valid from the CPU. The t ,, parameter in
reality should not be used, since it specifies only the minimum
time it might take the data to become valid. The t,,, parameter
should not be used as the data hold time from the CPU.

When using the R4600/R4700 processors, the RClock
should be used to sample the output signals from the proces-
sor. The RClock is leading SClock by 25% and thus offers the
neccessary hold time for the external logic. When using the
R4650 a similar clock to the RClock should be generated form
the input clock distribution tree to sample the processor output
signals. A detail explanation on this topic is available in the
Application Note titled "Adapting an R4600 design to the
R4650".

CONCLUSION

The "System Interface Parameters" tables in the data
sheets for the Orion™ Family of microprocessors provide the
necessary AC parameters for the interface with the CPU. The
t,s and t,,, parameters specify the timing for the data move-
ment from the system into the CPU. The t,,, and t,, param-
eters specify the data movement from the CPU to the system.
The t,, parameter specifies the maximum time for the data to
become valid while the t,,, parameter specifies the minimum
time. The t,, parameter should not be treated as the data hold
time from the CPU.

SCLock
(R4600/R4700)Master
Clock (R4650)
TCLock(Or
Equivalent)

|

|

RCLock(Or [

Equivalent) |

I
Sys |
AD

DATA

3209 drw 02

tDO

Figure 2. The t,, Parameter
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by Andrew Ng

INTRODUCTION

The IDT79R3051™ RISController™ is a highly integrated,
high-performance MIPS™ R3000™ instruction set compat-
ible CPU that minimizes system cost and power consumption
across a wide variety of embedded applications. The R3051
includes 4kB - 8kB of instruction cache, 2kB of data cache,
4-deep read and write buffers, on-chip DMA arbitration, a
simple external bus interface, as well as the core R3000A
execution engine — all in a single chip 84-pin package.
However, in today’s marketplace, the technical features of a
microprocessor are not enough to guarantee a successful
product. A new CPU such as the R3051 must also have a
large base of software applications, and very importantly,
adequate hardware and software development and debug
tools. The R3051 family already has a large base of software
applications and a large set of development tools because of
its R3000A instruction setcompatibility and also because of its
widespread market acceptance. The use of just one of these
tools, the IDT7RS364 Disassembler for the HP16500 Logic
Analyzer will be explained here.

THE IDT7RS364 DISASSEMBLER AND THE
HP16500 LOGIC ANALYZER

The IDT7RS364 Disassembler for the HP16500 Logic
Analyzer is a useful tool meant to ease the task of debugging
software run on R3000-based Target System Boards. Logic
analyzers are inexpensive, general purpose debug tools
which do not have the power of in-circuit emulators to actively
control and simulate target system CPU and memory
behavior. However, logic analyzers do provide a useful
subset of in-circuit emulator debug capabilities by allowing an
engineer to observe and analyze the digital circuit behavior of
the target system.

The IDT7RS364 Disassembler consists of a software pack-
age that when loaded into the HP16500, pre-processes and
formats the state trace listings ofthe Logic Analyzer. As shown
in Figure 1, the HP16500 allows the engineer to capture the
CPU’s executed hex/binary machine opcodes in a typical
Logic Analyzer State Trace Listing format. The user can set
multilevel trace traps to capture the area of interest. As shown
in Figure 2, with the addition of the IDT7RS364 Disassembler,
the hex machine opcodes are automatically decoded and
displayed in R3000 assembly code level mnemonic format.
Thus the readability and usefuiness of the state trace list
display screen of the Logic Analyzer are greatly improved.

(state/Timing E ) (Listing 1)

(Cinvasm ) C Print )( Run )

Label>) [ ADDR |[ DATA || STAT |[ Time |

Base> | Hex H Hex H Hex J| Absolute |
-6 1FC00000 0BF00088 0010 0 s
-5 1FC00004 00000000 0010 760 ns
-4 1FC00220 3C020010 0010 1.52 us
-3 1FC00224 40826000 0010 2.24 us
-2 1FC00228 40806800 0010 3.00 us
-1 1FC0022C 3C02A000 0010 3.76 us
0 1FC00230 3CO8AAAA 0010 4.52 us
1 1FC00234 35085555 0010 5.24 us
2 1FC00238 AC480000 0010 6.00 us
3 1FC0023C AC400004 0010 6.76 us
4 00000000  AAAAS555 0000 7.40 us
5 1FC00240 8C490000 0010 7.88 us
6 00000004 00000000 0000 8.52 us
7 1FC00244 00000000 0010 9.00 us
8 00000000 AAAA5555 0010 9.64 us
9 1FC00248 11280003 0010 10.32 us

2883 drw 01

Figure 1. R3051 Address/Data Trace List on a Logic Analyzer
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((State/Timing E ) (Listing 1) (Cinvasm ) (C_Print )( Run )
Off

Label>) | APDR || R3000 Mnemonic [| sTAT |[ Time |

Base> | [ Hex |[ hex ||_Hex | [ Absolute |
-6 1FC00000  J 0x1FC00220 0010 0 s
-5 1FC00004 NOP 0010 760 ns
-4 1FC00220  LUI v0,0x0010 0010 1.52 us
-3 1FC00224  MTCO vO,$12 0010 2.24 us
-2 1FC00228  MTCO zero, $13 0010 3.00 us
-1 1FC0022C LUI v0,0xA000 0010 3.76 us
0 1FC00230  LUI tO0,O0xAAAA 0010 4.52 us
1 1FC00234 ORI tO0,t0,0x5555 0010 5.24 us
2 1FC00238 SW t0,0x0000(v0) 0010 6.00 us
3 1FC0023C SW zero, 0x0004 (v0) 0010 6.76 us
4 00000000 STORE DATA OxAAAAS555 0000 7.40 us
5 1FC00240 LW t1,0x0000(v0} 0010 7.88 us
6 00000004  STORE DATA 0x00000000 0000 8.52 us
7 1FC00244  NOP 0010 9.00 us
8 00000000  LOAD DATA OxAAAA5555 0010 9.64 us
9 1FC00248 B 0x1FC00258 0010 10.32 us
2883 drw 02

Figure 2. R3051 Instruction Disassembly on the HP16500 Logic Analyzer

Clk2xIn, Reset 3 Diag(1:0)
R L EHESHIEA
| A/D(31:0) | FCT373T A(31:4), BE(3:0)
- >1 LATCH v
ALE > |
int(5:3), §Int(2:0) e
———=
SBrCond(3:2) R3051 MEMORY
RISController FCTE23T SYSTEM
BrCond(1:0) 1 o| TRANS- | D(31:0)
CEIVER
BusError »
—'—_‘» Lot |
RACEN, Ack Rd, Wr, BurstiWrNear, DataEn, Addr(3:2), SysClk
——
BusReq ) BusGnt
EEE——

2883 drw 03

Figure 3. Typical R3051 System
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Connecting the R3051 to the HP16500 Pod Sets

Before the Disassembler can be used, the correct connec-
tions between the R3051 and the HP16500 must be made.
The Disassembler requires five 16-channel probe pod sets.
The Disassembler expects that the Pod Probe connections
follow its interface protocol so that the pre-processing can
correctly interpret the address, data, and status lines. The
Disassembler typically uses 32 Address lines, 32 Data lines,
a Read line, and a' Write line.

In the typical R3051 system as shown in Figure 3, the
R3051’s Rd outputis used as the read line and the R3051’'s Wr
output is used as the write line. The Disassembler uses the
read and write signals as clocks to strobe the address and
datainto the Logic Analyzer. Since the top speed of the State
traces on the HP16500 is 35 MHz and the fastest possible
memory cycle is 2 clocks, the Disassembler can easily sup-
port 40 MHz R3051 CPUs and has a theoretical limitation of
70 MHz.

The Address lines can be gathered from the Address Latch
outputs and Addr(3:2). Not all 32 address lines need to be
attached, as the user can format the address line’s MSB
channel probes to not show up in the state trace listing if
desired. In such a case, the user can use the extra channel
probes for other purposes.

In general, Data lines can be gathered from the A/D bus.
Some systems, with only one set of Data Transceivers, can
gather the data from the memory side of the Data Transceivers
in order to reduce A/D bus loading. The R3051 connections to
the five HP16500 Channel Probe Pod sets are listed in Table 1.

The Disassembler has three status lines, Write, AccTyp(2)
and AccTyp(0). The R3051’s Wr output can be used as the
write line so that the Disassembler can distinguish between a
read and a write cycle. AccTyp(2) and AccTyp(0) are optional
connections for cached code andingeneral should be grounded
or at least left unconnected. The optional use of AccTyp(2)

Table 1. R3051 Default Pod Connections on the HP16500 Logic Analyzer

NOTES:
1. Master Clock Format: JT + MT

POD 5 POD 4 POD 3 POD 2 POD 1

chan sig chan sig chan sig chan sig chan sig
15 X 15 A/D(31) 15 A/D(15) 15 A(31) 15 A(15)
14 X 14 A/D(30) 14 AD(14) 14 A(30) 14 A(14)
13 X 13 A/D(29) 13 A/D(13) 13 A(29) 13 A(13)
12 Gnd 12 A/D(28) 12 A/D(12) 12 A(28) 12 A(12)
1 X 11 AD(27) 11 AD(11) 11 A(27) 1" A(11)
10 Note 2 10 A/D(26) 10 A/D(10) 10 A(26) 10 A(10)
9 X 9 A/D(25) 9 A/D(9) 9 A(25) 9 A(9)
8 X 8 A/D(24) 8 A/D(8) 8 A(24) 8 A(8)
7 X 7 A/D(23) 7 AD(7) 7 A(23) 7 A?)
6 X 6 A/D(22) 6 A/D(6) 6 A(22) 6 A(6)
5 X 5 A/D(21) 5 A/D(5) 5 A(21) 5 A(5)
4 Wr 4 A/D(20) 4 A/D(4) 4 A(20) 4 A(4)
3 X 3 A/D(19) 3 A/D(3) 3 A(19) 3 Addr(3)
2 X 2 A/D(18) 2 AD(2) 2 A(18) 2 Addr(2)
1 X 1 A/D(17) 1 A/D(1) 1 A(17) 1 Gnd
] X 0 A/D(16) 0 A/D(0) 0 A(16) 0 Gnd

NClk MClk Rd LCIk KClk JClk Wr

2883 tbl 01

2. POD5(12)is AccTyp(2) and POD5{10) is AccTyp(0). If AccTyp(2) is grounded then AccTyp(0) is not used by the Disassembler and can be used for other

purposes. See text for further explanation.

3. A(31:4) are connected to the Address Latch outputs. The rest of the signals are connected to R3051 outputs. X's denote unused probes that can be

assigned by the user.
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and AccTyp(0) will be explained in more detail in the Cached
Code/Data section. The 16-channel status pod has 13 un-
used channels that can be used to display other signals, e.g.,
the Byte Enables.

To a limited extent, the default ordering of the channe! probe
connections can be changed by the user. The relative ordering
ofthe bits must still occur from MSB to LSB for the address/data/
status bus labels such that the Pod Number and Channel
Numbers go from MSB to LSB. An example of reformatting the
Pod interface is shown in Table 2 and Figure 4. The example
in Table 2 and Figure 4 also demonstrates the use of the
HP16500’s demultiplexed clock feature. When using the
demultiplexed clock, the address and data lines can use the
same probes. This allows both the address and data to be taken
from the multiplexed A/D(31:0) bus. The address is slave-

clocked with ALE and the data is master-clocked with Wr or
Rd. When using two clocks, only the 8 LSB probes on each pod
can be used since the channels are internally multiplexed by the
HP16500. Demultiplexed clocking is limited to 50 nsec master
to slave clock recovery, which limits its use to 256 MHz CPU
systems.

The HP16500 allows an extensive number of multi-level
traps and triggers so that the code trace forthe area of interest
can be found. Care should be taken when setting up trigger
conditions. Sometimes when in the trace/trigger menu, the
Disassembler format in the data field trigger condition can
conceal a trap condition. Changing the Disassembler format
temporarily to hex formatwhile inthe trigger menu can prevent
such confusion.

NOTES:

1. Master Clock Format: JT+MT

2. Slave Clock Format: K&

Table 2. Example of Reformatted Pod Connections

POD 5 POD 4 POD 3 POD 2 POD 1
chan sig chan sig chan sig chan sig chan sig
15 15 15 15 15 X
14 14 14 14 14 X
13 13 13 13 13 X
12 12 12 12 12 Gnd
11 1 11 11 11 X
10 10 10 10 10 Note 3
9 9 9 9 9 X
8 8 8 8 8 X
7 A/D(31) 7 A/D(23) 7 A/D(15) 7 A/D(7) 7 X
6 A/D(30) 6 A/D(22) 6 A/D(14) 6 A/D(6) 6 X
5 A/D(29) 5 A/D(21) 5 A/D(13) 5 A/D(5) 5 X
4 A/D(28) 4 A/D(20) 4 A/D(12) 4 A/D(4) 4 wr
3 A/D(27) 3. A/D(19) 3 A/D(11) 3 A/D(3) 3 Addr(3)
2 A/D(26) 2 A/D(18) 2 A/D(10) 2 A/D(2) 2 Addr(2)
1 A/D(25) 1 A/D(17) 1 A/D(9) 1 A/D(1) 1 Gnd
0 A/D(24) 0 A/D(16) 0 A/D(8) 0 A/D(0) 0 Gnd
NCIk MClk Rd LClk KClk ALE JClk Wr
2883 th! 02

3. POD5(12)is AccTyp(2) and POD5(10) is AccTyp(0). If AccTyp(2) is grounded then AccTyp(0) is not used by the Disassembler and can be used for other

purposes. See text for further explanation.

4. On Master/Slave Pods, only the 8 LSB probes are actually connected. E.g., A/D(23:16) is connected to Pod4(7:0).
5

. X's denote unused probes that can be assigned by the user.
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State/Timing Format

Master Clock Slave Clock

gT+m? K

Pods Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Master | Slave Master | Slave Master | Slave Master | Slave Clock
Label 7 ... 07 .... 0 ceel 07 Ll 7 ....07 ....0 7 ....07 .... 0 7 ....07 ....0
ADDR  ........ Fhakkkkk L., HhEEIAKE e EhAKKKKKE e ol ol
DATA REKERRER o veen ok aldo il S FRAKKIKAN .. oo
STAT tc it ieervseasoss  sessssossosansss  sasssossssosnsss  seesessseesssanas Hk KKk kK Kk Kk K Kk

2883 drw 04

Figure 4. Example of Reformatted Pod Format

When Running with Cached Code/Data

All Logic Analyzers and Disassemblers can only capture
external CPU memory accesses. Since the R3051 is capable
of running code and accessingdata inits internal caches, such
accesses are not seen by the external memory system. Thus
in order for the Disassembler to accurately reflect the com-
plete instruction/data flow, the R3051 must be run uncached.

As the target system becomes more and more functional,
itbecomes necessary to begin running cached code and data.
Running cached code/data will affect the Disassemblers
accuracy in the following ways:

Cached Instructions —

1. Instruction fetch i-cache hits are not seen.

2. Only the last word of a cachable 4-word burst instruction
i-cache miss will be seen.

Cached Data Loads —

1. Data load d-cache hits are not seen.

2. Only the last word of a cachable 4-word data block refill
d-cache miss will be seen.

3. If the load instruction was an i-cache hit (not seen) then
the associated data fetch if seen will be listed as an
instruction. The data fetch is assumed to be the second
(due to pipelining) read cycle after the load instruction.

Cached Data Stores —

1. Data stores are handled correctly, since the R3051
maintains a write-through cache policy which ALWAYS
updates main memory as well as the d-cache.

2. Because the R3051 has a 4-word deep write buffer, a
data store may or may not occur on the second (due to
pipelining) memory cycle following its instruction fetch.
Multiple stores are always handled in the proper FIFO
order, but each store may be interspersed with later
instruction fetches.

Other than running the software uncached, the following
less intrusive methods may be used to help interpret cached
code/data:

1. Use the R3051’s testability mode to invoke the Force I-
Cache Miss Mode. This will put all instruction fetches
onto the external main memory interface so that the logic
analyzer can see all of them. However, forced i-cache -
misses may or may not be 4-word burst reads.

In general, 4-word burst reads can be displayed properly
if a more complex read strobe is formatted:

J clock: Ack == LOW
M clock: RdCEn == LOW
N clock: SysClk == positive edge triggered

The HP16500 OR's level conditions together, OR’s edge
conditions together and AND’s level conditions with edge
conditions. Thus the above strobe clocks the state
when:

(8ySCIK == #) AND [ (AcK == 0) OR (RACEn == 0) ]

This example clock setup is only applicable to systems
that happen to bring Ack low at the same time RdCEn is
low on 4-word burst reads or don’t bring Ack low on 4-
word burst reads. Also 1/2 clock margin on the memory
read access time is necessary in this example. Thus
depending on the particular system design, variants of
RdCERn, Ack, and SysClk can be combined or tempo-
rarily modified to create a 4-word read strobe and a write
strobe.

2. Latch the R3051’s Diag(1:0) outputs with ALE. On
external main memory reads, if LatchedDiag(1) == 1
then the fetch is cachable and can be used as an
indication that the state trace entry should be interpreted
judiciously. When LatchedDiag(1) == 1, LatchedDiag(0)
== 1 indicates a cachable instruction fetch and
LatchedDiag(0) == 0 indicates a cachable data load.

203




USING THE IDT79R3051™ WITH THE HP16500 LOGIC ANALYZER

APPLICATION NOTE AN-93

LatchedDiag(1:0) are the R3051's equivalents of the
R3000's AccTyp(2) and AccTyp(0). As such they can be
connected to the Disassembler’s AccTyp(2) and

AccTyp(0) probes. This allows the Disassembler to
differentiate between cached instructions and data so 3. Use the Reset Mode Vector to set the R3051 to use

that they can be displayed properly. However,
AccTyp(2) and Diag(1) are undefined for writes, e.g.,

when the write buffer is full or on partial word stores. So misses
if the AccTyp(2) probe is used, in order for the

Diag(1) ———— P or

Diag(0) ——————»

ALE —J)

R3051 Outputs

Disassembler to interpret write cycles correctly,
LatchedDiag(1) needs to be AND’ed with Wr as shown in
Figure 5, so that it is always low during write cycles.

single word data refills instead of 4-word data block
refills. This will allow all 4 words on a data load d-cache

to be seen.

FCT373 | pdcache

\

D—> AccTyp(2)

FCT841

LATCH

> AccTyp(0)

Logic Analyzer Probes

2883 drw 05

Figure 5. Using Diag(1:0) with the Disassembler

(State/Timing E ) (Listing 1)

Markers
Off

(Invasm ) ( Print ) Run

Label>) | DATA |[ ADDR ]| cCLkN |[ BAWRRA || ALE |[ WRNRDN |
Base> | Hex || Hex || Hex |[ Binay |[ Binay ][ Binary |

274 8C490000 4 1 111110 0 11

275 8C490000 Q 0 111110 0 11

276 00000000 4 1 110111 1 01

277 00000000 4 0 110110 0 01

278 00000000 4 1 110110 0 01

279 00000000 4 0 110110 0 01

280 00000000 4 1 110110 0 01

281 00000000 4 0 110110 0 01

282 00000000 4 1 110110 0 01

283 00000000 4 0 110110 [+] 01

284 00000000 4 1 110110 0 01

285 00000000 4 0 100110 0 01

286 00000000 4 1 100110 0 01

287 00000000 4 0 111110 0 11

288 1FC00240 4 1 111101 1 10

289 1FC00240 4 0 111100 0 10

2883 drw 06

Figure 6. R3051 State Trace Listing using Clk2xIn
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Clk2xIn

—

—

Addr&BE Data Input

Word Address

X

SysClk
ALE ___/—\
A/D(31:0)
Addr(3:2) ~ X ‘
m N P

N/

2883 drw 07

Figure 7. Choosing a Clock Edge

Using State Trace Listings and
Timing Waveforms

The IDT7RS364 Disassembler is a good tool for easing the
use of a Logic Analyzer when debugging a target system.
However, sometimes, even lower level detail is needed to
examine clock by clock behavior of particular bus cycles. The
HP16500 performs this function in its State Analyzer mode by
sampling with the CPU'’s system clock as shown in Figure 6.
Because the state analyzer mode has amaximum speed of 35
MHz, certain restrictions apply. Ideally because the R3051
uses both edges of its SysCIk output to generate control lines,
it is preferable to use Clk2xIn or to clock on both edges of
either SysClk or its buffered/inverted version SysClk. On the
HP 16500, high speed clocks should always use their ground
shield on the probe to reference the input properly so that the
probe does not sense signal overdrive. The edge of the
reference clock should be chosen carefully so that it ideally
clocks just before ALE de-asserts as shown in Figure 7. This
allows the address to be seen along with the data on the
multiplexed A/D bus so that dedicated address lines probes
are notrequired. When choosingaclock, keep inmindthatthe
HP16500 has 10 nsec setup time and 1 nsec hold time relative
to the clock. In addition, the HP16500's Time Tagging feature
if used is limited to 16.67 MHz.

Systems running with a Clk2xIn over 35 MHz (17.5 MHz
CPU)caneither clock the State Analyzer mode less frequently
or use the Timing Analyzer mode. When clocking less
frequently, care must be taken to chose a clock edge that
adequately strobes ALE during its high period so that the
address can be determined. Because the R3051 only has a
1/2 clock intercycle memory latency, Rd and Wr and other
control lines may not be seen to de-assert between memory
cycles when clocked at the SysCik frequency.

The HP16500 Logic Analyzer's Timing mode displays
signals in waveform format as shown in Figure 8 and is
capable of internally generatinga 100 MHz (10 nsec) sample
clock. To maintain all the functional timing relationships
relative to the Clk2xIn, the timing mode allows asynchronous
sampling up to 50 MHz CPU speed. The disadvantage of
using the Timing mode is that the value of busses is hard to
decipher when shown in waveform format. If necessary,
HP16500 can be set up in its mixed mode display to display
both state and timing modes on the same screen.
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(State/Timing E ) (Waveform 1)

Accumulate
Off

[ sample period = 10.000 ns |

s/Div Delay
200 ns J \3.060 us

Markers
Off

CLKN
ALE

!

WRNRDN 0

i E—

ACKS 0

L

WRNRDN 1

ACKS 1

BAWRRA 5

AD al| ]

1]

11 I

2883 drw 08

Figure 8. R3051 Timing Mode Waveform

SUMMARY

The use of the HP16500 and the IDT7RS364 Disassembler
is but one example of the availability and compatibility of
R3000 tools and software thatcan be used on the R3051. The
Disassembler formats logic analyzer state traces into assem-
bly level mnemonics to allow easier user interpretation.

Similarly, other R3000 software, compilers, as well as other
developmenttools such asthe IDT7RS901 IDT/sim ROMable
Kernel/Boot Monitor can also be used on R3051 systems with
little or no modification.
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USING THE IDT79R3051™ AND
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Supplement to Application Note AN-93

APPLICATION
NOTE
AN-111

By Gary Szilagyi

INTRODUCTION

In Application 'Note-93, the use of IDT's 7RS364
disassembler with the HP16500 Logic Analyzer for the
IDT79R3051™ RISController™ family of CPUs was dis-
cussed in detail. However, the original versions of the
disassembler were form-fitted for the R3000 CPU interface of
a 32-bit non-multiplexed bus design. In order to accommodate
the high level of integration on-board the R3051, including the
4kB-8KkB of instruction cache, 2kB of data cache, 4-deep read
and write buffers and the R3000A execution engine—all in a
single 84-pin package, the 32-bit bus required multiplexing
address and data pins. Although the original versions of the
disassembler remain compatible with the new family of IDT's
RISControllers, an effort was made to simplify the interface
between R3051 and the disassemblerto accommodate simple
triggering schemes, as well as future IDT embedded control-
lers that continue in the path of the R3051 family.

THE IDT7RS364 DISASSEMBLER AND THE
IDTR3051

The IDT7RS364 Disassembler consists of a software pack-
age that greatly eases the task of debugging software on the
IDTR3051 family of CPUs. The HP16500 allows the capture
of executed hex/binary machine opcodes in a typical Logic

( State/T imin@ (Listing D

Markers
Off

Analyzer State Trace Listing format with the ability to decode
and display the acquisitions in the R3000 assembly code
mnemonic format, as seen in Figure 1. Thus, the engineer
does not have to resort to look-up tables, and can effectively
determine the exact processor state for easy software debug-
ging.

The original versions of the disassembler were form-fitted
to the R3000 CPU interface. Although the derivative products
of the IDT R3051 family are compatible, the RD and WR
signals used for data acquisitions by the disassembler pack-
age causes some confusion during a high-speed burst read.
Asdiscussed in Application Note AN-93, the work-around was
to create a more complex read strobe in order to capture a
four- word burst read by setting up a trigger mechanismon the
HP16500 that looks like: [(SysClk ==T ) AND [(ACK == 0) OR
RDCEN == 0)]. However, this is only applicable to systems
that bring the ACK signal LOW at precisely the same time the
RDCEN is LOW, or that don't bring it LOW at all during a four
word burst read. If, for instance, the ACK signal triggered in
the phase between two successive RDCENS, a duplicated
capture would occur. The disassembler was modified a
second time to remedy this situation. In a read cycle, the RD
pin will be asserted LOW for the entire cycle and the RDCEN
signal toggles to successfully pass each of the four words
across the bus. The newest version of the disassembler

m/asm)(Print )( Run )

Label>) [ ADDR || R3000 Mnemonic [| sTaT || Time |
Base> ) [ Hex || hex || Hex || Absolute |
-6 1FC00000 J 0x1FC00220 0010 0 s
-5 1FC00004 NOP 0010 760 ns
-4 1FC00220 LUI v0,0x0010 0010 1.52 us
-3 1FC00224 MTCO v0,$12 0010 2.24 us
-2 1FC00228 MTCO zero,$13 0010 3.00 us
-1 1FC0022C LUI v0,0xA000 0010 3.76 us
0 1FC00230 LUI t0,O0xAAAA 0010 4.52 us
1 1FC00234 ORI t0,t0,0x5555 0010 5.24 us
2 1FC00238 SW t0,0x0000(v0) 0010 6.00 us
3 1FC0023C SW zero, 0x0004 (v0) 0010 6.76 us
4 00000000 STORE DATA OxAAAAS5555 0000 7.40 us
5 1FC00240 LW t1,0x0000(v0) 0010 7.88 us
6 00000004 STORE DATA 0x00000000 0000 8.52 us
7 1FC00244 NOP 0010 9.00 us
8 00000000 LOAD DATA 0xAAAA5555 0010 9.64 us
9 1FC00248 B 0x1FC00258 0010 10.32 us

Figure 1. R3051 Address/Data Trace List on a Logic Analyzer

The IDT Logo is a registered trademark and RISController, IDT79R3051 and IDT79R3081 are

of Device Ti Inc.

All others are trademarks of their respective companies.
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begins "LOAD" captures noton RD, butrather uponthe RDCEN.
Forinterleaved memory systems thatdo nottoggle the RDCEN
pin, please refer to section "Hazards" for more details. During
a write cycle, it triggers upon the rising edge (from LOW-to-
HIGH) of the WR signal. Thus, the newest revision of the
disassembler now expects the RDCEN and the WR signals as
clocks to strobe the address and data into the HP16500, as
well as the WR, DIAG_1 and DIAG_0 to verify and decode the
processor status

INTERFACING THE HP16500 TO THE '385
EVALUATION BOARD

In order to insure proper operation of the disassembler, the
correct interface between the R305x target system and the
HP16500 must be available. The disassembler requires a
particular pinout setup on the logic analyzer's five 16-channel
probe pod sets. The interface protocol must be followed for
correct interpretation of the address, data, and status lines by
the pre-processor. Table 1 displays the default pod connec-
tions that the HP16500 expects (same setup for the 7RS385
evaluation board). This information is stored on disk in the
configuration file "DIS_305x_E". When loaded, this file not
only loads the disassembler, but also all the state and timing

information, including the default pod connections expected
at the system interface.

Application Note-93 discusses in detail the interface be-
tween typical R305x based systems and the logic analyzer.
Rather than repeat that discussion, the interface between the
7RS385 Evaluation board and the disassembler requires
some elaboration. For instance, the '385 Hardware User's
Manual shows the connections to be made from the board's
five 20-pin logic analyzer sockets and the logic analyzer's five,
16-channelpods. Note however thatin section 2-5 of the '385
Hardware User's Manual, the connections on the status pod
(pod#5) are incorrect. In order to be consistent with the
protocol of the disassembler, some of the pins need to be
connected as follows:

* WR (J12 pin #17) needs to be on pod #5 channel #4
* RDCEN (J12 pin #14) needs to be on pod #5 channel #5

The disassembleralso requires status lines for determining
processor status: WR, RDCEN, DIAG_1, and DIAG_0. The
WR signal distinguishes between read and write cycles. The
RDCEN pin is used to identify a false trigger for applications
that assert the RDCEN signal during writes. In order to avoid
a duplicate capture, the RDCEN signal is polled to determine
if it was the cause of the acquisition. If it was, then a trigger-

Table 1. R3051 Default Pod Connections on the HP16500 Logic Analyzer

POD 5 POD 4 POD 3 POD 2 POD 1

chan sig chan sig chan sig chan sig chan sig
15 X 15 A/D(31) 15 A/D(15) 15 A(31) 15 A(15)
14 X 14 A/D(30) 14 A/D(14) 14 A(30) 14 A(14)
13 X 13 A/D(29) 13 A/D(13) 13 A(29) 13 A(13)
12 Diag_1@ 12 A/D(28) 12 A/D(12) 12 A(28) 12 A(12)
11 X 11 AD(27) 11 A/D(11) 11 A(27) 11 A(11)
10 Diag_0 10 A/D(26) 10 A/D(10) 10 A(26) 10 A(10)
9 X 9 A/D(25) 9 A/D(9) 9 A(25) 9 A(9)
8 X 8 A/D(24) 8 A/D(8) 8 A(24) 8 A(8)
7 X 7 A/D(23) 7 A/D(7) 7 A(23) 7 A7)
6 X 6 A/D(22) 6 A/D(6) 6 A(22) 6 A(6)
5 RDCEN 5 A/D(21) 5 A/D(5) 5 A(21) 5 A(5)
4 WR 4 A/D(20) 4 A/D(4) 4 A(20) 4 A(4)
3 X 3 A/D(19) 3 A/D(3) 3 A(19) 3 Addr(3)
2 X 2 A/D(18) 2 A/D(2) 2 A(18) 2 Addr(2)
1 X 1 A/D(17) 1 A/D(1) 1 A(17) 1 BEN(1)
0 X 0 A/D(16) 0 A/D(0) 0 A(16) 0 BEN(2)

NCIk WR MCIk RDCEN LClk KClk JClk

NOTES:

1. Master Clock Format: NT + MT (default for the 7RS385 Evaluation Board setup)

2. POD5(12)is Diag_1 and POD5(10)is Diag_0 (Diag pins are not latched on the 7RS385 Eval Board) . If running uncached, then Diag_1 MUST be grounded

(GND), and Diag_0 is not used by disassembler.

3. A(31:4) are connected to the Address Latch outputs. The rest of the signals are connected to R3051 outputs. X's denote unused probes that can be

assigned by the user.

208




USING THE IDT79R3051™ AND IDT79R3081™ WITH THE HP16500 L.LOGIC ANALYZER

APPLICATION NOTE AN-111

error message, “T.E”, and the store instruction along with the
write data on the bus is displayed (e.g. "T.E. (STORE
Oxxxxxxxxx)). The diagnostic pin DIAG_1 distinguishes if the
external memory read was cacheable, and if so, determines
with DIAG_O if it was an instruction or data read. Note that for
the newest IDT embedded controller, the R3081, DIAG_1 is
defined during writes, yielding cache information for “STORE”
instructions. A second version of the disassembler,
“DIS_3081", exploits this feature for external cache support.
By defining the DIAG_1 pin during writes, the CPU will signal
whether the data being written was retained in the on-chip
data cache. Keep in mind that the DIAG_O pin remains
undefined during write cycles. This information is extremely
helpful to the programmer to determine the processor's state
when tracing through the software.

The diagnostic pins on the '385 board are NOT LATCHED,
and therefore are time-multiplexed pins. Thus, the user must
either latch these pins with an external latch as seen in Figure
2 or proper decoding of cached code, or connect both diag-
nostic pins to GND. Although the disassembler is capable of
interpreting the bus transactions of cached code, keep in mind
that all logic analyzers and disassemblers can only capture
external CPU memory accesses. The R3051 has large
internal caches, and is capable of running much of its code
from within. In order for the disassembler to accurately reflect
the entire instruction/data flow, the R3051 must be ran
uncached. For more information regarding running cached
code and data, please refer to Application Note AN-93 for a
complete discussion.

LOADING AND RUNNING THE
DISASSEMBLER

Included in the software package are two files. The firstis
the disassembler application "DIS_305x". The second is the
setup file, "DIS_305x_E", containing all the state and timing
information required by the disassembler, as well as the
assigned pod connections expected by the HP16500 for the
R305x target system.

After the HP operating system boots up completely, the
system configuration screen as shown in Figure 3 should be
displayed. To load the disassembler into the HP16500, the
following steps must be taken:

1. Insert the disassembler diskette into the front disk drive.

2. Select the “Configuration” field as shown in Figure 3. A
pop-up menu with options will appear. Choose the “Front
Disk” under the pop-up menu.

3. A new screen will appear that looks like Figure 4. Select
the “Load” and “State/Timing” fields, and load in the
configuration file “Dis_305x_E” by selecting “Execute” as
shown in Figure 4.

The HP16500 will then load the disassembler, as well as all
the state andtiming information and the expected pin-configu-
ration as shown in Table 1 previously. Once the disassembler
application and setup files are loaded into the HP, the logic
analyzer is ready to set trace conditions for data acquisition.

Wr
Latched
FCT373
DIAG_ o RdCache, DIAG_t
FCT841
DIAG_O0 > » Latched
LATCH DIAG_0
AE —

R3051 Outputs

Logic Analyzer Probes

Figure 2. R3051 Address/Data Trace List on a Logic Analyzer

Configuration )

(spen )

GET—

Master Frame

A| PATTERN GEN

B

C

D

g| STATEMMING
N —

[ HP-IB ]
RS-232C

Figure 3. HP16500 Screen Display

( System ) GcmDisk )

( Load ) ( Stateﬂ'iming_@

Filename File Type File Description
DIS_3051 inverse_assm R305x Inverse Assembler
DIS_3051_E 16510B_config R305x Config file

Figure 4. HP16500 Load Screen Display

209




USING THE IDT79R3051™ AND IDT79R3081™ WITH THE HP16500 LOGIC ANALYZER

APPLICATION NOTE AN-111

With the application files loaded, the disassembler is al-
most ready to be triggered by the target system. Follow the
steps below that describe how to run and trigger the
disassembler package:

1. Select the “System” field as shown in Figure 4. A pop-up
menu will appear with the option of “State/Timing”. Choose
this field to enter the state and timing mode of acquisition.

. Anew window will appear thatis shown in Figure 5. Under
the “Configuration” menu lies options that allow the user to
set display or change the current configuration of the
interface, clocks, and pod connections.

3. Trigger the HP16500.

C State/Timing E) CCOnfiguralion )
Analyzer 1 Analyzer 2
=
Type: off
e - Unassigned Pods
— = —

Figure 5. HP16500 State/Timing Mode Display

((State/Timing E ) (Listing 1)

Markers
Off

Once triggered, the logic analyzer will begin its acquisition,
and go directly to the “Listing” field. The addresses and
disassembled data will be displayed. Note however that the
displayed disassembly may be incorrect. This is due to an
"unsynchronized" system. The captured data needs to be
synchronized with the logic analyzer's display to insure cor-
rect disassembly of the bus. The problem of unsynchronized
captures arises due to the incomplete status of the processor
state for data loads. As a result, when an instruction fetch is
scrolled to the top of the screen, and a load data is displayed,
butthe corresponding load instruction was "cut off" or scrolled
off the screen, the disassembler software looses it reference
point by which it identifies the load data. As a result, the load
data may be decoded incorrectly as an instruction as seen in
Figure 6. Notice in this Figure the instruction on line -2. Itwas
disassembled as aninstructioninstead of as a data load. Also
notice the address of the instruction in the sequence of the four
word fetch to main memory. This is an unsynchronized
display because the correspondingload instruction was scrolled
off the top of the display, and due to the way the disassembler
interprets and tags the load datas, the reference point was
lost. As a result, the load data was interpreted and decoded
as an instruction. As shownin Figure 7, the correctly synchro-
nized system has the load instruction displayed at the top of
the screen (identified by its address), and the load data is
interpreted correctly.

(tnvasm ) ( Print )(C Run )

Label>) [ ADDR || R3000 Mnemonic | [ STAT || Time |
Base> ) [ Hex || hex 1| Hex || Absolute |
-3 1FC00224 NOP 0010 2.24 us
-2 1FC00228 SRL t4,zero,t8 0010 3.00 us
-1 1FC0022C NOP 0010 3.76 us
0 1FC00230 J 0X1FC084F0 0010 4.52 us
1 1FC00234 NOP 0010 5.24 us
2 1FC00238 LW v0,0x0000(s0) 0010 6.00 us
3 1FC0023C NOP 0010 6.76 us
4 00000000 STORE DATA OxAARA5555 0000 7.40 us
5 1FC00240 LW t1,0x0000(v0) 0010 7.88 us
6 00000004 STORE DATA 0x00000000 0000 8.52 us
7 1FC00244 NOP 0010 9.00 us
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us
9 1FC00248 B 0x1FC00258 0010 10.32 us

Figure 6. Incorrectly Synchronized Capture (Note line -2)
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(‘State/Timing E ) (Listing 1) (invasm ) C Print )(C Run )

Markers
Off

Label>) | ADDR || R3000Mnemonic | [ sTAT |[ Time |

Base> | [ Hex || hex || Hex | [ Absolute |
-4 1FC00220 LW v0,0x0008(s0) 0010 2.24 us
-3 1FC00224 NOP 0010 2.24 us
-2 1FC00228 LOAD DATA 0x12620003 0010 3.00 us
-1 1FC0022C NOP 0010 3.76 us
0 1FC00230 J 0X1FC084F0 0010 4.52 us
1 1FC00234 NOP 0010 5.24 us
2 1FC00238 LW v0,0x0000(s0) 0010 6.00 us
3 1FC0023C NOP 0010 6.76 us
4 00000000 STORE DATA OxAAAA5555 0000 7.40 us
5 1FC00240 LW t1,0x0000(v0) 0010 7.88 us
6 00000004 STORE DATA 0x00000000 0000 8.52 us
7 1FC00244 NOP 0010 9.00 us
8 00000000 LOAD DATA 0xAAAAS5555 0010 9.64 us
9 1FC00248 B 0x1FC00258 0010 10.32 us

Figure 7. Correctly Synchronized Capture (Note line -2)

RD ADDR(2) | x
ADDR(2) X

RD 0 0 1

RD ——o0
0 1 0
1 0 0 NOTE: Signal will remain low while
1 1 0 notin aread cycle

1 1 TRIGGER needs to be double transition

to capture all four words
00 o1 00 01 P

Figure 8. Simulated RDCEN signal

STORE

WR —
| If Ay < 10ns, a Trigger Error will

occur (data will be diplayed), and
the STORE will be missed.

L=

by
Figure 9. RDCEN Asserted during STORE
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Rd
RDCEN

Trigger

Wr
ACK

Figure 10. Simple Trigger Logic

To synchronize the system and to insure valid results, the
following steps must be taken:

1. Identify the first instruction fetch by its address, not its
displayed mnemonic, of the captured data and scroli this
line to the top of the screen display.

2. At the top of the HP16500 screen is the field “lvasm”.
Select this, and the currently displayed capture will be
synchronized.

3. Alwaysmake sure that each new capture, orajump ahead
in the analyzer's buffer memory is re-synchronized prop-
erly or erroneous data might be displayed. The same
appliesforany move backwards for any displayed capture.

HAZARDS

For interleaved memory systems that do not toggle the
RDCEN four times, but rather keep it asserted, the only data
to be captured during quad-word reads will be the last word of
the transfer. In orderto fix this, the user might wish to simulate
a RDCEN strobe during the quad-word read by utilizing the
lower order address pins Addr(3:2). This can be accom-
plished by gating the Addr(2) pin of this 2-bit bus with the RD
signal from the CPU. Whenever the next word in the se-

quence comes across the bus during a read cycle, the
transition from LOW-to-HIGH, or HIGH-to-LOW will begin an
acquisition, and thus simulate the strobbing of RDCEN. Note
however, the trigger transition on the HP must be set to both
rising and falling transitions as seen in Figure 8.

Anotherhazardto be cautious aboutis if the RDCEN comes
at precisely, or within a 10ns window (Ay) of the rising edge of
the WRsignal. If so, then this would be regarded as aninvalid
write with a trigger error (T.E) ocurring and the dataonthe bus
atthe time of the invalid capture will be displayed. Inthis case,
the capture on the rising edge of write will be missed and the
data displayed with the T.E. is the valid capture as shown in
Figure 9. During any case thata RDCEN comes in on a write
cycle, a T.E. will occur.

Finally, a feature in HW that would be extremely useful for
triggeringis a specified trigger signal for the HP logic analyzer
that would distinguish between the status of reads and writes
triggered by ACK. The trigger would simply be established by
gating the read and write signals and ORing the results as
shown in Figure 10. This should eliminate any trigger edge
problems associated with simple data acquisitions forinverse
assembly.

SUMMARY

The use ofthe HP16500 and the IDT7RS364 Disassembler
helps to ease the task of software development and debug-
ging on the R305x and the R3081. The disassembler formats
logic analyzer state traces into assembly level mnemonics to
allow easier user interpretation. It is one of the many useful
development tools already available for IDT's MIPS R3000
compatatible CPUs. Similarly, other R3000 software, compil-
ers, aswellas other developmenttools such as the IDT7RS901
IDT/sim ROMable Kernel/Boot Monitor can also be used on
R3051 and R3081 systems with little or no modification.
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INTRODUCTION

IDT/C™ is a development package which contains a cross
compiler, optimizing scheduler, cross assembler, linker, and
downloader. Itisintended for cross-development with an IDT
RISController™ as the target architecture. The 'C' compileris
compliant with ANSI 'C' standard and performs the optimiza-
tions available in state of the art 'C' compilers. In version 5.0
the assembler is compatible with files written for the MIPS.
The assembler supports the R30xx machine instructions and
architecture described in the book by Gerry Kane, "MIPS
RISC architecture." The cross compiler package runs on a
variety of host machines and operating systems and is part of
IDT's Cross Development System tools which includes other
packages such as IDT/SIM™, a debug monitor and diagnostic
tool; and IDT/KIT™, a set of run time supportlibraries in source
form to enable quick implementation of embedded applica-
tions. This application note describes the binary utilities of the
IDT/C toolchain.

Archive (gar):

The gar program creates, modifies, and extracts from
archives. Anarchiveis asinglefile holding a collection of other
files in a structure that makes it possible to retrieve the original
individual files. Archive files are libraries of files which are
typically used for the link process. Files are created by a
compilerinto aformatknown as the object formatandcanthen
be stored as members in an archive file. These members are
then used by the link editor to generate a final executable
code. The gar command is a powerful command that creates
and manipulates archive libraries. These libraries can help
user organize development effort and control the generation
of executables.

usage: gar [-] switches[mod [relpos]] archive

]

switches must be one of the following operations:

[member

d  Delete modules from archive. Specify the names of
modules to be deleted as member... to delete.

m  move member in an archive. You can use the 'a’, 'b’,
or 'I' modifiers to move them to specified place. If no
modifiers are used with m, the member... will be
moved to the end of the archive.

p  Print the specified members of the archive to the
standard output file. If there are no member
arguments, all the files in the archive are printed.

q  Quick append. Add files member... to the end of
archive, without checking for replacement.

r Insert files member... into archive with replacement.

By default, new members are added at the end of the
file; you can use modifiers ‘a', 'b', 'i' to request place
ment relative to some existing member.

t Display a table listing the contents of archive, or those
of the files listed in member... that are present in the
archive.

x  Extract members from the archive. !f you do not
specify a member, all files in the archive are
extracted.

A number of modifiers (mod) may immediately follow
the switches keyletter, to specify variations on an
operation's behavior:

a  Add new files after an existing member(relpos) of the
archive.

b  Add new files before an existing member (relpos) of
the archive.

¢ Create the archive.

i Add new files before an existing member (relpos)of
the archive. Same as 'b".

o  Preserve the original dates of the members when
extracting them. Otherwise it is stamped with the time
of extraction.

s  Write an object file index into the archive, or update
an existing one.

u Insert only those of the files you list that are newer
than existing members of the same names. This
modifier is allowed only for the operation 'r'. i.e. 'gar -
ru'...

usage: gar-M [ < script file |

Ifyou use the single command-line option '-M' with gar, you
can control its operation with a rudimentary command lan-
guage. This form of gar operates interactively if standard input
is coming directly from a terminal.

Here are the commands you can use in gar scripts, orwhen
using gar interactively.

ADDLIB archive (module, module, ...module)

Add all the contents of archive (or, if specified, each named
module from archive) to the current archive. Requires
prior use of OPEN or CREATE.

ADDMOD member, member, ...member

Add each named member as a module in the current
archive. Requires prior use of OPEN or CREATE.

CLEAR

Discard the contents of the current archive, canceling the
effect of any operations since the last SAVE.

CREATE archive

Creates an archive, and makes it the current archive. The
new archive is not actually saved as archive until you use
SAVE.

The IDT logo is a registered trademark and IDT/C, 1DT/SIM, and IDT/KIT and RISController are trademarks of Integrated Device Technology, Inc.
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DELETE module, module, ...module

Delete each listed module from the current archive. Re-
quires prior use of OPEN or CREATE.

END

Exit from gar. This command does not save the output file.

EXTRACT module, module, ...module

Extract each module from the current archive. Requires
prior use of OPEN or CREATE.

LIST

Display full contents of the current archive. Requires prior
use of OPEN or CREATE.

OPEN archive

Opens an existing archive for use as the current archive.

REPLACE module, module, ...module

In the current archive, replace each existing module from
files in the current working directory.

SAVE

Commit your changes to the current archive, and actually
save it as a file with the name specified in the last CRE-
ATE or OPEN command.

Example of usage of gar:

add.c:
int Add(int a,

{

int «¢;

int b)

c =a + b;
return c;

}

sub.c:

int Sub{int a,
{

int c;

int b)

c=a-b
return c
}

mult.c:

~ w

int Mult (int a,
{

int c;

int b)

c =a * b;
return c;

}

div.c:

int Div(int a, int b)
{

int c¢;

c=a/b;
return c;

}
Sample C code:

#define SIZE 50
int a[SIZE] [SIZE],
c[SIZE] [SIZE];

b[SIZE] [SIZE],

main()
{
int i, j, k;
for (i = 0; i < SIZE; i++)
for (j = 0; j < SIZE; j++)
afil[j] = bIil[j] = 7:

printf("Beginning Matrix Multiplication.

< SIZE; i++)
0; j < SIZE; j++)

cl{il(jl = 0;
for (k = 0; k < SIZE; k++)
c[il[j] = Add(c[il(jl,
Mult(aljl[k]l, blkl[31));
}
printf("DONE Matrix Multiplication.
}

\n");

Makefile:

LIBRARY = libmylib

EXEC = main

LIBOBJS = add.o sub.o mult.o div.o
SREC = $§(EXEC).srec

all: $(LIBRARY).a $(EXEC) $(SREC)
$(SREC): $(EXEC)

objcopy -0 srec $(EXEC) $(SREC)
$(LIBRARY).a: $(LIBOBJS)

gar -rc $(LIBRARY).a $(LIBOBJS)

gnm $(LIBRARY).a > $(LIBRARY).nm

$(EXEC): main.o idt_csu.o $(LIBRARY).a
gcc -nostdinc -nostdlib -g -msoft-float
-I/IDTC -L/IDTC -Ttext 80020000 -o main
idt_csu.o main.o \
-lmylib =-1lkil ~lc ~-1lm -llnk -lgcc
gsize -x $(EXEC) > $(EXEC).size
objdump -d $(EXEC) > §(EXEC).dis

.c.o:
gce -nostdinc -g -msoft-float -c -I/IDTC
$*.c
.S.0:
gcc -nostdinc -g -msoft-float -
xassembler-with-cpp -c¢ -I/IDTC §*.S
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add.o:
00000000 T Add
00000000 t Add
gar -rc libmylib.a add.o sub.o mult.o 00000000 t __gnu_compiled_c
div.o 00000000 t gcc2_compiled.
This creates a library called libmylib.a
containing the files add.o sub.o mult.o sub.o:
and div.o 00000000 T Sub
00000000 t Sub
gar -t libmylib.a 00000000 t __gnu_compiled_c
Comes back with: 00000000 t gcc2_compiled.
add.o
sub.o mult.o:
mult.o . 00000000 T Mult
div.o 00000000 t Mult
00000000 t __gnu_compiled_c
gar -x libmylib.a 00000000 t gcc2_compiled.
This extracts the files add.o, sub.o, mult.o
and div.o from libmylib.a div.o:
00000000 T Div
gar -d libmylib.a sub.o 00000000 t Div
Deletes sub.o from the archive 00000000 t _ gnu compiled_c
00000000 t gcc2_compiled.

gar ~t libmylib.a
Displays add.o, mult.o and div.o
gnm -n libmylib.a > libmylib.nmi

gar -r libmylib.a sub.o libmylib.nml contains:
Add sub.o back into the archive add.o:
00000000 T Add
Name (gnm): 00000000 t Add .
- . . 00000000 t gcc2_compiled.
The gnm utility generates symbol table for the object file. 55900000 ¢ __gnu_compiled_c

The file can be a simple object file, an executable file, or an
archivefile. Each symbolis preceded by avalue which defines 4 .
the characteristics of the symbol itself. The gnm commandis  ¢5600000

T Sub
well used by users to provide information on the structure and 44000000 t Sub
content of object and executable files. 00000000 t gcc2_compiled.
X . . 00000000 t __gnu_compiled_c
usage: gnm [-n] objectfile > outfile.nm
. . y mult.o:
List the symbol table for objectfile, sorted by symbol name (50000000 T Mult
-n option is sorted by symbol address), into file 00000000 t Mult
outfile.nm. 00000000 t gcc2_compiled.
For each symbol, gnm shows: 00000000 t __gnu_compiled_c
¢ The symbol value.
* The symbol type. If lowercase, the symbol is local; if div.o:
uppercase, the symbol is global. 00000000 T Div
A Absolute .
. 00000000 t Div
B BSS (uninitialized data). 00000000 t gcc2_compiled.
C Common. - .
00000000 t led
D Initialized data. —gnu_compiiece
| Indirect reference. The addresses above are zeros since the text is
T Text (program code). relocatable.
U Undefined. . i
« The symbol name. Object Copy (objcopy):
Example of usage of gnm: This utility is used to convert ecoftfiles to S-record, so that
gnm libmylib.a > libmylib.nm code can be downloaded to the IDT evaluation board or to a
libmylib.nm contains: PROM burner.
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usage: objcopy -O srec [-b num)
[-i bytenum] {-plobjectfile outfile.srec

objcopy -O srec objectfile outfile.srec

This converts the ecoff objectfile to Motorola S3 record
format, for downloading to the evaluation boards.
objcopy -O srec -b num objectfile outfile.srec

-b num is useful when programming EPROMS for boards
which require bytewide EPROMS.

-b 0 creates S-record files corresponding to 0th byte
slice of 4-byte word.

-b 1 creates S-record files corresponding to 1st byte
slice of 4-byte word.

-b 2 creates S-record files corresponding to 2nd byte
slice of 4-byte word.

-b 3 creates S-record files corresponding to 3rd byte

slice of 4-byte word.
objcopy -O srec -b num -i bytenum
objectfile outfile.srec

-i option must be used in conjunction with -b option. It is
useful for programming EPROMS for boards that have
interleaved addressing.

-i1 interleave one byte.

-i2 interleave two bytes. etc.
objcopy -O srec -p -b num objectfile outfile.srec

-p option is used to create prommable S-records. It should
be used with -b to create bytewide PROMS. It orders the
sequence of sections to be .text, .data, .bss and starts
the address fields from address 0x00000000.

Object Dump (objdump):

Displays information about ecoff files. This information is
mostly useful to programmers who are working on the compi-
lation tools, as opposed to programmers who just wnat their
program to compile and work.

usage: objdump [-h] [-d] [-t] objectfile > outfile

objdump -h objectfile > outfile
Display summary information from the section headers of
the objectfile.
objdump -d objectfile > outfile
Display the assembler mnemonics for the machine instruc-
tions from objectfile. This is very useful when doing
machine level debugging. User can set a break point at
a certain virtual address for a corresponding assembly
instruction.
objdump -t objectfile > outfile
Print the symbol table entries of the file.
Example of usage of objdump:

objdump -h main > main.od

main.od contains:

main: file format ecoff-bigmips

SECTION 0 [.scommon] : size 00000000 wvma
00000000 align 2**4

SECTION 1 [.reginfo] : size 0000001c vma

00000000 align 2+**4

SECTION 2 [.text] : size 00005f40 vma
80020000 align 2**4
ALLOC, LOAD, CODE
SECTION 3 [.rdata] : size 00000420 vma
80025£40 align 2**4
ALLOC, LOAD, READONLY, DATA
SECTION 4 [.datal] : s8ize 00000ca0 vma
80026360 align 2**4
ALLOC, LOAD, DATA
SECTION 5 [.1lit8] : size 00000000 wvma
80027080 align 2**4
ALLOC, LOAD, READONLY, DATA
SECTION 6 [.litd] : size 00000000 vma
80027080 align 2**4
ALLOC, LOAD, READONLY, DATA
SECTION 7 [.sdatal : size 00000080 vma
80027080 align 2**4
ALLOC, LOAD, DATA
SECTION 8 [.sbss] : size 00000080 vma
80027100 align 2**4
ALLOC
SECTION 9 [.bss] : size 00007840 vma
80027180 align 2**4
ALLOC
objdump -t main > main.sym
main.sym contains:
main: file format ecoff-bigmips
SYMBOL TABLE:
[ 0] e 80020000 st 6 sc 1 indx 1 start
Local symbol: 195
[ 1] e 80027100 st 1 8c 5 indx fffff
_fbss
[ 2] e 8002ea50 st 1 sc 5 indx f££ff£ff
end
[ 3] e 8002£080 st 1 sc 5 indx fffff
—ap
[ 4] e 80020880 st 6 sc 1 indx 5§
init_exc_vecs
Local symbol: 261
[ 5] e 800206ad st 6 sc 1 indx 4
config_memory
Local symbol: 244
[ 6] e 80020bb8 8t 6 8c 1 indx 3
config_Icache
Local symbol: 280
[ 7] e 80020b70 st 6 sc 1 indx 1
config_Dcache
Local symbol: 278
[ 8] e 80020458 st 6 sc 1 indx 9
flush_Icache
Local symbol: 286
[ 9] e 80020ce8 st 6 sc 1 indx 7

flush_Dcache
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Local symbol: 284
[ 10] e 80020660 st 6 sc 1 indx 9
init_tlb
Local symbol: 240

objdump -4 main > main.dis

main.dis contains:
main: file format ecoff-bigmips

Disassembly of section .text:
80020000 <start> lui $v0,8208
80020004 <start+4> mtcO0 $v0,$12
80020008 <start+8> mtcO0 $zero,$13
8002000c <start+c> lui 5$t3,43690
80020010 <start+10> ori $t3,$§t3,21845
80020014 <start+14> mtcl $t3,$f0
80020018 <starxrt+18> mtcl $zero,$fl
8002001c <start+lc> mfecl $t0,$£0
80020020 <start+20> mfecl $t1,S5f1
80020028 <start+28> bne $5t0,$t3,80020040
<start+40>
80020030 <start+30> bnez $t1,80020040
<start+40>
80020038 <start+38> j 80020048 <start+48>
80020164 <start+164> lui $v0,49088
80020168 <start+168> jr $voO
80020170 <main> addiu $sp, $8p,-40
80020174 <main+4> sw $ra,36($sp)
80020178 <main+8> sw $s8,32($sp)
8002017¢c <main+c> move $s8,3$sp
80020180 <main+10> jal 80025f0c <__main>
80020188 <main+18> sw $zero,16(3s8)
8002018c <main+lc> lw $v0,16($s8)
80020194 <main+24> slti $§vi,$v0,50
80020198 <main+28> beqgz $v1,80020280
<main+110>
800201a0 <main+30> sw $zero,20($s8)
800201lad <main+34> 1w $v0,20($s8)
800201lac <main+3c> slti $vi, $v0,50
800201b0 <main+40> beqgz $v1,80020264
<main+£4>

800201b8 <main+48> lw $v0,16($s8)

eceeessscescseeressessssscsssssn e

Index Archive Library (ranlib):

Generates anindexto the contents of an archive and stores
it in the archive. Ranlib converts each archive to a form that
can be linked more rapidly. It does this by adding a table of
contents called __.SYMDEF to the beginning of the archive.
Ranlib uses gar to reconstruct the archive. Sufficienttempo-
rary file space must be available in the file system that
contains the current directory.
usage: ranlib archive
An archive with such an index speeds up linking to the

library and allows routines in the library to call each other
without regard to their placement in the archive.

Size (gsize):

This command is used to get sizes of different sections in
the object file. It prints the number of bytes required by the
text, data, and bss portions, and their sum in hex and decimal
of each object file.
usage: gsize [-d | -0 | -x | radix=number]

objectfile... > oultfile
Lists the section sizes, and the total size for each of the
objectfile or archive in its argument list into outfile. The
size of each section is given in decimal ('-d', or 'ra-
dix=10'); octal (*-0', or 'radix=8'); or hexadecimal (*-x', or

'radix=16').

Example of usage of gsize:
gsize main > main.size

main.size contains:

text data bss dec hex
filename

5£40 11coO 7950 59984 ea50 main

SUMMARY

The IDT/C binary utilities include GAR, GNM, OBJCOPY,
OBJDUMP, RANLIB and GSIZE. Together, they are very
useful tools for programmers to develop and debug their
applications.
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INTRODUCTION

This application note describes the 64-bit C development
tool chain available from Cygnus. The ELF-64™ tool chain is
a 64-bit C-compiler tool chain that can be used to generate
code for the R4600™ (Orion™) processor operating in an
embedded application environment. It is based on the GNU
tool chain available in the public domain. The executable
created is an ELF (Executable and Linking Format) file.

TOOL CHAIN COMPONENTS

The ELF-64 tool chain consists of the following parts:

1. C-Compiler

2. Assembler

3. Linker

4. Source level Debugger
5. Librarian / Archiver

6. Binary Utilities

The C-compiler is ANSI C compliant and performs optimi-
zations found in all state-of-the-art C-compilers. The compiler
generates an intermediate assembly language file froma C
file and calls the assemblerto generate an ELF object file. The
assembler supports the entire MIPS™ ISA (described in the
book by Gerry Kane, “MIPS RISC Architecture”). The words
“compiler” & “assembler” are used to refer to the cross-
development environment too.

The linker links the object files created by the compiler,
assembler and the librarian to create an ELF “executable”.

The debugger (gdb) provides remote source level debug-
ging capability over a serial link; this is very useful when
developing embedded applications.

The librarian/archiver allows the user to create archives of
code sections that are frequently used, for linking with various
applications.

The binary utilities are useful in extracting information
aboutthe ELF file created, generatinga disassembled versicn
of the executable, displaying section size information and
converting to different file formats.

COMMAND LINE OPTIONS

The C-compiler and linker support a number of options.
This application note mentions only acommon subset of these
options. For a complete listing and description of all options,
the user should refer to the manual.

.Compiler options
1. Options controlling the ISA level:
The ELF-64 compiler / assembler supports -mips1, -mips2
and -mips3 switches, to generate code for MIPS ISA |, I
orlll.

The IDT logo is a registered trademark and Orion and R4600 are of Device Te

-mips1: Generates code for R30xx processors. This
generates instructions that access 32-bit data.

-mips2: Generates code for R4x00 and R60xx proces-
sors. This generates instructions that access 32-bit data,
and some R4x00 specific instructions.

-mips3: Generates code for R4x00 processors. This
generates instructions that access 64-bit data, such as
double word accesses.

For best utilization of the 64-bit Orion architecture, the
mips3 switch should be used, which is also the default. When
using the -mips3 switch, the compiler defaults to using 64-bit
general purpose registers and 64-bit floating point registers.
Integers and long words are 32-bits long, “long long” words are
64-bits. All addresses generated are 32-bits long. The com-
pilercan be told to use non-default sizes for scalar data types,
and to use specific processor pipelines for proper instruction
scheduling.

2. Optimization & debugging options:

The most commonly used optimization options are -O and
-02, which perform a number of optimizations. The -O2 option
performs all optimizations, exceptloop unrolling (which can be
forced by using -funroll-loops) and omitting the frame pointer
(-fomit-frame-pointer). Optimization can be switched off com-
pletely using -O0.

The -g optiontells the compiler toinsert debugginginforma-
tion in the object file. This is necessary when debugging with
gdb. A debugging level can be specified (1, 2 or 3), depending
on the amount of information the user wants to insert. The
default is 2, which is typically sufficient to be able to debug
using gdb.

For debugging purposes, using “-g -O0" or just “-g” is
recommended. If optimization is also specified during debug-
ging, some statements might get moved around, which could
be confusing to the person doing the debugging.

3. Options changing the default data sizes:

The -mlong64 switch forces the compiler to generate code
using 64 bit wide long words and addresses (pointers).

The -mint64 switch forces the compiler to generate code
using 64 bit wide integers. The -mlong64 switch is assumedin
this case.

The -mgp32 switch forces the compiler to generate code
assuming the general purpose registers in the Orion are only
32 bits long.

The -mfp32 switch forces the compiler to generate code
assuming the floating point registers in the Orion are only 32
bits long.

4. Options for proper scheduling:

Using the “-mcpu=" option tells the compiler to use a
specific processor pipeline while scheduling instructions. -
mcpu=0Orion or -mcpu=r4600 tells the compiler to use the

Inc.

The ELF-64 Is a trademark of Cygnus Computer Systems, Inc.
MIPS Is a registered trademark of MIPS Computer Systems, Inc.
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Orion pipeline, and -mcpu=r4400 tells the compiler to use the
R4400 pipeline. The compiler defaults to using -mcpu=Orion.
5. Floating point code generation:

The ELF-64 compiler defaults to generating hardware
instructions for performing floating point operations. To force
the compiler to use an emulation library, the -msoft-float
option is specified, and the appropriate library used, at link
time. Since the Orion has a Floating Point Accelerator, a user
should never need to use this option, though the capability is
available in the tool chain and may be used for future CPU
products.

6. Other options:

-nostdinc: This option tells the compiler not to look in the
standardinclude path for the include files. This is useful during
embedded applications development, when the user needs to
use non-standard libraries, which have their own include files.

-Wa or -WI: This option allows the user to pass assembler
and linker options on the C-compiler command line. e.g. -Wa,-
alh instructs the compiler to invoke the assembler to list
assembly and high-level source code to the display.

Linker options

1. Options controlling different sections in the executable:

The ELF-64 linker places the different sections in the ELF
file at certain default addresses. These addresses can be
changed using the -T option. To force the linker to place the
.text section ata specific address, the option -Ttext <address>
canbe used. Similarly, use -Tdataand-Tbss to force the linker
to locate the .data and .bss at specific addresses. In a case
where all 3 section addresses are specified, it is the user’s
responsibility to see that the sections do not overlap. The
linker uses a default script to place the different sections in the
ELF file. Users can specify their own script files, thus finely
controlling the appearance of the ELF executable, using the
-T<scripffilename> switch. A discussion of linker scripts is
outside the scope of this application note; a sample linker
script is shown below:

OUTPUT_FORMAT ("elf32-bigmips")
file Format */
OUTPUT_ARCH (mips)
_DYNAMIC_LINK = 0;
SECTIONS
{

/* output

/* Read-only sections, merged into text
segment: */
/* .text section beginsg at address 0xb£fc00000
*/
.text 0xbfc00000 :
{
_ftext = . ;
*(.text)
CREATE_OBJECT_SYMBOLS
symbol for each input file */
_etext = .;
}
.init ALIGN(8):
{ *(.init) } =0

/* Create a

.fini ALIGN(8) :
{ *(.£ini) } =0

.ctors ALIGN(8) :
{ *(.ctors) }

.dtors ALIGN(8) H

{ *(.dtors) }
/* Read only data section,
byte boundary */
.rodata ALIGN(8) H
{ *{(.rodata) }
.rodatal ALIGN(8) H
{
*(.rodatal)
. = ALIGN(8);
}
.reginfo . :
.data . :
{
_fdata = . ;
*(.data)
CONSTRUCTORS
}
.datal ALIGN(8) :
{ *(.datal) }
_gp = . + 0x8000;
.1it8 . : { *(.1it8) }
Llitd . o2 { *(.1litd) )

aligned on 8-

{ *(.reginfo) }

/* Reep the small data sections together,
so single-instruction offsets can access them
all, and initialized data all before
uninitialized, so we can shorten the on-disk
segment size. */

.sdata ALIGN(8) : { *(.sdata) )}
_edata = .;
_ bss_start = 0xa0000200 ;
.8bss ALIGN(8) : { *(.sbss) *(.scommon)
.bss 0xa0000200 :
{
_fbss = .;
*(.bss)
* (COMMON) /* All uninitialized &

unallocated data from all
input files */
_end = . ;
end = . ;

}

/* Debug sections. These should never be
loadable, but they must have
zero addresses for the debuggers to work
correctly. */

.line 0 :

{ *(.line) }
.debug 0 :

{ *(.debug) }
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.debug_sfnames 0 :

{ *(.debug_sfnames) }
.debug_srcinfo 0 :

{ *(.debug_srcinfo) }
.debug _macinfo 0 :

{ *(.debug_macinfo) }
.debug_pubnames 0 :

{ *(.debug_pubnames) }
.debug_aranges 0 :

{ *(.debug_aranges) }

}

The linker puts “small” data into the small bss (.sbss) and
smalldata(.sdata) sections. “Small” data is data thatis smaller
than a certain size. This size can be changed from the default
8 bytes using -G <size>. If -G 0 is used, nothing will be placed
in .sbss and .sdata. Elements placed in .sbss and .sdata can
be accessed in a single instruction using _gp that is appropri-
ately set, resulting in fast data access.

2. Other options:

-nostdlib: This option tells the compiler not to look in the
standard library search path for the specified library files. This
is useful during embedded applications development, when
the user needs to use non-standard libraries.

New instructions

The ELF-64 compiler implements the “branch likely” in-
structions in the Orion, when -mips2 or -mips3 is specified.
When faced with a choice, the compiler attempts to use the
conventional branch instruction and fill the branch with a
branch independent operation. However, if it cannot do that,
it converts the instruction to a branch likely instruction, and
copies the target instruction into the branch delay slot.

Another set of instructions implemented by the compiler
are those instructions that can give access to unaligned data:
LWL, LWR, SWL, SWR, LDL, LDR, SDL, SDR. Using
__attribute__ ((packed)) to declare a variable inside a C
structure causes the compiler to generate the above instruc-
tions whenever the packed data element is accessed.

Assembler Directives

1. .set mipsn

This directive allows the user to embed instructions from a
higher level MIPS ISA, in a sequence of instructions that
belong to another ISA. e.g. .set mips3 would allow the user to
specifically enter ISA lll instructions in ISA ll or ISA | code. .set
mips0 resets code generation to the default ISA.

When compiling an assembly file at a specific MIPS ISA, if
instructions from a higher ISA are used, the assembler reports
a warning, but assembles them anyway.

2. .set noreorder / .set reorder

Instructions in the block between the above directives are
left as they are; no attempt is made to schedule them accord-
ing to the pipeline requirements. It is the user’s responsibility
to see that the delay slots are properly filled, and hazards are
taken care of. The assembler defaults to .set reorder.

3. .set noat
This directive instructs the assembler not to use the "at"

register, which is used by the assembler to expand certain
synthetic instructions. The assembler can be instructed to use
the at register using .set at. All the instructions between the
.set noat and .set at should be native instructions, or if
synthetic instructions are used, should not require the at
register. The assembler defaults to .set at.

Binary Utilities
1. nm

This utility is used to display the symbol table from an ELF
file. It lists the symbols from an ELF object file, along with the
virtual address for each symbol. It also displays the section
(text, data, bss etc.) in which this symbol was located.

e.g. nm matmult > mat.nm
The following is a part of mat.nm

80012000 T start
80012000 A _ftext
800123b0 T main
80012710 T Mult
80012770 T Add
80018010 B matrixl
8001a720 B matrix2
8001ce30 B matrix3

The symbols tagged with a T are text symbols, those with
a B are uninitialized data that are placed in the .bss section,
and those with a D are initialized data, and are placed in the
.data section. The symbols tagged with an A are absolute
addresses.

2. objcopy

This utility is used to convert the ELF executable to S-
record format, suitable for downloading to a board like the IDT
evaluation board. This utility can also be used to build S-
records from which PROMSs can be built (using the -p option).
This can also be used to create S-records for byte-wide
PROMSs (using the -b option), with an interleaving factor, if
necessary (using the -i option).

e.g. objcopy -O srec matmult matmult.sre

e.g. objcopy -O srec -p -b 0 -i 1 myprom myprom.sre
creates an S-record file that can be used to build the zeroth
byte-slice of an interleaved PROM.

3. objdump

This utility displays information about ELF objectfiles. ltcan
be used to generate symbol table information, similar to nm,
(using the -t switch), generate a disassembly listing (using the
-d switch) or section header information (using the -h option).

e.g. objdump -d matmult > matmult.dis
The following is a part of matmult.dis:

80012000 <eprol> 1lui $gp, 32770

80012004 <start+4> addiu $gp, $gp,-352

80012008 <start+8> lui $v0,32769

8001200c <start+c> addiu $v0,$v0,32544

80012010 <start+10> lui $vi, 32770

80012014 <start+1l4> addiu $vl, $vi,-2032
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e.g. objdump -h matmult > matmult.hdr
The following is a part of matmult.hdr:

SECTION 2 [.text] : size
80012000 align 2%*4

ALLOC, LOAD, CODE

SECTION 3 [.rdata] : size
80016£50 align 2**4

ALLOC, LOAD, READONLY, DATA

SECTION 4 [.data] : gize
80017280 align 2**4

ALLOC, LOAD, DATA

SECTION 7 [.sdata] : size
80017ea0 align 2**4

ALLOC, LOAD, DATA

SECTION 8 [.sbss] : size
80017£20 align 2**4

ALLOC

SECTION 9 [.bss] : size
80017£80 align 2%*4
4. size

00004£50

00000330

00000c20

00000080

00000060

00007890

This utility is used to display the sizes of all sections in an
ELFfile,in decimal or hex format. It also displays the total size

of all sections in the ELF file.
e.g. size matmult displays:
text data bss dec hex
20304 4048 30960 55312 dsi0

filename

matmult
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By Upendra Kulkarni

INTRODUCTION

GDB, the source level debugger component of IDT/C™ 5.0,
allows users to debug programs written in C and/or assembler
code. GDB provides remote debugging capabilities, where
the debugger itself runs on a computer such as a Sun or an
IBM (compatible) PC (the HOST) and the code being de-
bugged runs on a different system (the TARGET). The host
and the target are connected by, and communicate through,
a RS232C serial communication link. This application note is
intended to provide some help in getting started with GDB;
some of the most commonly asked questions are answered;
some features not documented elsewhere are discussed.

Detailed command summaries of all GDB commands can
be found in documentation of "IDT/C Cross Compiler System
Version 5.0" specifically in "Cygnus Support GNU Developer's
Kit Reference Manual Volume 1."

Detailed description of internal workings of GDB can be
found in "GNU Debugger Internal Architecture" by Robert
Pizzi (rpizzi@linl.gov). This paper is also useful for people
who wish to make enhancements to GDB. The paper is
available viaanonymous ftp from sisal.linl.gov (128.115.19.65)
in the pub/gdb Document directory.

BEFORE USING GDB

Hardware

GDB shipped with IDT/C 5.0 will work only when a serial
port on the host is hooked up to the "tty0" port of the target
board which must be running IDT/SIM™. "tty0" is the console
port of the target board. Ordinarily, upon resetting the target
board, a sign-on message is displayed on the console at
"tty0". The sign-on message ends with the prompt "<IDT>"
provided by IDT/SIMin the target board. GDB tends to send
a "reset board" command over the serial link to the target in
case of trouble. GDB, then, looks for the "<IDT>" string to
return over the serial link. Upon receiving the "<IDT>" string
GDB recognizes "wellness" of the target board and then
sends the target board into "debug" mode. Obviously, this
entire process will work only if the serial link from the host was
connected to the console ("tty0") port of the target board.

Console output presented by the program being debugged
on the target (using printf, for example), does notinterfere with
the GDB messages even though the same serial link is shared
by both. The console outputs from user code are also dis-
played on the same screen as the GDB screen. The useris
expected to be familiar enough with the source code being
debugged, to be able to distinguish between GDB messages
and messages printed by the code being debugged. "Hello,
| reached here" is a message not likely to have come from
GDB; but "Stack Full" could have come from either source.

Software

The serial port used by GDB on the host needs to be set for
baud rate of 9600, 8 bits data, no parity, and 1 stop bit.

On the MIPS host, the serial device used for GDB needs to
be inamode otherthanthe "respawn" mode. In the "respawn”
mode, the operating system looks for a remote log in from the
serial device. This conflicts with GDB activities and GDB fails
to initialize.

On DOS hosts, the following two lines must be executed
each time, just before executing GDB:

\idtc\asynctsr.com 1
number used by GDB)

mode COM1: 9600,n,8,1
appropriate port name used by GDB)

(replace 1 by the COM port

(replace COM1 by

On DOS hosts, the above lines can be put in a batch file for
easy invocation. Note that asynctsr.com uses some memory
every time you run it. You may wish to invoke it using
“loadhigh” to minimize loss of conventional memory. If you
start running out of memory, you may have to reboot the
computer. You may have a TSR manager that knows how to
remove older instances of asynctsr.com from memory.

On DOS hosts, it is important to note that GDB will not
function at all unless SHARE is invoked manually or through
the AUTOEXEC.BAT file.

GETTING STARTED

Init files

You may wish to use the "init files" feature of GDB to
execute certain GDB commands automatically at the time of
invocation of GDB. "Init files" on Sun and MIPS hosts are
named ".gdbinit". You can have a "init file" in your home
directory and another one in your current directory as well.
The "init file" in the home is executed first and the one in the
current directory is executed after that.

Currently, the "init file" feature is not implemented for DOS
hosts. However, GDB can be invoked with the "-command
filename" (or "-x filename") switch to achieve the same effect.
Commands in the file "filename" will be executed automati-
cally after starting GDB. In the future, the "init file" name for
DOS is likely to be GDB.INI.

You may suppress the automatic execution of "init files" by
invoking GDB with the -nx switch.

Preparing code for GDB

Source code must be compiled with one of the following
switches:

The IDT logg isa registered trademark and IDT/C, IDT/SIM, R3041/51/71/81, R4600, RISCWindows, and RISController are trademarks of Inlegraled Device Technolggy, Inc.
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-g - Same as -g2 below.

-g1 - Produces minimum information needed by GDB to be
able to debug. No information about local variables or
line numbers is generated.

-g2 - Produces maximum debugging information.

-g3 - Accepted but does not do anything more than -g2.
Todebugmalfunctioning code ininitial stages, optimization

level of zero (-O0 or no -O switch at all) is recommended

during compiling and linking. This preserves the source code
sequence andmakes tracing through code easier. -O switches

of all levels are, however, accepted in combination with -g

switches of any level. Substantial experience with compiler

optimizations is necessary to be able to debug optimized
code.

Downloading code to target

Users familiar with debugging code in local environments
will be tempted to follow the intuitively natural sequence of
starting the debugging process: invoke the debugger, load the
executable, initialize global settings, set a breakpoint, run.
Strictly speaking this sequence also works for remote debug-
ging. However, reversing the order of first two steps can result
in substantial savings in time.

Invoking GDB first and using the "load" command from
GDBto download code (to be debugged) to the targetcan take
more than five times as much time as downloading code first
and then invoking GDB. The download protocol used by the
. "load" command of GDB is very elaborate and time consum-
ing. It is recommended, therefore, that the s-record file
generated from the code to be debugged be downloaded first
using the "load" command of IDT/SIM. This download pro-
cess is no different from that employed during normal running
of downloaded code. To run the code after downloading it to
the board, the user would ordinarily enter the IDT/SIM com-
mand "go". The "go" command should NOT be entered if GDB
is to be used for debugging.

Afterfinishing the download the next step (which is optional
but recommended) is to issue the debug command to the IDT/
SIM. At the <IDT> prompt, enter:

debug tty0

Next, exit the monitor process or program - a terminal
emulator in case of DOS, the "cu" command in case of Sun,
etc. In the case of MIPS computers this is slightly confusing
unless RISCWindows is being used.

In the case of MIPS computers, one needs to hook up a
physically separate VT100 terminal to the "tty0" port of the
board (asopposed to running a terminal emulator on the host).
"tty1" of the target board is hooked up to the MIPS host. The
file download takes place over "tty1". Once the download is
over, the user is required to physically disconnect the VT100
terminal from the "tty0" port. The user is further required to
move the cable from "tty1" to "tty0". If two serial ports of the
host, and two serial cables, are available, then the cable
hooked to "tty1" may be left where it is. The second serial
cable from the host can be connected to "tty0" once the VT100
terminalis disconnected. Note that whichever serial device of
the host is finally connected to "tty0", needs to be in a mode

other than “respawn".

Note that once the code to be debugged has been down-
loaded to the target board, and the optional “debug tty0"
command is issued, the target board must not be reset by the
user using the reset button orin any otherway. The next step
at this point is to start GDB.

Invoking GDB

The last stage of an invocation of "gcc” is the linker stage.
The linker stage is automatically invoked if the "-c" switch is
not used while invoking "gcc'. The linker can be invoked
explicitly as "Id" (or "gld" via a link on most Unix systems). The
linker produces a file referred to as the executable file (or
code). In order to create downloadable s-record file from this
executable file, use the “objcopy" binary utility.

To invoke GDB, simply enter:
gdb FILE

where, FILE is the name of the executable file as described
in the previous paragraph.

After displaying the sign-on message, the (gdb) prompt will
be displayed and GDB is ready to receive commands from the
user.

At this point GDB knows nothing about the target. To
introduce the target to GDB enter:

target mips com1 (if you are using DOS. Use
the appropriate com port.)
OR

target mips /devittya
Use the appropriate tty device.)
OR

(ifyouare usingSunos4.1.3.

target mips /dev/tty1 (if you are using Riscos5.01 on
MIPS. Use the appropriate tty device.)

The system may respond with all of the following mes-
sages:

Timed out waiting for remote packet

Failed to initialize; trying to reset board

Remote MIPS debugging using com1/ttya/tty1

Ignore the first two lines. GDB has been successfully
initialized and is now ready to receive commands.

Hitting a "return" at the (gdb) prompt repeats the last
command issued to GDB. You can use short forms (first few
letters) of all GDB commands as long as the number of letters
are enough to uniquely identify the command and/or the
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arguments.

MOST COMMONLY ASKED QUESTIONS

1. Is there on-line help on GDB?

Yes. Atany point during debugging, you canreceive on-line
help on GDB commands. The starting point is to enter "help"
at the (gdb) prompt. The main help screen gives instructions
on how to obtain help in more detail on every specific com-
mand. Successive screens offer increasingly detailed help.

2. After debugging for some time, | forgot which part of the
code is currently getting executed. How do | figure out
where | am?

Use the GDB command "info frame". This command dis-
plays a lot of useful information including current frame
pointer, stack painter, stack level, pclocation, saved registers,
return address, addresses of local variables.

3. How do | display the current register values? Can | see
special CPO registers in IDT79R3081™ and
IDT79R3041™ RISControllers™?

Toseecurrentregister values, use the GDB command "info
registers”. This command will display all general purpose
registers and all CPO registers for the IDT79R3051™
RISController. CPO registers unique to other RISControllers
cannot be displayed using this release of GDB.

4. In the DOS platform compiler, what exactly does
ASYNCTSR.COM do?

GDB functions in the "DOS extender" world, where there is
no DOS I/0. It is difficult to get interrupts, in this case serial
110, delivered in that region. ASYNCTSR.COM is, loosely
speaking, a device driver which stays memory resident, and
acts as the missing link between serial I/O and GDB. its job is
to intercept serial data and make it available to GDB.

5. Can | set breakpoints identified by line numbers in an
assembler source file?

Unfortunately, GDB does not maintain any line number
information about assembler source code. Itis not possible to
set a breakpoint using line numbers in assembler source as
can be done with C source code.

However, there is a work-around, which is not very easy but
can prove to be useful under some circumstances. To set a
breakpoint at line number "linenum” in an assembler file
"myasmfile.S" please follow these steps:

i. Add the following statement at the beginning of the file:
file fileno "myasmfile.S" (fileno is any number)

ii. At line number “linenum - 1", add the following line:
.loc fileno linenum

iii. Now, while using GDB, to set a breakpoint at above
location, at (gdb) prompt enter:
breakpoint "myasmfile.S":linenum

This procedure is rather cumbersome, especially if a num-
ber of breakpoints are desired in a number of assembler files.
However, until a better solution becomes available, this will
have to do.

6. Why does -g switch force less optimization while compil-
ing even though the manual says that -O switch can be
used along with -g switch?

Strictly speaking the -g switch need not perform less
optimization if -O switch is used in conjunction with the -g
switch. However, an exception is made to this rule in order to
maintain compatibility with the assembler produced by Mips
Corp. If-gswitchis used, the branch delay slots are neverfilled
with any useful instruction; they are always filled with a "nop",
even if -O2 switch is specified. In the absence of -g switch, an
effort is made to fili the delay slot with a useful instruction.

7. Why does GDB time out if the code is doing something
useful? What does "set timeout" command do?

GDB assumes that if the target board does not respond to
any query within 5 seconds, synchronization over the serial
communication path is lost. Under such circumstances, GDB
resets the board. This may be undesirable if the board was
indeed expected to not respond within 5 seconds for a
legitimate reason. To avoid such undesirable circumstances,
the GDB manual describes a command called "set timeout
seconds". A negative number of seconds in the command was
expected to have GDB never time out under any circum-
stances, a feature useful in debugging real time applications
where a breakpoint would be expected to be reached only
under very rare conditions which occurred once every few
hours or so.

Unfortunately, the "set timeout" command was not imple-
mented correctly in GDB, and does not work as expected. In
future releases of GDB, this command will be removed and
time out will neveroccur. If the user believes thata malfunction
on the target board is causing lack of response to GDB, the
user will be expected to reset the target board manually. GDB
will have no decision making intelligence regarding resetting
the board.
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INTRODUCTION

Writing ROM-able code using IDT/C™ 5.0 or IDT/C 6.0 puts
restrictions on -initialized data declarations. Initialized data
end up in ROM space, making it impossible to change such
data during program execution. This restriction is neither
obvious, nor acceptable to a number of C programmers. One
technique to eliminate this restriction is explained in this
application note. The most effective implementation requires
modification to the C compiler utilities, which may be offered
in future releases of IDT/C.

OVERVIEW

IDT's C Compiler tool chains IDT/C 5.0 and 6.0 provide a
means of developing embedded applications based on the
IDT R30xx and R4x00 RISControllers™. IDT/C 5.0 generates
ECOFF format files; IDT/C 6.0 generates ELF files. For
purposes of this discussion, both output file formats will be
referred to as “executable”. Any differences in formats / tool
chains will be noted wherever appropriate.

IDT/C organizes the executable into sections by default, as
shown below:

1) .text: All instructions from all source files.

2) .rdata (ECOFF) / .rodata (ELF): All initialized data that
are declared constant. (Most commonly found elements
here are strings.)

3) .data: All initialized data. Data may get moved between
.rdata and .data depending on what the compiler be-
lieves is constant.

4) .bss: All uninitialized data.

5) .sdata: All initialized data smaller than the size specified
by the -G option.

6) .sbss: All uninitialized data smaller than the size speci-
fied by the -G option.

The layout of sections and determining what exactly goes
into which section can be controlled using a linker script file,
and by adding -T<script filename> in the linker command line.

Both IDT/C 5.0 and 6.0 allow creation of user-defined
sections and embedding user-defined symbols in the execut-
able generated, using the linker script. This flexibility is key to
the technique discussed below.

PROBLEM

Initialized data in the .data section get programmed into
ROM space when the PROMs are created. This is the only
way that the code can “remember” the initial values of all
initialized data, in an embedded environment. However, this
makes it impossible for the user to modify these values. The
user can get around this by not initializing the variables at the
point of declaration (making them uninitialized and thus forc-
ing them into the .bss section) and then initializing them in
code. The drawback of this approach is that the user needs to

remember where to initialize each such data structure. An-

other way would be to have two structures: one initialized, one

uninitialized, and in the code, copy the one in .data to the one

in .bss. This method has speed and space disadvantages.
This Application Note describes a three-step method to

overcome this problem. Briefly, the logic can be explained as

(a) buildthe code assuming that the . datasection willbe inthe

RAM space; (b) in reality, burn the .data section in the ROM;

(c) right at the start of code execution, move the .data section

from ROM to RAM where the code expects it to be already.
Using IDT/C, the steps would be:

1. Link the executable program in such a way that the
instructions look for .data section in the RAM address
area.

2. Build S-records using a modified version of objcopy that
relocates the .data section to ROM area while converting
the executable to S-record. This “saves” the initialized
contents of the .dafa section.

3. Make the startup code copy this relocated section from
ROM area to its designated place in RAM area. This is
the RAM address area where the instructions will be
looking for the .data section (as explained in step 1
above). This method has been tested and found to work
with relocating .data from IDT/sim™; it can be extended
easily to cover .rdata / .rodata too.

ADVANTAGES

1. Allows software programmers to use initialized data
without restrictions.

2. Removes the necessity for additional code/data spread
out all over the application for modifying initialized data.

3. Speeds up program execution, since accesses that used
to go to ROM are now directed to RAM.

DISADVANTAGES

1. Increased startup time because of the code to copy the
.data section to RAM. However, this is only a one-time
effort, and hence is not a major overhead.

STEPS INVOLVED

1. Determine what section(s) of the executable are to be
relocated.

2. Modify the finker script to add informational sections (for
objcopy) and symbols (for the startup code) that define
the source and target of relocation.

3. Modify the startup code to copy data from the relocated
address (ROM) to its real address (RAM).

4. Compile and link the application using the new linker
script, such that the .data section now lies in RAM.

5. Use the version of objcopy that has support for this
relocation, to build PROMs.

Tha IDT logo Is a registered trademark and IDT/C, IDT/sim and RISController are trademarks of Integrated Device Technology, Inc.
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SECTIONS TO BE RELOCATED

Let us assume that only the .data section needs to be
relocated.

MODIFYING THE LINKER SCRIPT

Linker scripts for IDT/C 5.0 and 6.0 are slightly different; the
modifications done are very similar.

The following information needs to be inserted into the
linker script to enable both objcopy and the startup code to
perform the relocation and data movement.

a) Sections .start, .endsect.

This is done by inserting section lines in the linker script.
The program “objcopy” relocates all sections between
these two sections to the address defined by _src_start.

b) Symbols _src_start, _src_end:

This is done by inserting symbol lines in the linker script.
The startup code copies data from _src_start to
_tgt_start, until _src_end is reached.

c) Symbol _tgt_start:

This is done by inserting a symbol line in the linker script.
The startup code copies all data that was relocated, to
this RAM address.

The modified linker scripts are listed on the following pages,
with the changes highlighted.

Sample Linker Script for IDT/C 5.0:
OUTPUT_FORMAT (“ecoff-bigmips”)
ENTRY (start)
SECTIONS
{
.text Oxbfc00000 : {
_ftext = . ;
*(.init)
eprol = .;
*{.text)
*(.fini)
etext = .;
_etext = _;
}
.rdata . : {
*(.rdata)
}

/* Relocate the sections between .start and
.endsect, to begin from the current ad-
dress */

.start . : (}
_8rc_start = . ;
_tgt_start = 0xa0000200 ;

/* _tgt_start should be equal to the start

of the .data section below */

.data 0xa0000200 : {
_fdata = .;
*(.data)
CONSTRUCTORS

edata = .;

/* OK, this is all we wanted to relocate */
.endsect . : {}
_src_end = . ;

.reginfo . : {(}
.scommon . : {}
bss Lo |{
_fbss = .;
*(.bss)
* {(COMMON)
}
end = .;
_end = .;

}
Sample Linker script file for IDT/C 6.0:

OUTPUT_FORMAT (“elf32-bigmips”)
OUTPUT_ARCH (mips)
_DYNAMIC_LINK = O0;

SECTIONS

{

/* Read-only sections, merged into text
segment: */

.text 0xbfc00000

{

_ftext = . ;

*(.text)

CREATE_OBJECT_SYMBOLS

_etext = .;
}
.init ALIGN(8) { *(.init) } =0
.fini ALIGN(8) { *(.£ini) } =0
.ctors ALIGN (8) { *(.ctors) )
.dtors ALIGN(8) { *(.dtors) }
.rodata ALIGN(8) { *(.rodata) }

.rodatal ALIGN(8)

{

*(.rodatal)

. = ALIGN(8);
}

.reginfo . { *(.reginfo) }

/* Relocate the sections between .start and
.endsect, to begin from the current ad-
dress */

.start . : (}
_src_start = . ;
_tgt_start = 0xa0000200 ;

/* _tgt_start should be equal to the start
of the .data section below */

.data 0xa0000200

{

_fdata = . ;
*(.data)
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CONSTRUCTORS
}

.datal ALIGN(8) { *(.datal) }

_gp = + 0x8000;
.1lits { *{(.1it8) }
.litd { *(.1lit4) }
.sdata ALIGN(8) { *(.sdata) }
_edata = .;
/* OK, this is all we wanted to relocate */

.endsect . : ()}
_src_end = . ;

__bss_start = . ;
.sbss ALIGN(8)
* (.scommon) }
.bss :
{
_fbss = .;
*(.bss)
* (COMMON)
_end = . ;
end = . ;

}

{ *(.sbss)

.line 0 : { *(.line)
}

.debug
}

.debug_sfnames 0 : {
*(.debug_sfnames) }
.debug_srcinfo 0 : {
*(.debug_srcinfo) }
.debug_macinfo 0 : {
* (.debug_macinfo) }
.debug_pubnames 0 : {
* (.debug_pubnames) }
.debug_aranges 0 : {
* (.debug_aranges) }

}

0 : { *(.debug)

Modifying the startup code

Typically, embedded applications have code that performs
CPU control register initialization, cache flushing, memory
sizing, initializing .bss etc. With the .data section in its new
positionsin ROM, the code will still look to RAM addresses for
initialized data. Before any such references are attempted, the
.data section should be copied out into it’s real place. A good
place to do this is usually after .bss initialization. The code
segment below demonstrates how this can be done. The
same code can be used for IDTC/5.0 and 6.0; though for the
R4x00 processors, the user may want to use double-word
loads and stores for faster execution.

la t0, _src_start
la ti1, _tgt_start
la t2, _src_end

2: lw t3, 0(t0)

nop
sw t3, 0(t1)
addu tO0, 4
addu tl1, 4
blt tl, t2, 2b
nop

Modification to OBJCOPY

The binary utility “objcopy” needs to be modified to make it
intelligent enough to recognize the sections that the linker
script was asked to create, and to move the appropriate
sections to their temporary PROM addresses. Most of the
code modifications needed to perform this movement are in
the function setup_section() in the file objcopy.c (the main
source code file for the objcopy utility), and are shown on the
next page, in boldface. Some adjacent code is shown for
reference. Initialization of the variables may not be shown
explicitly; it is mentioned wherever appropriate.

setup_section(...... )
..... /* Original variable declarations lLere

int sec_addr;
static int new_data_addr = 0;
static int move_section = FALSE;
...... /* Original code here */
if (!bfd_set_section_size (obfd,
osection,
bfd_section_size (ibfd,
isection)))
{
err = “size”;
goto loser;

}

/* start_address = bfd_get_start_address
(ibfd);
in copy_object () */
if (!new_data_addr)
start_address;
new_data_addr += bfd_section_size (ibfd,
isection);

new_data_addr =

/* Got section .start? Now remember current
address
and keep track of new relocation address
*/
if (!strcmp(bfd_get_section_name(ibfd,
isection),
“.start”))
move_section = TRUE;
/* Got section .endsect? Stop relocation
*/
else if (!strcmp (bfd_get_section_ name (ibfd,
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isection), “.endsect”))
move_section = FALSE;

if (move_section) sec_addr = new_data_addr;
else sec_addr = bfd_section_vma (ibfd,
isection);

/* Actually do the relocation */
if (bfd_set_section_vma (obfd, osection,
sec_addr)
== false)
{
err = “vma’”;
goto loser;
}

if (bfd_set_section_alignment (obfd,
osection,
bfd_section_alignment
(ibfd, isection))
== false)

err = “alignment”;
goto loser;

Compile, link the application and build PROMs

This can be done in the usual manner. The scripts shown
above setup the .data section to reside in RAM area. The new
version of objcopy with this option may be available in future
releases of IDT/C.

SUMMARY

This application note described a technique that relocated
certain sections to ROM and then copied them to their desig-
nated locations in RAM. This method has been demonstrated
on the .data section; it can very easily be extended to include
other sections too.

The advantages are: provide C programmers with the
ability to use initialized variables much more freely, removal of
the needfor extra code or data, faster access without requiring
any extra ROM space.
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INTRODUCTION

In general, a compiler has four major components. They
are Preprocessor, Compiler, Assembler, and Linker. This
application note explains the “scatter” feature of SGI/MIPS
compiler in the context of MIPS R3000/R4000 RISC proces-
Sors.

What role does a linker play in an embedded environ-
ment?

Inthe embedded environment, the linker plays a major role
in laying out the application code into RAM/ROM of the target
systemin the most productive manner. Inembedded applica-
tions, the code section and the data section reside in known
fixed memory locations. Allcompilers that create applications
for embedded systems have a mechanism to specify the start
address for the code section. They also give the programmer
a choice of either making the data section follow the code
section or to start the data section at an address before the
start of the code section or to start the data section at an
address after the end of the code section. The linker gener-
ally, lets the programmer layout the code in the following
manner:
1.0ne uncached code section and one uncached data

section
2.0ne cached code section and one uncached data section
3.0ne uncached code section and one cached data section
4.0ne cached code section and one cached data section

A scatter linker offers more choices, and is, therefore, an
integral part of the new SGI/MIPS cross-compiler for R3000/
R4000 target running on SUN SPARC host.

Why do we need multiple sections of code and data?
Embedded systems usually have slower main memory
interface than desktop systems. In such systems that have a
MIPS R3000/R4000 based (RISC) CPU, the code thatresides
in the instruction cache executes many times faster than the
codethatis executed from an uncached space (Main Memory).
Also, the data that reside in the data cache can be accessed
many times faster the data that reside in Main Memory. The
following cases may arise :
1.In some code-intensive applications , to get the most
optimal performance out of an instruction cache, the
programmer must have a section of code that is most
frequently executed and that is small enough to fit inside
the instruction cache, always cached, and the rest of the
code in Main Memory.
2.In some data-intensive applications, to get the most
optimal performance out of a data cache, the program-
mer must have a section of data that is most frequently
accessed and that is small enough to fit inside the data

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

cache, always cached, and the rest of the data in Main
Memory.

3.In some applications that are code and data intensive, a
combination of the previous two mechanisms should be
applied.

What is a Scatter Linker?

A scatter linker is a linker that lets the programmer develop
an embedded application such that it has one or more text
sections. and one or more data sections. The process of
creating an application that has one or more text sections and
one or more data sections is called scattering. This is usually
done with the help of a linker script language. In this applica-
tion note, various features of scatter linker supported by the
new SGI/MIPS cross compiler are described.

The new compiler uses a linker scriptlanguage tolayout the
executable code at the programmer's demand. A switchinthe
link line of the compilation lets you specify the file that contains
the linker script having the layout information of the execut-
able code. Acomplete description ofthe linker script language
is beyond the scope of this application note. However, an
illustration of one simple linker script and one complex linker
script presented here is believed to be sufficient to provide an
introduction to the scatter linker.

How do you invoke linker-script in a link line of the SGI/
MIPS compiler?
The following switches are useful when invoking a linker-

script:

“-elspec” tells the linker that the following element is going
to be the name of a ASClI-text file containing linker-script

“-rom” tells the linker not to pad any sections with UNIX-
based page size

“-elsmap” tells the linker to generate the map of linker script
to standard output (screen). The output can be redi-
rected to a file. This switch can be used without “-elspec”
and “rom”. Gives an elaborate description of the layout
of various sections of all the objects in the linker line in a
pseudo linker-script form.

example1:
Idr4000 -elspec simple_script -rom -elsmap -o
app1_simple crt0.o file1.o file2.0 >

simple_script.map

example2:
1dr4000 -elspec complex_script -rom -elsmap -0
app1_complex crt0.0 filel.o0 file2.0 >
simple_script.map
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How doyou create linker script for executable code thathas
one text section and one data section?

By default, all executable code that is created by the SGI/
MIPS cross compiler has the following set of valid sections:
1. A “text” section containing executable instructions.

2. A “.MIPS.option” section

3. A “reginfo” section

4. A “.rodata” section containing read-only data. Read only
data include immediate values, char constants, and string
constants

5. A “.data” section containing intialized data. Initialized
data include initialized global variables, initialized vari-
ables with “static” type, and variable with “const” type.

6. A “.bss” section containing uninitialized data.
Uninitialized data include uninitialized global variables
and function names.

A segment is a collection of sections. Sections 1-4 are
consideredloadable, readable and executable and are grouped
together and put into a segment with unique attributes. Sec-
tions 5-6 are considered loadable, readable, and writable and
are grouped together and put into another segment with
unique attributes. Thisis the default layout. The programmer
is free to change the attributes and/or the contents of a
segment.

A simple script includes all the default sections.

The following is an example:

Example1 (simple_script) :

# Creates an executable with one text section and one data
section.

# It has the text section start at 0xa0020000 and has the
data section

# following the text section

# comment is preceded by a #

# file: simple_script

# The following segment contains elements that are
readable and
# executable
beginseg
segtype LOAD # Makes the segment loadable
# A segment is considered loadable
# if its contents can be put in a valid
section
# of main memory or cache in the
target
# system

segflagsR X # Makes the segment readable and
# Executable
vaddr 0xa0020000 # Gives the start address for the
segment
# This a valid virtual address in the
target
# system

segalign 0x1000 # specifies the UNIX OS based
page
# alignment between the current
segment
# and the following segment. It is
ignored
# when using “-rom” switch in the
link line
contents # specifies the sections that are
going to
# be put in this segment
# The following link-script command “noheaders”
# makes sure that the section header information is
# skipped in the executable code

noheaders
default # Includes are the all the loadable
# sections that are readable and
# executable
endseg

# The following segment contains elements that are
readable and writable
beginseg
segtype LOAD
segflags RW # Makes the segment readable and
# Writable
# If you want to make the data section start at a new
address,
# then enter the stuff within quotes in the following line
# “vaddr <data-start-addr>".
# where <data-start-addr> is a valid hex number i.e. 0x<8-
hexdigits>
segalign 0x1000
contents
default
endseg

How do vou create linker script for executable code
that has more than one text section and more than
one data section?

Executable code that is created by SGI/MIPS cross com-
piler has the following set of valid sections:

1.0ne or more sections containing executable code with
unique attributes as long as they are all within 256
MegaByte boundary. Due to the boundary limitation on
code section, one cannot have a section of
executable code in Cache and the rest of the executable
code in Main Memory

2.A “.MIPS.option” section

3.A “reginfo” section

4.0ne or more sections containing read only data with
unique attributes.

5.0ne or more sections containing initialized data with
unique attributes.
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6.0ne or more sections containing uninitialized data with
unique attributes.

Whenever you want to create an application that needs to
have more than one code section and more than one data
section, itis necessary that you know the unique attributes that
identify them. And, if two sections have similar attributes, they
should have different names. Moreover, you can have a code
section inside a data section or a data section inside a code
section.

The executable file format for the executable code is ELF.
Each one of the ELF sections are identified by
1.Section type
2.Section flag

The following is the list of valid ELF sections with the
attributes for them:

1. code section
Section type: PROGBITS
PROGBITS ==> Contents are loaded into the memory
before execution
Section flag: ALLOC EXECINSTR
ALLOC ==> Contents have a valid section of memory
in the target system
EXECINSTR ==> Contents are executable machine
instructions

2. read only data section
Section type: PROGBITS
Section flag: ALLOC

3. initialized data section
Section type: PROGBITS
Section flag: ALLOC WRITE

4. uninitialized data section
Section type: NOBITS
NOBITS ==> Contents are not loaded into the

memory before execution

Section flag: ALLOC WRITE

The following example describes how to create linker script
that hasmultiple text and data sections for the executable
code.

Example2 (complex_script):
beginseg
segtype LOAD
segflags R X
vaddr 0xa0020000
segalign 0x1u00
contents
noheaders
beginscn .text
# scntype specifies section type for code section to be
PROGBITS
scntype PROGBITS
# scntype specifies section flag for code section to be

ALLOC

# EXECINSTR
scnflags ALLOC EXECINSTR
scnalign 4

# .text is the name of the section

# It contains code section for object crt0.0

read only data section (.rodata) for all objects
.MIPS.options section for all objects
.reginfo section for all objects
section .text in crt0.0
section .rodata
section .MIPS.options
section .reginfo
endscn
endseg
beginseg
segtype LOAD
segflags RW
segalign 0x1000
contents
beginscn .data
scntype PROGBITS
scnflags ALLOC WRITE
scnalign 4
# .data is the name of the section
# It contains data section for object crt0.0
section .data in crt0.0
endscn
endseg
beginseg
segtype LOAD
segflags R X
segalign 0x1000
contents
beginscn .text2
scntype PROGBITS
scnflags ALLOC EXECINSTR
scnalign 4
# .text2 is the name of the section
# It is the second code section
# It contains text section for object file1.0
# It contains text section for object file2.0
section .text in file1.o0
section .text in file2.0
endscn
endseg
beginseg
segtype LOAD
segflags R W
segalign 0x1000
contents
beginscn .data2
scntype PROGBITS
scnflags ALLOC WRITE
scnalign 4
# .data2 is the name of the section
# It contains initialized data section for object file1.0
# It contains initialized data section for object file2.0
section .data in file1.0
section .data in file2.0
endscn
endseg
beginseg
segtype LOAD
segflags R W

3+ I
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segalign 0x1000
contents
beginscn .bss
scntype NOBITS
scnflags ALLOC WRITE
scnalign 4
# .bss is the name of the section
# It contains uninitialized data section for all objects
section .bss
endscn
endseg

CONCLUSION:

In embedded systems with SGI/MIPS R3000/R4000 CPU,
having some sections of code in Instruction cache and some
sections of code in Main Memory, and some portion of data in
data cache and the rest in Main Memory can greatly improve
performance in data intensive and/or code intensive applica-
tions. The scatter linker is an integral part of the new SGI/
MIPS compiler and has the ability to produce such code.
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SETTING UP THE SGI INDY™ AS
A DOWNLOAD PLATFORM FOR
IDT’S RISC EVAL BOARDS

TECHNICAL
NOTE
TN-16

By Ketan Deshpande

This note explains how to set up the SGI INDY™ worksta-
tion as a platform for downloading code onto an IDT
evaluation board.

You will need the following items:

1. An SGI INDY workstation running IRIX™ 5.1.1 or higher,
with at least one serial port. Two ports are necessary if
you want to do terminal emulation from the SIM.

2. A RISC evaluation board from IDT. The board must have
IDT/SIM™ 4.0 or later.

3. A software development tool chain that will produce
executable code for MIPS RISC processors, and S-
records from that executable code.

4, The UUCP utility on the INDY workstation. If this is not
installed, it should be available on one of the CD-ROMs
containing IRIX software. The UUCP utility is available on
the IRIX Operating System CD-ROM as package
eoe2.sw.uucp.

5. An RS232C cable that plugs into the serial port on an
INDY. MINIDIN 8 cables can be used. One cable is
sufficient, two are needed if you want to do terminal
emulation.

ASSUMPTION

It is assumed that:

1. The software tool chain is set up on the workstation
properly.

2. You have created a small software program, and com-
piled and linked it with the appropriate libraries from your
tool chain.

3. You also have created S-record files from the execut-
able. You will need to download the S-record file to the
evaluation board.

HARDWARE

To set up the hardware for downloading the S-record file
from the INDY to the target board, you need to set up a serial
link between the workstation and the board. Thisisa one-time
effort only.

Locate the serial ports on the back of the INDY. They are
nextto the mouse and keyboard ports, and are marked 1" and
"2", By default, IDT/SIM uses the ttyO port of the board to
communicate with a terminal. (To display prompts, echo the
keyboard input, etc.) Hence, this port needs to be connected
to the host. Locate the ttyO port of the IDT evaluation board.
Connectit to a serial port on the INDY using the serial cable
mentioned above. Once the cable is hooked up, connect the
power supply to the board and switch it on.

Let us assume for further discussion that the INDY’s serial
port 2 has been connected to the board’s tty0.

SOFTWARE

Setting up the serial port

Inthe INDY, serial port "n" is associated with the device file
/devi/ttydn. Make sure the access permissions for the file /dev/
ttyd2 are set to “rw-rw-rw-".  You can view the current mode
using “Is -1 /devi/ttyd2”. If the mode is different, you will need
to log in as root and use “chmod 666 /dev/ttyd2” to set the
proper mode. Also, still working as root, in the /etc/inittab file,
look for the line that has ttyd2. If necessary, change it so that
it the third field is “off", rather than ‘respawn” or “on”. The line
now should look like this:

t2:23:0ff:/8bin/getty -N ttyd2 co_9600

If you want to do terminal emulation from the SIM (notreally
necessary since you have the capability to open multiple
windows on the INDY), connect the serial port 1 to tty2 (or
AUX) on the evaluation board and make sure that the line (in
/etc/inittab) for tty1 looks like the one below:

tl:23:respawn:/sbin/getty ttydl co_9600

After changing the /etc/inittab file, type “telinit q” to make
those changes known to IRIX.

Setting up UUCP

Log in as root on the INDY. This can be done easily by
opening another window and using the command “su - root”
or“loginroot’. Change currentdirectory to the UUCP directory
(/etc/uucp or /usr/lib/uucp).

Add the following line to the file Systems:

board Any dev Any
Add the following line to the file Devices:
dev ttydl - 9600 direct

The above two lines inform UUCP that there is a device
called board of type dev that is directly connected to ttyd1 and
communicates at 9600 baud.

The above changes need to be made only once, and now
itis assumed thatthere is a working serial connection between
the INDY and the board.

Now, working as yourself (not as root), change directory to
where your S-Record file exists, and at the shell prompt, type:

cu board

The IDT logo is a registered trademark and IDT/SIM is a trademark of Integrated Device Technology, Inc.
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The system will respond in a minute, saying “Connected”.

Press <RET> a couple of times. You should see the IDT/
SIM prompt “<IDT>". If you do not see this prompt, the serial
connection has not been set up properly. Please go over the
steps mentioned above and check that all steps have been
taken. You may try resetting the board too.

To download over the serial port, at the SIM prompt, type:

load -a tty0

The cursor will go to the next line and freeze there. Now,
type:

~$cat your-srec-filename

In the process of typing, you will notice that your hostname
suddenly appears in between the ~ and the $. This is done by
cu, and is expected. Another way to download over the serial
port would be as follows:

At the SIM prompt, type:

load -a tty0
In another window, type:
cat your-srec-filename > /dev/ttyd2

After you type in the command and press Enter, there may
be a pause of a few seconds, and after that you will see rows
of dots showing that the file is being downloaded.

After the download is complete, a message like the follow-
ing will be displayed:

Done. (num) records, initial pc: (address)

and the <IDT> prompt will return. At this point you can start
using the SIM commands again.

To disconnect from the board, type “~" and press Enter.
This is a tilde (~) followed by a period (.). The display will say
Disconnected and the shell prompt will reappear.
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DISSEMBLER SOCKET FOR -
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By Sami Khan

INTRODUCTION

The IDT79R4600™ is the newest member of IDT's
RISController™ family and provides full applications upward
compatibility with the earlier members of the MIPS family.

This note explains the use of Hewlett-Packard Logic Ana-
lyzer preprocessor pod for R4000PC as a debugging tool. An
important part of system design involves choosing the correct
design and debugging tools which can help the system
designers debug their system with ease and efficiency.

THE HP E2438A PREPROCESSOR

The HP E2438 Preprocessor provides acomplete interface
for state analysis between any target system and an HP
1660A™, HP 16540/16541A,D™, or HP 16550 Logic Ana-
lyzer™. The package includes a preprocessor socket and
system software. The software includes configuration files
and disassembler software for both little endian and big
endian systems.

SYSTEM SETUP

The preprocessor socket has two configuration switches.
Switch SW1 is used to select processor operating frequency.
If the target system is operating above 35Mhz, SW1 must be
in the ON position. If the target is operating between 10Mhz
and 35Mhz, switch SW1 must be OFF.

Similarly, switch SW2 is used to select interface clocking
mode. The ON position is for state-per-clock mode, which
means that every microprocessor clock cycle will clock the
logicanalyzer. When SW2isinthe OFF position, the interface
is in state-per-bus-cycle mode, meaning that only valid data
transfers (microprocessor bus cycles) are clocked into the
logic analyzer. Note that in the state-per-clock mode, disas-
sembly is not available.

The setup involves plugging the preprocessor interface
connector into the microprocessor socket. Please refer to the
"Preprocessors Interface User's Guide" from HP for connect-
ing the interface socket to the logic analyzer pods. Next, load
the configuration file into the logic analyzer. This would
automatically load the inverse assembler file for a big endian
system (file IR4K_BE). Foralittle endian system, loadinverse
assemblerfile IR4K_LE. Ifthe configuration file is saved to the
disk with the current inverse assembler, the next time that
configurationis loaded, the currentinverse assemblerwill also
automatically be loaded with it.

Setting up the logic analyzer also involves setting up the
triggering point. The triggering point depends on the type of
cycle the system designer is trying to capture. The triggering
point can be set on any Address, Data, or Control signals or
any bus activity.

( roosoomHzLlAE ) ( ustngt  )(C tvasm ) ( Pit ) (_  GroupRun )
Markers TrigtoX Trigto 0 Xto 0
Time 0s 0s 0s

Label > ADDRLO L R4000 Inverse Assembly l l DATA I I DA I
Base > Hex [A7:0) Mnemonic | | Hex | [ He |

-2 1FCIEE94 94 sw $00, 3978 (at) AC303978 AC

-1 1FC1EE98 98 02000000 02

0 1FC1EE98 RESET: Mode Bit=0 E7EC103F 20

1 1FC1EE98 . ode Bit =1 F7EC103F 20

2 1FC1EE98 RESET: Mode Bit =1 F7EC103F 20

3 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

ﬁ: 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

6 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

7 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

8 1FC1EE98 RESET: Mode Bit = 1 F7EC103F 20

9 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

10 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

11 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

12 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20

13 1FC1EE98 RESET: Mode Bit=0 F7EC103F 20
3122 dw 01

Figure 1

Device Tech

Inc.

The IDT logo is a registered trademark and RISController and R4600 are of I
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235




USING HP'S R4X00 DISSEMBLER SOCKET FOR H/W AND S/W DEBUG

TECHNICAL NOTE TN-17

DEBUGGING AN R4600 SYSTEM

Debugging of an R4600 system starts with the debugging
of CPU's reset interface. This involves debugging of warm
and cold reset logic, debugging the mode bit interface and
fetching the reset vector.

Debugging the CPU reset interface involves getting the
CPUtoreadthe correctmode bits. To capture mode bits using
the disassembler software, trigger the logic analyzer on the
"COLD RESET" signal being low. After 256 mode bits read
cycles, the processor should fetch the reset vector from virtual
address 0xbfc00000 ( 0x1fc00000 physical). Figures 1 and 2
show the mode bits read sequence atthe resetinterface. After
256 read cycles, the processor fetches the reset vector from
physical address 0x1fc00000, as shown in Figure 2.

The preprocessor interface can then be used for software
debugging. The instruction can be run cached or uncached.
For full execution trace, the software must be run uncached,
so that the disassembler sees all executed instructions. The
logic analyzer captures all bus activity and every instruction
executed can be seen on the display.

Figures 3 and 4 explain the execution trace for uncached
instructions and data. The code starts executing from physi-
cal address 0x00020000 ( 0xA0020000 virtual). Sequential
fetches can be seen on the bus interface which explains the
execution flow of the code.

When configured as a timing analyzer, the timing relation-
ship for CPU signals can be read which is helpful in debugging
hardware, as shown in Figure 5.

Code can be run cached, but full execution trace informa-
tion will not be available. Internal caches are used most of the
time and only external bus activity can be seen by the
analyzer. Mostly, this external activity corresponds to the
refilling of the internal caches. Only during the initial filling of

caches, the analyzer can capture all the bus activity. More-
over, this does not guarantee that every instruction fetched is
executed. For example, CPU supports sub-block ordering for
block refill. This only guarantees that the first instruction for a
block refill will be executed. Figures 6 and 7 explain this fact.
Figure 6 shows the initial cache refill cycles for the code fetch.
Once caches are filled, code continues to execute from it and
the only bus activities that can be captured by the analyzer are
the data load or store operations or cache refill operations as
shown in Figure 7.

Note that whether or not the software is executed through
the cache, the order of loads and stores seen on the bus will
be the same as the order in which they are executed by the
CPU. The R4600 insures strong ordering, which guarantees
this order. Also note, however, that the R4600 integrates an
on-chip write buffer. Thus, data being written may not be due
to the most recent store instruction executed, but rather due
to a previous store instruction which was executed, and
whose data was captured by the on-chip write buffer. Once a
load operation is required, all such pending writes will be
executed prior to the data load.

SUMMARY

The use of HP's preprocessor socket is one example of the
debugging tools for an R4600 system. The logic analyzer is
useful for initial debugging of the system and it can be used
further for software and hardware debug. The Disassembler
formats logic analyzer state traces into assembly level mne-
monics to allow easier user interpretation.

When used in conjunction with tools such as an embedded
monitor program, a ROM emulator, and/or remote target high-
level language debug tools, overall development time can be
reduced substantially.

( 100/500MHz LA E ) ( Listing 1 ) ( Invasm ) ( Print ) ( Group Run )
Markers Trigto X Trigto 0 Xto O
Time 0s 0s 0s

Label > ADDRLO || R4000 Inverse Assembly | [ star ] [pA]]
Base > Hex [A[7:0] Mnemonic ] ] Hex | | Hel

252 00012614 RESET: Mode Bit=0 FF1BCBF4 02

253 00012614 RESET: Mode Bit=0 FF1BCBF4 02

254 00012614 RESET: Mode Bit=0 FF1BCBF4 02

255 00012614 RESET. Mode Bit=0 FF1BCBF4 02

256 1FC00000 00 J 01FC00388 101BFBEO 0B

257 1FC00004 04 NOP 101BFBE4 00

8 1FC00388 88 LUI v00, 2001 101BFBE8 3C

| 259 ] 1FC0038C 8C  MTCO v00, SR 101BFBEC 40

260 . 1FC00390 90 MTCO r00, Cause 101BFBEO 40

261 1FC00394 94 ADDIU v00, r00, 0003 101BFBE4 24

262 1FC00394 98 MTCO v00, r16, rsvd 101BFBE8 40

263 1FC0039C 9C ADDIU v00, r00, 0080 101BFBEC 24

264 1FCO03A0 A0 BNE v00, r00, 01FCO03A0 101BFBEO 14

265 1FCO003A4 A4 ADDIU v00, v0O, FFFF 101BFBE4 24

266 1FCO03A0 A0 BNE v00, r00, 01FCO03A0 101BFBEO 14

267 1FC003A4 A4 ADDIU v00, v00, FFFF 101BFBE4 24
3122 drw 02

Figure 2
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(" toosoomiziaE ) ( ustngt ) twam ) eint ) Aun )

Markers Acquisition Time
Time 22 Jun 1994 16:56:33

Label> ) [ ADDRLO || R4000 Inverse Assembly 1 L_star_| [oA]
Base> J | Hex [ A[7:0 Mnemonic ] | Hex ] | He |
-1 00001604 08 NOP 001BEFE4 00
0 00020000 00  MTCO v00, SR 001BEFEO 3C
1 00020004 04 LUl VOO, 2001 001BEFE4 ac
2 00020008 08 ADDIU v00, ROO, 0003 001BEFE8 40
3 002000C 0C  MTCO 100, Cause 001BEFEC 40
4 00020010 10 ADDIU VOO, 100. 0080 001BEFEO 40
5 0020014 14 MTCO V00, 116, rsvd 001BEFE4 40
[ ] 00020018 18 ADDIU v00, v00, FFFF 001BEFE8 14
7 0002001C 1C BNE v00, r00, 00002001C 001BEFEC 14
8 00020018 18 LUI v00, v00, FFFF 001BEFE8 14
9 0002001C 1C LUl vOO, r00, 00002001C 001BEFEC 14
10 00020018 18 SW v0O, V0O, FFFF 001BEFE8 14
11 0002001C 1C  ADDIU V0O, 100, 00002001C 001BEFEC 14
12 00020018 18 LW V0O, v00, FFFF 001BEFES 14
13 0002001C 1C  SW v0O0, r00, 00002001C 001BEFEC 14
14 00020018 18 BEQ v00, V0O, FFFF 001BEFES 14
3122 drw 03
Figure 3

( doosoomiztAE ) ( usingt ) wasm ) (et ) Run___ )

Acquisition Time
23 Jun 1994 08:45:49

Label>)|  abbDRLO || R4000 Inverse Assembly | [ statr | [oal]
Base > | | Hex  |[Al7:0] Mnemonic | [ Hex | [He |
264 00020020 20 LUI 100, AAAA 001BEFEQ 3C
265 00020024 24 LUl v00, A00O 001BEFE4 3C
266 00020028 28 SW t00, 0000 (v00) O01BEFES8 25
267 0002002C 2C ADDIU 100, t00, 5555 001BEFEC 25
268 00020030 30 LW t01, 0000 (v0O0) 001BEFEQ AC
269 00000000 00 mem write AAAAS555- - - - - - - - 405BEFCO AA

E:b 00020034 38 sSwW r00, 0008, (v00) O01BEFE4 AC
00000008 08 mem write 00000000 - ------- 405BEFC8 00

272 00000000 00 mem read AAAA5555- - - - - --- 001BEFEO AA
273 00020038 38 BEQ t01, t00, 000020048 001BEFES8 00
274 0002003C 3C NOP 001BEFEC 00
275 00020040 40 BEQ r00, r00, 000020040 001BEFEO 00
276 0002004C 4C NOP 001BEFEC 00
277 00020050 50 SwW 00, 0008 (v00) 001BEFEO AC
278 00020054 54 SW t00, 0010, (v00) 001BEFE4 AC
279 00000010 10 mem write FFFFFFFF-------- 001BEFEO FF

3122 drw 04
Figure 4
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( 100/500MHz LA E ) ( Waveform 1 ) ( Acq. Control ) ( Print j ( Group Run )
Accumulate ADDRLO) X --> 0020000 Center
Off (_Hex ) 0 --> 0020000 Screen
( ( )
states / Div Delay Markers X to 0 Trig to X Trig to 0
1 4 Time 80 ns 0 s 80 s
e \. J
1
ADDR all " C oo 00002000 | 00002002 | <-24pC
ADDRLOall| 0 00020000 [ 00020020 | <-4DCoO
DATA alll 5018 | <-6800 |<-CDBO| <-4DCO | <-89A0 [ <-082B [ <0004 | 00000000 <-4DCO
DATA_Ball| " "5018 | <-6000 [ <-A003 | <-A002 | <-A003 | <-0000 | <-FFFD | <-8320 | 00000000
STAT all| "reee 8011EFED [ <EFEO] 8011EFEQ [ <EFE0 |  <EFEO
1
ACMD  alll — = - r [ 5B
DCMD  all| ™~ 80 | | oo | 80 | 00 52
CMD8 '
3122 drw 05
Figure 5

( 1oos0oMHzLAE ) ( Lstingt ) iwvasm ) ( print. ) Run )

Markers Acquisition Time
Off 22 Jun 1994 17:50:17

Label>) [__ADDRLO || R4000 Inverse Assembly | |_staT | [DA]
Base > | | Hex | { Mnemonic | Haex | ] Hel|
-1 00001604 08 NoP 001BEFE4 00
0 00020000 00 MTCO v00, SR 8011EFEO 3C

04 LUl v00, 2001 3C

1 00020000 08  ADDIU v00, r00, 0003 8011EFE0 40
oC MTCO r00, Cause 40

2 00020000 10  ADDIU v00, r00, 0080 8011EFEOQ 40
14 MTCO v00, r16, rsvd 40

531 00020000 18 ADDWU v00, v00, FFFE 0011EFE0 14
iC  BNE v00, r00, 00002001C 14

4 00020020 20 LUl 100, AAAA 8011EFEQ 14
24 LUl v00, A00D 14

5 00020020 28 SW 100, 0000(v00) 8011EFE0C . 14
2C  ADDIU t00, 100, 5555 14

6 00020020 30 LW t01, 0000(v00) 8011EFEQ 14
34 SW r00, 0008(v00) 14

7 00020020 38 BEQ t01, 00,000020048 0011EFEO 14

3122 drw 06
Figure 6
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( 100/500MHzLAE )

( Listing 1

) (

Invasm

Print

D C

) R )

Acquisition Time
22 Jun 1994 16:30:45

Label > ADDRLO [ R4000 Inverse Assembly STAT DA
Base > Hex [A7:0] Mnemonic Hex He
3 00020000 }g ADDIU v00, v00, FFFF 0011EFEO 14
BNE v00, r00, 00002001C
4 00020020 gg LUl 100, AAAA 8011EFEQ 3C
LUl v00, A0OO
5 00020020 3?; SW 100, 0000{v00) 8011EFEO 25
ADDIU 100, 100, 5555
Iﬁ 00020020 gg LW 101, 0000(v00) 8011EFEO AC
swW r00, 0008,{v00)
7 00020020 gg BEQ 101, 100, 000020048 0011EFEO 00
NOP
8 00000000 00 mem write AAAA5555 405BEFCO AA
9 00000008 08 mem write 00000000 505BEFCS8 00
10 00000000 00 mem read AAAAS5555 001BEFEQ AA
1 00020040 22 BEQ 100, r00, 000020040 8011EFEO 00
NOP
12 00020040 40 ADDIU t00, r00, FFFF 8011EFEO 00

Figure 7

3122 drw 07
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EMBEDDING ASSEMBLY TECHNICAL
INSTRUCTIONS INSIDE ;‘m‘;
Integrated D;\:lce Technology, Inc. C-SOURCE CODE

By Sugan Subramanian

INTRODUCTION

This is a tech note on how to embed assembly instructions
inside C source code. ltis targeted towards programmers who
have some knowledge of C-language and R3000 assembly
language.

In IDT/C™ 5.0, assembly instructions can be inlined inside
any genuine block of C-code. A genuine block of C-code is a
section of C-code enclosed by open and closed curly braces.
The inlined assembly may include synthetic assembly instruc-
tions. These instructions are expanded during compile/as-
sembly phase of the compiler. The format agreed by the IDT/
C 5.0 compiler depends on whether or not the inlined assem-
bly lines require arguments, and whetherthese arguments are
read, written, or both.

Specifically there are 4 cases to consider:
- inline without any parameters

- inline with read only parameters

- inline with write only parameters

- inline with read and write parameters

These four cases will be discussed elaborately in the
following sections.

INLINE ASSEMBLY LINES WITHOUT ANY
PARAMETERS

Format:

asm("<asm instrct1> ; <asm istrct2> ; <asm instrct2>;
... <asm instrctn>")

e.g:
unsigned int get_addr()
{
asm("1li $2,0x80020000 ; lui $3, Ov");
}
Description:

1. "get_addr" is a function that takes no arguments and
returns an unsigned integer.

2. The inlined portion of the function body computes the
return value == (0x80020000) that is saved at $2 (or) vO
and initializes $3 (or) v1 with zero.

Constraints:
All assembly instructions including synthetic instructions
are allowed.
All register names should have hardware mnemonics.
i.e.
General registers are $0, $1, .., $31
Coprocessor 0 registers (has TLB, configuration

The IDT logo is a regi andIDT/Cisa of
R3000 Is a trademark of MIPS Computer Systems, Inc.
————————— S ELIU
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specific registers) are $0,$1, ..., $31

Coprocessor 1 registers (has Floating Point Accelerator
specific registers) are $0, $1, ..., $31

Coprocessor 2 registers are $0, $1, ..., $31
Coprocessor 3 registers are $0, $1, ..., $31

INLINE ASSEMBLY LINES WHICH USE
WRITE-ONLY PARAMETERS

Format:

asm("<asm instrct1> ; <asm istrct2> ; <asm instret2>; ...
<asm instretn>"
: "=<write-only_param1 format>" (<write-only_param1
name>),
"=<write-only_param?2 format>" (<write-only_param2
name>),
... "=<write-only_paramk format>" (<write-only_paramk
name>));

e.g. int i,3j;
void main()
{
Intialize_Globals();
printf("value of i =

%d\n",1i,3);

}
void Initialize_Globals ()
{
asm("ori %0,$0,3 ;
s Mopw (i) ’
}

%d and j =

ori %1, $0, 4"
(3))s

Noyn

Description:

1. "Initialize_Globals" is a function that takes no arguments
and returns nothing.

2. The inlined portion of the function body initializes the
global variables "i* and "j*. Uses "i* and "j" as write-only
parameters. Parameter "i" is referenced by %0 and *j" is
referenced by %1. "=r" is the format for both *i* and "j".
"=r" specifies that the following write-only parameter has
a general register associated with it.

Constraints:

All assembly instructions including synthetic instructions
are allowed.

All register names should have hardware mnemonics.
In R3000, the following are the possible hardware
mnemonic:

General registers are $0, $1, .., $31
(has TLB, configuration specific registers)
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Coprocessor 0 registers are $0, $1, ..., $31

(has Floating Point Accelerator specific registers)

Coprocessor 1 registers are $0, $1, ..., $31

Coprocessor 2 registers are $0, $1, ..., $31

Coprocessor 3 registers are $0, $1, ..., $31

Write-only parameters can be either global or local vari-
ables. Write-only parameters are indexed from 0to n-1, where
nis the number of parameters used in the inlined code. Inside
the inlined code, write_only_parameter1 is accessed by %0,
write_only_parameter2 is accessed by %1, and so on. These
are the formats that are allowed for write-only parameters:

"=r" ____ Specifies that the write-only parameter has a

general register assigned to it.

‘=f* ___ Specifies that the write-only parameter has a

floating point register assigned to it.

INLINE ASSEMBLY LINES WHICH USES
READ-ONLY PARAMETERS

Format: asm("<asm instrct1> ; <asm istrct2> ; <asm

instrct2>; ... <asm instrctn>"

i "<read-only_param1 format>" (<read-only_param1
name>),

"<read-only_param?2 format>" (<read-only_param?2
name>),

..."<read-only_paramk format>" (<read-only_paramk
name>));

e.g:
void main()
{
print ("INLINE VAL = %d\n", return_3());
}

int return 3()

{

asm("ori $2,50,%0 ; ori $§3,
: "n" (3), "n" (4));

}

$0, %1“

Description:

1.“return_3" is a function that takes no arguments and
returns integer value 3.

2. The inlined portion of the function computes the return
value.

3. Whenever we use read only parameters without write
only parameters, we have to use two colons "::" preced-
ing them to specify that there are no write only param-
eters.

Constraints:
All assembly instructions including synthetic instructions
are allowed.
Ali register names should have hardware mnemonics.
ie.
General registers are $0, $1, .., $31

TECHNICAL NOTE TN-18

Coprocessor O registers (has TLB, configuration specific

registers) are $0, $1, ..., $31

Coprocessor 1 registers (has Floating Point Accelerator

specific registers) are $0, $1, ..., $31

Coprocessor 2 registers are $0, $1, ..., $31

Coprocessor 3 registers are $0, $1, ..., $31

Read-only parameters are indexed from 0 to n-1, where n

is the number of parameters used in the inlined code. Inside
the inlined code, Read-only_parameter1 is accessed by %0,
Read-only_parameter2 is accessed by %1, and so on. These
are the formats that are allowed for read-only parameters:

"r" ___ Specifies that the parameter has a general

register assigned to it.

"f* ____ Specifies that the parameter has a floating point

register assigned to it.

“n" ___ Specifies that the parameter is an immediate

value.

"m*"___ Specifies that the parameter is a memory ad-

dress.

"o" ___ Specifies that the parameter is an offsettable

memory address.

"X" ___ Specifies that the parameter can be any of the

above.

INLINE ASSEMBLY LINES THAT USES

WRITE-ONLY AND READ-ONLY PARAM-
ETERS

Format:

asm("<asm instrct1> ; <asm istrct2> ; <asm instrct2>; ...
<asm instrctn>"
: "=<output_var1 format>" (<output_vart names),
"=<output_var2 format>" (<output_var2 name>),
... "=<output_vark format>" (<output_vark name>)
: "<input_var1 format>" (<input_var1 name>),
“<input_var2 format>" (<input_var2 name>),
..."<input_vark format>" (<input_vark names));

e.g:
#define ARRAY_SIZE_IN_BYTES 40
int b{20];
void main()

{
int a[10];
int i,j,k;

{asm (

n

.set noreorder
1i $11,%2;
addiu %0,%3;

27
sw $11,0(%0);
addiu  $11,-4;
bnez $11,1b;
addiu %0,-4;
1i %1,%4;

.set reorder"
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s Wpn (a)' nyn (j)' npn

(ARRAY_SIZE_IN_BYTES),
"n" (10*4), "m" (b)

s "$117);)

printf ("return val = %d\n",j);

i=-1;

while (++i < 10)
printf("a[%d] = %d\n",i,ali]);
}

Description:

1. This program initializes an integer array of 10 with values
starting from 0 through 36 by an increment of 4 and
displays the array.

2. The inlined portion not only initializes the array but
demonstrates one peculiar inline feature, how to use
read-write parameter.

3. We are allowed to use registers inside inlined assembly
lines as long as we declare that they will be clobbered.
This is done by giving register name(s) preceded by
three colons (":::") if there are no write-only and read-only
parameters, a colon (":") following the read only
parameter(s) if there are read-only parameters, and two
colons (*::") following the write only parameter(s) if there
are only write-only parameters.

' Constraints:

All assembly instructions including synthetic instructions
are allowed.

All register names should have hardware mnemonics.
i.e.

General registers are $0, $1, .., $31

Coprocessor 0 registers (has TLB, configuration specific

registers) are $0, $1, ..., $31

Coprocessor 1 registers (has Floating Point Accelerator

specific registers) are $0, $1, ... , $31

Coprocessor 2 registers are $0, $1, ..., $31

Coprocessor 3 registers are $0, $1, ..., $31

Whenever a parameter is used for reading and writing,
declare such parameters to be either read-only or write-only
and not both. This convention eliminates a lot of confusion. In
the previous example, parameter "j" and "a" are declared to be
read-only and used for both reading and writing. It is appropri-
ate because both "j* and "a" are of type "r" (have general
registers associated with them). Only read-only parameters
that have registers associated with them are writable.

GENERAL RULES WHILE INLINING ASSEM-

BLY LINES

Always enclose your inlined assembly lines by a block of
".set noreorder" and ".set reorder" directives so that compiler
leaves the inlined assembly lines untouched even if the entire
code is optimized. However, some harmless warning mes-
sages are generated by the assembler (IDT/C 5.0) when the
synthetic assembly instructions are expanded; they can sim-
ply be ignored.

Declare all your variables that are read from and the
immediate values that are used inside inlined assembly to be
read-only parameters. Declare all variables that are written to
as write-only parameters. Whenever a temporary register is
used inside inlined assembly code always make sure it gets
declared as clobbered.

SUMMARY

Inlining assembly lines inside of c-code is a boon in itself if
the only way of optimizing your c-code is through having
different sections of it in assembly. In IDT/C 5.0, inlining
assembly lines is complemented by the ability to use local and
global variable names as aliases to the registers assigned to
them.
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IDT/C™ BINARY UTILITIES

TECHNICAL
NOTE
TN-19

By Evelyn Zhan

INTRODUCTION

This note briefly explains the most important binary utilities
of IDT/C™ 5.0. This technical note lists all valid switches in
each utility, and is intended to be useful as a quick reference
card.

gar: Create, modify and extract from archives.

gar -rc archive member1 member2 ...

Create an archive library whose contents are member1
member2 ... that can be linked with different application
programs.

gar -t archive
List contents of an archive.

gar -x archive member1 member2...

Extract member1, member2... from an archive. If no
member is specified, then all files in the archive are
extracted.

gar -d archive member1 member2...
Delete member1, member2... from the archive. If no
member is specified, the archive is untouched.

gar -r archive member1 member?2...
Insert member1, member2... into archive with replace-
ment of the original members.

gar -q archive member1 member2...
Quick append the member1, member2... to the end of the
archive without checking for replacement.

gnm: Generate symbol table for the object file.
gnm objectfile > outfile.nm
This lists the symbol table for objectfile, sorted by symbol
name, into file outfile.nm.
gnm -n objectfile > outfile.nm
This lists the symbol table for objectfile, sorted by symbol
address, into the file outfile.nm.

Note: objectfile above can be any of the following:
ecoff-file, object-file, or an archive of ecoff-file.

objcopy: Used to convert ecoff files to S-record.

The IDT logo Is a registered trademark and 10T/C is a trademark of Integrated Device Technology, Inc.

objcopy -O srec objectfile ouffile.srec

This converts the ecoff objectfile to Motorola S3 record
format, for downloading to the evaluation boards or
PROM programmers.

objcopy -O srec -b num objectfile outfile.srec
-b num option is always used with "-O srec" option. It is
useful when programming EPROMS for boards which
require bytewide EPROMS.
-b 0 creates S-record files corresponding to the Oth byte
slice of 4-byte word.
-b 1 creates S-record files corresponding to the 1st byte
slice of 4-byte word.
-b2 creates S-record files corresponding to the 2nd
byte slice of 4-byte word.
-b 3 creates S-record files corresponding to the 3rd byte
slice of 4-byte word.

objcopy -O srec -b num -i bytenum objectfile outfile.srec
-i option is only applicable when creating S-records (with
the “-O srec" option), and must be used in conjunction
with the -b option. It is useful for programming EPROMS
for boards that require interleaved EPROMS.
-i 1interleave one byte.
-i 2interleave two bytes. efc.

objcopy -O srec -p -b num objectfile outfile.srec
-p option is used to create prommable S-records. It
should be used with -b to create bytewide PROMS. It
orders the sequence of sections to be .text, .data and
.bss, and sets the address fields of the S-records created
to begin from 0x00000000.

Note:objcopy only supports S-records now.

objdump: Display information about ecoff files.

objdump -h objectfile > outfile

Display summary information from the section headers of
the objectfile, such as

ext, .rdata, .data, .sdata, .sbss and .bss.

objdump -d objectfile > outfile
Display the assembler mnemonics for the machine
instructions from objectfile.

objdump -t objectfile > outfile
Print the symbol table entries from objecffile.
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ranlib: Generate an index to the contents of an archive and
stores itin the archive.

ranlib archive
An archive with such an index speeds up linking to the
library and allows routines in the library to call each other
without regard to their placement in the archive.

gsize: Create a table of starting address and size for
various sections of the code (.text, .data, .bss).

gsize [-d | -o | -x | radix=number] objectfile... > outfile
Lists the section sizes, and the total size for each of the
objectfile or archive in its argument list into outfile. The
size of each section is given in decimal (-d', or 'ra-
dix=10'); octal (-0', or 'radix=8'); or hexadecimal ('-x', or
'radix=16").
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IDT/SIM™ 5.1 SOURCE CODE

TECHNICAL
NOTE
TN-20

By Upendra Kulkarni

This Technical Note offers a quick overview of the source
code environment of IDT/SIM™ (System Integration Man-
ager) (version 5.1).

IDT offers a number of RISC evaluation boards each with
a variety of unique features. Consequently, the IDT/SIM on
each board has some features which are uniquely tailored for
that specific board and some features which are common to
all boards. The source code for IDT/SIM for all boards is
maintained in a single directory tree structure.

Source code for IDT/SIM (version 5.1) is expected to be
used by individuals who have designed boards using a
memberof IDT's RISController™ family and are in the process
of modifying IDT/SIMto achieve compatibility with theirboards.
The capabilities of IDT/SIM are described inits data sheetand
user's manual.

A good number of source files are common to all SIMs;
there is absolutely nothing specific to a particular board in
these files. There are other files which are common but have
parts of code in them which are unique to specific boards - a
feature implemented using "#if defined()" or "#ifdef* condi-
tional compilation directives. There is a third variety of files
which bear the same name but exist in different directories;
this indicates that the files contain code which performs
similar tasks for different target boards, but the implementa-
tions are so different that conditional compiling would lead to
confusion instead of ease of understanding. Finally there are
files which are entirely specific only to one particular board.
These files have no conditional compile statements, no
equivalents in any other subdirectory, and are called for
compilation and linking only for one specific SIM for one
specific board.

Evaluation boards currently supported are 79S385™,
79RS381™,79S341™, and 795460™. Specific "Makefiles" for
each board are provided.

From the top-most level of directories, there are 3 main
directories - COMMON, SIM3000, SIM4000.

COMMON directory has two subdirectories:

» header - contains common header (#include) files used
by all SIMs for all evaluation boards.

¢ c_asm - contains "C" and "assembler* files which are
common to all versions of SIM for all evaluation boards.

Most of these files use conditional compiling for different

boards.

SIM3000 directory contains source code specific to boards
designed with R3000 derivatives in mind. Currently, these
boards include 795385, 795381, and 795341. There are a
number of subdirectories containing "Makefile"s specific for
each evaluation board and possibly different tool-chains. The
directory names are suggestive of which tool-chain or which

evaluation board the Makefile in that directory supports.

For example, a directory name "_RS385C50" suggests
that there is a Makefile in this directory which will create a SIM
for the 795385 board and will use IDT/C™ 5.1 tool-chain for
compiling, etc. Directory names are appropriately abbreviated
for DOS. In addition to the directories for Makefiles, there is
also a "header" directory containing header (#include) files
related to R3000-derivative based boards.

After making changes to the source code, the user needs
to go into the directory appropriate for the intended target
board and too!-chain, and simply run "make" (or "gmake” in
case of DOS). All of the objectfiles, and s-record files are built
inthe same chosen directory. The name(s) of the final product
file(s) can be obtained by studying the Makefile(s). Typically,
fora board using four ROMs (795385, 795381) the file names
of the final s-record files are idtmonb0, idtmonb1, idtmonb2,
and idtmonb3. For the 795341 board, the final s-records are
in file "idtmon.prm". Each Makefile also creates a version of
code which can be run out of RAM on the target board. (the
RAM-version). The RAM-version allows the user to debug or
test modifications to SIM without actually having to program a
new set of ROMs every time a change is made to the source
code. The board may contain older version of SIM in its ROM,
and the user downloads the newly created RAM-version into
the RAM using the "load" command as if the RAM-version
were a user application program. Issuing a "go" after the
download is completed invokes the new RAM-version SIM.

The SIM4000 directory is similar to the SIM3000 directory;
the only difference is that the code pertains to R4000 deriva-
tives. Currently the 795460 board is supported. The Makefile
for this board can be found in the directory "IDTELF64".

Following is a list of global symbols which are used exten-
sively in the source files to achieve conditional compiling for a
specific CPU or a specific evaluation board. Please review
these symbols in the context of the files you are likely to
modify. Conforming to these conditional compiling rules is
critical to a successful port of the SIM code to a new board
design. Additional symbols can be defined in the Makefiles
with "-D" switches and can be used to uniquely identify and
support specific features of specific boards in future. Although
new global symbols can also be defined in the source files, it
is highly recommended that they be defined in the Makefiles
to facilitate easy access to software developers other than the
creator of the symbols.

CPU_R4000: to identify code specific to R4000 and its
derivatives.

CPU_R3000: to identify code specific to R3000 and its
derivatives.

The IDT logo Is a registered trademark and IDT/SIM, RISCantroller, 795385, 795381, 795341, 795460, and IDT/C are trademarks of Integrated Device Technology, Inc.
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R381: to identify code specific to 79RS381 board.

RS341: to identify code specific to 795341 board.

P4000: to identify code specific to 795460 board.

INET: to indicate code to be executed only if ethernet
support is available on the target board.

PROM: to indicate that networking code is running out of
PROM.

IDTSIM: to indicate modifications to industry standard
ethernet drivers for IDT-SIM compatibility.

KERNEL: related to ethernet drivers.

XDS: IDT/C 4.1.1 compatibility-specific code modifications.

Obsolete.
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- CONTAINED IN IDT/SIM™ NOTE

i FOR IDT ORION™ and TN-24
Integrated Device Technology, Inc. RISCONTROLLER™ FAMILIES

INTRODUCTION

This technical note describes the various device drivers currently available from IDT in IDT/sim and IDT/Kit™.

Of course, these software tools are constantly being enhanced, and additional drivers implemented. For current informa-
tion, IDT recommends you work with your local sales representative.

In addition, many third-party companies provide additional software support, including real-time operating systems, net-
work protocol support, and device drivers. Information on these products is available through the Advantage-IDT program.

Device Drivers Listing

All drivers listed below can currently be found in IDT/sim 5.1 source code. Overall, support for 9 different devices is cur-
rently available.

In addition to shortening development time for systems using the specific devices listed here, these functions can also be
used as templates for systems requiring identical functions, but using different peripheral devices to implement them.

Finally, note that this listing does NOT include a listing of devices for which initialization-only functions are available in
IDT/sim. Examples of these include start-up routines for the CPUs themselves, initialization of external DRAM controller
devices (such as the one found on the ‘381 board), and memory sizing routines. While these functions tend to be system-
specific, firmware engineers can use the source code provided with IDT/sim as a template for these functions.

8251:
Serial I/0 device driver.
Source code in: SIM3000/drivers/drv_8251

8254:
Programmable interval timer driver: Contains code to install the driver (call to install_new_dev() - SIM function), as well
as the driver itself. Since this device does not trasnsfer any data, there are no read/write functions. As such it is not the
most representative driver - However it is an i-o device present on the original R3000A evaluation board, the 7RS382.
Source code in: SIM3000/drivers/drv_8254

8530:
SCC Driver. (Serial Communications Controller). This driver implements the standard asynchronous UART functions
contained in the 8530/85C30.
Source code in: SIM4000/drivers/drv_8530 and SIM3000/drivers/drv_8530

Centronics Driver.
Parallel port driver for old IBM/PC centronics interface. The driver works with the hardware implementation of Centronics
found in the 79S385A evaluation system, which uses a parallel register/FIFO structure to receive data.
Source code in: SIM3000/drivers/drv_centron

SCSI Driver.
Source code in:; SIM4000/drivers/scsi & SIM3000/drivers/scsi

PC Backplane ISA /O 16-bit Driver.
This driver was implemented to support the use of the ‘341 board in a PC/AT. There is a support program called
pcio15.exe, which allows the PC/AT to act as a terminal for the ‘341 board.
Source code can be found in: COMMON/c_asm: pcio16asm.S pcio16asm.s pcio16drv.c

The IDT logo s a reglstered trademark and Orion, IDT/sim, IDT/kit and RISController are trademarks of Integrated Device Technology, Inc.
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68681/2681:
DUART driver. A function called timer_start() sets tty1 (for all R3000 based boards except ‘381) to 9600 baud. A function
called timer_stop() calculates elapsed time based on baud rate. It changes the baud rate of the unit in jo->icb_di-
>dev_unit. This also has timer_start and timer_stop that are subsets of those in the ¢c_asm dir.
Source code can be found in: COMMON/c_asm/s68681cons.c
Code can also be found in SIM3000/drivers/drv_68681

SONIC:
Ethernet Controller. Implements UDP protocol. Source code for this function is found in SIM4000/net/netinet/udp*. Ether-
net address resolution protocol code is found in SIM4000/net/netinet/if_ether.c
The driver supports the "ping" command using the "ICMP" protocol; source code for this is found in SIM4000/net/netinet/
*icmp*
TFTP routines in SIM4000/net/cmdsiftitplib.c
Source code can be found in SIM4000/net/drivers
Support functions are in SIM4000/net/net

uPD72001 (NEC):
Serial (DUART) I/O controller. This Duart is contained in the 795460 evaluation system for the R4600.
Source code is found in SIM4000/mpsccons.c
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