

RISC APPLICATIONS GUIDE

AUGUST 1995

Integrated Device Technology

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve
design or performance and to supply the best possible product. lOT does not assume any responsibility for use of any circuitry described other than the
circuitry embodied in an lOT product. ITO makes no representations that circuitry described herein is free from patent infringement or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights, or other rights of Integrated
Device Technology, Inc.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a
specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body, or (b) support or sustain

life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reason­

ably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause

the failure of the life support device or system, or to affect its safety or effectiveness.

The lOT logo is a registered trademark and BiCameral, BurstRAM, BUSMUX, Cache RAM, DECnet, Double-Density, FASTX, Four-Port, FLEXI-CACHE,
Flexi-PAK, Flow-thruEDC, IDT/c, IDTenvY, I DT/sae , IDT/sim, IOT/ux, MacStation, MICROSLlCE, NICStAR, Orion, PalatteDAC, REALB, R3041 , R3051 ,
R3052, R30B1, R3721 , R4600, RISCompiler, RISController, RISCard, RISCore, RISC Subsystem, RISC Windows, SARAM, SmartLogic, SolutionPak,
SyncFIFO, SyncBiFIFO, SPC, and TargetSystem are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademark of MIPS Computer Systems, Inc
All others are trademarks of their respective companies.
© 1995 Integrated Device Technology, Inc.

Integrated Device Technology, Inc.

INTRODUCTION

This manual is a collection of various applications notes and conference papers written
to describe the behavior and use of the 32-bit family of RISController™ devices and 64-
bit ORION™ family of devices.

The application notes include descriptions of design techniques, development environ­
ments, and software development tools. The reader is encouraged to review the
introduction of the various application notes as a brief summary of the topic of that
paper.

This manual is complemented by other documentation, also available from your lOT
sales representative. These documents include:

• The RISC data book, which contains data sheets for these devices. Also in­
cluded are the electrical specifications, pinout, current speed grades, and pack­
age dimensions.

• The R3041 Hardware User's Manual, which contains a detailed description of the
hardware and software interface of the R3041.

• The R36100 Hardware User's Manual, which contains a detailed description of
the hardware and software interface of the R36100.

• The R3051 Hardware User's Manual, which contains a detailed description of the
hardware and software interface of the R3051 and R3052.

• The R3071/R3081 Hardware User's Manual, which contains a detailed descrip­
tion of the hardware and software interface of the R3071 and R3081.

• The R4650 Hardware User's Manual, which contains a detailed description of the
hardware and software interface of the R4650.

• The R4600/R4700 Hardware User's Manual, which contains a detailed descrip­
tion of the hardware and software interface of the R4600 and R4700.

• The various user's manuals on the lOT software tools, and the user's manual for
the IDT79S341, IDT79S385A, IDT79S381, IDT79S460, and IDT79S464 Evalua­
tion Boards.

• The lOT Advantage Catalog, detailing various third-party tools, such as real-time
OS, in-circuit emulation, logic analyzer support, and program development tools
available to support applications development around the lOT RISController™ and
ORION™ family devices.

v

1995 RISC APPLICATIONS GUIDE
TABLE OF CONTENTS

PAGE
32-BIT INFORMATION

AN-86
AN-90
AN-92
AN-95
AN-97
AN-109
AN-113
AN-131
AN-138
CP-05

IDT 79R3051 System Design Example .. 1
Designing a Discrete DRAM Controller for the R3051 RISControlier Family................................. 32
IDT79R3051 Main Memory and System 1/0 Interfacing ... 59
Interfacing the R3051 to the SONIC ... 74
IDT79R3051 Address/Data Bus Turn Around Behavior ... 84
Using the R3081 in R3051-based Systems .. 91
Upgrade Strategies for IDT 79R3051-based Designs .. 96
Interrupt Handler for the IDT79R3051 RISControlier Family.. 103
Low Power R3041 for WLAN Applications 108
Designing Memory Subsystems for the R3051 Family... 114

64-BIT INFORMATION
AN-114
AN-119
AN-127
AN-129
AN-135
AN-137
AN-139
CP-11
CP-14
CP-15
CP-16
TN-21
TN-22
TN-23
TN-25
TN-26

Designing Read and Write Buffers for the R4000 System Interface ... 123
Hardware and Software Boot Initialization of the IDT79R4000... 138
Timers Using SONIC and Count Register in Orion ... 148
R4600 Power Calculations 152
Visible Differences Between the R4650 and the R4600/R4700 Orion Family Members 157
High-EndiLow-Power R4650 with DSP Capabilities ... 159
Adapting an R4600 Design to the R4650 163
Design of a RISC-based PC ... 171
The IDT R4600 Powers Inter-Networking Applications .. 175
System Design Issues with the R4600/R4400 Processors ... 181
Porting R3000 Code to an R4400/R4600 Platform ... 185
32- and 64-Bit Operation of the IDT 79R4600 .. 190
R4600 Cache Initialization .. 192
IDT79R4600/R4400 "Outside-Specs· Differences .. 194
Heatsink Issues for Microprocessor Products with Integral Slug .. 196
Orion SYSAD Output Timing Issues ... 197

RISCTOOLS
AN-26
AN-111
AN-125
AN-126
AN-128
AN-132
AN-133
TN-16
TN-17
TN-18
TN-19
TN-20
TN-24

Using the IDT79R3051 with the HP16500 Logic Analyser ... 199
Using the IDT79R3051 and the IDT79R3081 with the HP16500 Logic Analyzer 207
IDT/c Binary Utilities.. 213
The ELF-64 Tool Chain ... 218
GDB-IDT/c 5.0 Source Level Debugger ... 222
Copying Initialized Data to RAM ... 225
Scatter Linker .. 229
Setting up the SGI INDY as a Download Platform for IDT's RISC Evaluation Boards 233
Using HP's R4xOO Disassembler for Hardware and Software Debug .. 235
Embedding Assembly Instructions Inside C-Source Code ... 240
IDT/c Binary Utilities.. 243
IDT/sim 5.1 Source Code.. 245
Device Drivers Contained in IDT/sim for IDT Orion and RISControlier Families 247

t;) IDT79R3051 TM SYSTEM APPLICATION

DESIGN EXAMPLE NOTE
AN-8S

Integrated Device Technology, Inc.

by Andrew Ng

INTRODUCTION
This application note describes a memory evaluation board

that is an example of many of the design considerations for
systems based on an IDT79R3051™ RISController™ family
CPU.

The memory board, illustrated in Figure 1, consists of:
• An R3051 CPU
• Reset circuitry
• An address de-multiplexer
• A data transceiver
• Wait-state and memory control logic
• 128K bytes of SRAM
• 128K bytes of EPROM
• A dual channel UART
• A real time counter
• An interrupt controller

In addition, an expansion connector supplies all the CPU
signals for the addition of external modules such as DRAM
memory systems or other application specific 110 systems.
The memory and 110 system on the example board are
compatible with the IDT7RS382 R3000 Evaluation Board.
Thus 7RS382 software such as the IDT/sim PROM Debug
Monitor can run on the example board. The board is typical
of an embedded controller core such as for LAN adapters,
laser printers, facsimiles, and avionics applications. The
differences would appear in which peripherals are used and
memory type, size, and speed requirements.

The board was designed as a generic example of the
construction of a system using the IDT79R3051 RISController
with both low parts count and cost sensitive requirements.
However, since many generalities were taken into consider­
ation, many systems can reduce both parts count and cost

I
r1 Address I

- Latches I

R3051 Family
RISControlier Y Data I CPU

Buffers I

HMemo~1
Contro I

even further. Although the board is not populated with parts
that have the highest performance achievable, its design can
be easily modified to do so. In addition, PALTM support for
further experiments with optimizations and trade-offs can be
done to accommodate different kinds and speeds of memory
and 110. While the board is designed with SRAM for the
simplicity of a design example, the extension to a DRAM
system with CAS before RAS refresh is only slightly more
complex.

THE R3051 RISCONTROLLER CPU
The IDT79R3051 family is a series of high-performance 32-

bit microprocessor RISControllers designed to bring the high­
performance inherent in the MIPS™ RISC architecture into low
cost, simplified, and power sensitive applications.

The instruction set is compatible with the 79R3000A and
79R3001 RISC CPUs. Features of the R3051 family include:
• 4kB (R3051) to 8kB (R3052) of Instruction Cache on-chip
• 2kB of Data Cache on-chip
• Clocked from a single, double-frequency clock input
• On-chip 4 deep read and write buffer
• On-chip DMA arbiter
• Flexible burst/simple block bus interface
• Multiplexed address and data bus for low cost packaging,

simplicity of use
• Base versions use fixed address translation to simplify

software
• Extended architecture versions use 64-entry, fully asso­

ciative Translation Lookaside Buffer (TLB) to support page
mapping and virtual memory
The R3051 RISController combines a similarly featured

R3000A CPU system consisting of over 50 LSIIMSI parts into
a single integrated chip.

128K I I 128K I
RAM EPROM

..--

c ...
0.9
.~ ~
[:5
Jju

'----I UART I I Counter' I
Timer

Figure 1. System Block Diagram

The lOT Logo, R3051. and RISControlier are trademarks of Integrated Device Technology. Inc.
MIPS and R3000 are trademarks of MIPS Computer Systems, Inc. PAL Is a trademark of AMO.

IDT79R3051™ SYSTEM DESIGN EXAMPLE

DETAILED DESIGN REVIEW
The following sections give a detailed review of how each

functional block relates specifically to designing with the
R3051 RISControlier. Particular attention is focused on
alternative design strategies that could reduce parts count
and improve performance as well as on a description of the
original design. The sUbsystem block designs include:

.• Analog reset logic
• A PAL-based memory controller (3x PALs)
• Address de-multiplexer (4x IDT74FCT373T)
• Data transceiver (4x IDT74FCT623T)
• 128kB of SRAM (4x IDT71256 32kx8 45ns SRAM)
• 128kB of EPROM (4x 27256 32kx8 125ns EPROM)
• 68681 DUART
• 8254 Timer
• Interrupt controller (1x PAL)
• Off-card connector

Reset, Reset Vector, and Clock Buffer Circuitry
The Reset signal is based on a linear integrated circuit, a TI

TL7705A supply voltage supervisor with a Power-On Reset
Generator. A 1 J-lF capacitor is used to program the reset
generator for a 13 ms Reset period.

Note that because the R3051 synchronizes the Reset input
signal internally, an RC circuit can be used instead. An
example is to pull Reset high with a resistor of about 10K
Ohms, tie Reset to a 22 J-lF capacitor which is tied to ground,
and tie Reset to a push button switch that is tied to g round. The
example board can be reprogrammed and populated to ex­
periment with Reset.

Certain configuration options (the reset vector) are se­
lected in the R3051 by using the interrupt pins at the rising
edge of Reset. On the example board t the interrupt pins are
simply pulled up (or down) since Slnt(2:0) are not used in this
system (software can permanently mask these interrupt inputs
in the Status Register). However, if they are used (via the
expansion connector) they would need to be multiplexed with
the reset function. There are a number of techniques to
perform this multiplexing: for example, if the interrupting agent
is not capable of tri-stating its interrupt during Reset, an ex­
ternal multiplexer such as an IDT74FCT257T can be used,
with the enable always tied active and the select tied to Reset.
If the interrupting agent tri-states its interrupt during Reset,
then using simple pull-ups or pull-downs will still operate
properly.

The clocks on the board are buffered by an
IDT7 4FCT240C(T) inverting tri-state buffer. This buffer was
selected partially to provide a board testability path for inject­
ing a test clock, as well as to buffer the signals to increase their
drive. The primary reason for the buffer, however, is to invert
SysClkto form SysClk, the signal that is used to clock the state
machines on this board. Buffer output pins closest to the
ground pin (pins with the lowest pin inductance) were used
first to help lessen potential noise and ground bounce prob­
lems. The CIk2xln oscillator is socketed, so that the board
may be populated with different speed parts.

In this design, the FCT240C(T) enables are pulled down to
be active all of the time. Since SysClk does not tri-state when

2

APPLICATION NOTE AN-8S

Tri-State (Slnt(1)) is active during the reset vector, it is helpful
to an ATE programmer to be able to tri-state the inverter.

Memory Controller
The example board's Memory Controller consists of three

22V10 PALs. The first PAL is used for address decoding, the
second for wait state and cycle counting, and the third for byte
enables. The PALs are functionally described in the following
paragraphs. The PAL equations are included in the appen­
dices. The PALs are all placed in sockets, and thus can easily
be reprogrammed for various experiments.

Address Decoder
The Address Decoder PAL, MEMDEC.JED, uses Ad­

dress(31 :17) to generate chip selects. The chip selects are
decoded according to the 7RS382 address map as described
in the 7RS382 Hardware User's Guide. Three spare I/O pins
are provided, which could be used to decode additional chip
selects. These spare outputs are in place of the 'USER
CS1 X*' chip selects provided for on the 7RS382 board, but not
explicitly supplied by this example board.

The address decoder does not wait for ALE to begin
generating the chip-select outputs. It does this so that
maximum performance may be achieved, since the Chip
Select outputs will be generated earlier in the transfer. However,
as a result, the CS outputs may tend to "glitch" as a valid
address is driven. Thus, the Read Enable and Write Enable
seen in the memory system must be synchronized so that they
are valid only within the time that the CPU is attempting a read
or write transfer. This combination allows maximum perfor­
mance: address and chip enables are seen early in the
transfer, but the Read and Write Signals are generated syn­
chronously to insure proper system operation.

One of the extra I/O pins can be used as a test enable input
to tri-state the outputs for board level ATE. Some systems will
not need to decode as many address bits or may have a fixed
map, and thus may able to use FCT138's or 16V8's to do the
address decoding instead of the relatively expensive 22V10
part.

Memory Cycle Controller
The purpose of the Memory Cycle Controller is to provide

a wait-state generator which stalls the R3051's Bus Interface
Unit, so that various types and speeds of memory can be
used. The Memory Cycle Controller is implemented with a
22V10 PAL called MEMCONT.JED. Note that this PAL was
selected in order to make the PAL equations more readable.
A lower cost solution may implement the state machine in two
16R8 PALs.

The Memory Cycle Controller allows various speeds of
memory devices to be used, by using the throttled read
supported by the R3051 bus interface. Other kinds of trans­
actions are treated as simplified cases of the throttled read.

The basic state machine looks forthe start of a read orwrite
transaction by looking for an asserting edge of Rd orWr. When
a transaction is begun, the state machine starts a 5-bit binary
up counter, C(4:0). C(4:0) then increments on each SysClk
rising edge. C(4:0) is used as the basic timing master for all

IDT79R3051 Thf SYSTEM DESIGN EXAMPLE

of the other control signals generated in the state machine.
In the memory scheme used here, rather than search for

the negating edge of Rd or Wr at the end of the transaction, a
CycEnd synchronous decoder is used to tell the C counter
when the end of the memory cycle occurs. This type of
strategy is used because the de-asserting edges of Rd and Wr
occur within the setup and hold times of a buffered/inverted
(FCT240C(T)) SysClk. Typically, the de-asserting edge of Rd,
Wr, and Burst should not be used to control a SysClk based
state machine. Similarly, the rapid negation of ALE by the
processor makes it difficult to synchronously sample ALE
when using a state machine driven by a buffered clock.

CycEnd serves to synchronously reset the state machine
when a de-asserting Rd or Wr edge is expected, whether or
not the Rd or Wr de-asserting edge meets the setup and hold
times of the state machine. Another output, EnStart is used to
start the byte enables by waiting a number of cycles before
asserting. The amount of time the transfer waits is used to
allow drivers used in the previous transfer to tri-state, and may
be necessary in systems which employ devices whose output

SysClk

Wr \
C(4:0) X 0 X X

Ack

En Start \
CycEnd

APPLICATION NOTE AN-a6

disable time is long relative to the system clock frequency.
Other outputs from the Memory Cycle Controller PAL

include the R3051 transfertermination inputs RdCEn, Ack, and
Bus Error. On a read transfer, Burst and one of the Chip En­
able inputs from the Address Decoder are used to determine
the timing and quantity of RdCEn signals to be asserted forthis
transfer (according to the requested transfer size and the
memory device speed).

Ack is asserted at the end of a write cycle to indicate
completion of the transfer, and optionally towards the end of
a Quad Word (Burst) read cycle. A description of the various
kinds and options of read and write cycles is thoroughly
explained in the R3051 Family Hardware User's Guide. The
number of cycles before and between the assertion of Ack and
RdCEn is programmable, allowing flexibility for various types
of memories.

Finally, the BusError output is used to end an undecoded
memory cycle. In the R3051 , Rd is negated one-half cycle
after the Bus Error input is asserted.

/
2 X 3 X 0

\ /

/

\ I
Figure 2. Timing of CYCEIld

Other Approaches
Of course, alternative methods and techniques to memory

interfacing with an R3051 family CPU exist. Four approaches
easily implemented in discrete components include:
• using a SysClk based CycEnd counter (as used in this

example)
• using asynchronously resettable registers for the counter
• using interlocking SysClk and SysClk registers
• using an unbuffered SysClk

All of these methods can be used to design for the clocking
scheme of the R3051 Family, which uses both the rising and
falling edges to control its outputs. The use of both edges of
the clock allows the R3051 to mitigate the 1 clock inter­
transaction latency that is associated with most other CPUs
that need the extra clock to fixup and start new memory cycles.
However,because the R3051 Family asserts and de-asserts

3

its edges the same way on both Rd and Wr cycles, specific
methods can be employed so that the memory system is
always clocked from one edge of SysClk. An example of this
is the CycEnd method used on this board, which ignores the
edges that are not synchronized with the state machine.
Although traditional high-performance CPUs require complex
state machines to operate efficiently, the beauty of the R3051
family is the simplicity of its interface. Memory control state
machines forthe R3051 family are really only minor variations
on traditional wait-state machines, and can also easily take
advantage of the 1/2 clock inter-transaction savings provided
by the CPU interface.

Each of the four approaches has advantages as well as
drawbacks relative to each other. The following paragraphs
will give a brief description of each technique. Each of the
methods could be used by themselves or combined with one

IDT19R3051™ SYSTEM DESIGN EXAMPLE

or more of the other methods, to achieve the optimal price/
performance/parts count for a given application. Systems
employing dedicated interface chips (such as the IDT R372x
family, or customer specific ASIC or Gate Array devices), may
choose to make different trade-offs than those using discrete
component based solutions.

Using SysClk and generating a Cycle End indicator
The SysClk based CycEnd approach as described above

is straightforward because of its similarity to traditional wait­
state machines. As mentioned above, it does not require the
terminating edge of Rd or Wr to complete a transaction.

The system implemented in this design example is limited
in speed by:

tclkl2 >= t240 + tpalco + t3051 setup + tcap + twire

which works out to 28 MHz for a 10 nsec 16V8, over 40 MHz
for a 5 nsec 16R8 PAL, and 33 MHz for a 10 nsec 22V1 0 PAl.

Using Asynchronous Reset to terminate the Cycle
Counter

The second potential method, which uses an asynchro­
nous reset to terminate the cycle, requires AND'ing together
Rd and Wr into the the reset line of the counter C(4:0) and can
be demonstrated by reprogramming the PAL on the example
board. The reset-to-valid output, reset width, and the reset
recovery time to clock are among the speed limiting paths in
this approach when implemented in PALs. Unfortunately, the
reset-to-output delay of a PAL is usually less optimized and
relatively slow.

tasyncreset <= tclkl2 - trdn - tcap - twire

For example, a 20 MHz system would require a reset-to­
output delay of 17ns, which can be found in a 10 nsec 22V1 0
PAL (with a 15 nsec reset to valid output data time).

Using interlocking PALs clocked on opposite edges
The third potential approach uses a SysClk based register

to detect asserting edges and aSysClk based registerto detect
de-asserting edges. The outputs of each ofthe PALs interlock
by controlling the outputs of the other PALs. This allows the
flexibility of seeing all edges and being able to control outputs
optimally by using any 1/2 clock edge (such as output enables).
Such an approach obviously requires more PALs, and is
somewhat speed limited by:

tclkl2 >= t240 + tpalco + tpalsetup + tcap + twire

which works out to 20 MHz for a 10 nsec 16V8 PAl.
In systems using chips designed specifically to interface to

the R3051 family (such as the IDT R3721 DRAM controller),
this approach is simpler to implement and leads to the highest
levels of performance.

Using an unbuffered SysClt __
The fourth potential approach uses an unbuffered SysClk

based state machine. This leads to the requirement of having

4

APPLICATION NOTE AN-a6

o hold time on the registers as well as a 2 nsec minimum
propagation delay time to meetthe R3051 timing requirements
(note that using a buffered SysClk instead of the unbuffered
version would require negative hold time on the registers).
Despite these restrictions, some PALs can be found that meet
all of these requirements. This approach leads to a one cycle
latency in reacting to R3051 output assertions. An asserting
Rd orWrwould beseen aclocktoo late to bring RdCEn orAck
low during their first possible sampling clock. Using an
unbuffered SysClk has a speed advantage over the other
techniques:

tclk >= tpalco + t3051 setup + tcap + twire

tclkl2 >= t3051 prop + tpalsetup + tcap + twire

which can support designs of 35 MHz for a 10 nsec 16V8 PAL
and well over 40 MHz with a 7.5 nsec 16R8 PAL.

An additional consideration relative to using an unbuffered
SysClk is the amount of loading placed on the clock, and the
impact of additional loading on R3051 AC parameters. Of
course, when using a single chip memory controller such as
the IDT R3721 or a customer designed ASIC, these loading
considerations are minimal.

In summary, the R3051 Family uses both edges of the clock
to assert control signals in order to reduce inter-transaction
delay between external bus cycles. However, by using one or
a combination of the above techniques in a design, a tradi­
tional wait-state machine can still be used with the addition of
only minor variations.

Read and Write Enables
The Read and Write Enables PAL, MEMEN.JEO, uses

EnStart and CycEnd to control the initiatio~nd length of the
output enable and write enable assertions. Rd and Wr are used
to select between read and write cycles. Note that it would
have been possible to combine individual bank selects with
the address decoder PAL, rather than use a distinct PAL to
control the timing of the assertion of Write and Read Byte
Strobes.

On read cycles, RciEri is asserted as the system's primary
output enable signal. Rd DataEn is used to enable the FCT623T
data transceiver bank. RdDataEn in most systems would
simply be 'DataEn' as supplied straight from the processor.
This system provides Rd DataEn in case other transceiver
banks are added to the system.

The byte enables are used to support partial word writes
which are used during byte, halfword, and tri-byte operations.
Write cycles combine the byte enables, BE(3:0), with Wr,
EnStart, and CycEnd to form the write enable outputs
WrEn(D:A) which are attached to the byte banks within the
memory system. Whether or not the system is little or Big
Endian, WrEn (A) is always attached to the LSB. WrEn(O:A) can
also be implemented using an FCT257T multiplexer.
WrDataEn is used to control the FCT623T data transceiver
bank and must be held extra long to provide memory data hold
time.

IDT79R3051™ SYSTEM DESIGN EXAMPLE

Finally, the Byte Enable PAL also has a synchronized
Pow Reset output called R8s"8f and a "guarded" G UARTCS. The
guarded chip select, GUARTCS is an example of interfacing
R3051 signals to a Motorola-type I/O Device as opposed to an
Intel-type I/O Device.

Motorola-type devices multiplex their read/write input pin
and expect a data strobe pin to validate the data out or to latch

Rd \
C(4:0) X 0 X X

RdCEn

EnStart \
CycEnd

RdEn

RdDataEn

APPLICATION NOTE AN-a6

the data in, while Intel-type devices have separate read and
write strobes. Since the MC68681 DUART is a Motorola
device, the data strobe must start late and end early, so that
read/write is held throughout that period. Additionally, the
MC68681 uses its chip select pin as a data strobe. As a data
strobe, it is important not to have decoder glitches on the chip
select since reads in I/O devices are often used to update

I
2 X 3 X 0

\ I

I

\ I

\ I
\ I

Figure 3. Timing Diagram of RdEn

SysClk

Wr \ I '\
C(4:0) X 0 X X 2 X 3 X 0 X x

Ack \ I
EnStart \ I

CycEnd \ I
WrEn(A) \ I

WrDataEn I \
Figure 4. Timing Diagram of WrEn(A)

5

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN·86

Wr \~----------------------------------
C(4:0) X",,--_O _-.lX'--__-.IX'--__ 2 _-.lX'--__ 3_-.lX'--__ 4 _-.lX'---_5 _

\~-----------------------

\~--
GUARTCS \~------------------

Figure 5. Timing Diagram of Start of GUARTCS

Wr 1 \
C(4:0) X __ 6_---IX'-____ '-____ _ 7 X 0

1 \'--------------1

1

1

-------------------1;-
GUARTCS --------------11

Figure 6. Timing Diagram of End of GUARTCS

6

IDT79R3051™ SYSTEM DESIGN EXAMPLE

FIFO pointers. Thus, the guarded GUARTCS uses EnStart
and CycEnd to shorten up UARTCS. Finally, WrEn is pro­
vided to extend Wr to allow additional data hold time at the end
of the write cycle. WrEn could easily be inserted with another
OR term into WrEn(A).

Address Latch and Transceiver De-multiplexer
The address latch bank consists of four FCT373T 8-bit

transparent latches. ALE is used for the latch enable on the
FCT373T's. The transparent phase allows extra address
decoding time during the time that ALE is high; the outputs of
the latches are fed directly to the address decode PAL and to
the memory devices. In orderto insure that address hold time
to the latches are met, it is important to take care with the use
of the ALE signal, The number and length of the ALE traces
is critical and should be kept to a minimum.

Rather than use FCT373's, DRAM systems may want to
use FCT821's or FCT823's, which are wider latches. RAS/
CAS address multiplexing can be performed by sequencing
the output enables of the latches and having the outputs of the
latches tied together and driving the DRAM address bus.

The data transceiver bank on the example board uses four
FCT623T 8-bit transceivers. FCT623T's were chosen over
the similar 10-bit FCT861's and 9-bit FCT863's simply to
reduce pin count. The FCT861/3's provide a more conven­
tional interface, since both output enables are active low,
instead of one enable active high, and the other active low as
in the FCT623T's. However, since this system uses PALs to
control the transceivers, the use of FCT623's poses no
additional complexity to the design.

FCT623T's were selected instead of FCT245's because of
the ease of interfacing to dual output enable pins instead of a
direction and enable pins as in the FCT245. Interfacing with
FCT245 controls would ideally require that the direction con­
trol only be changed when the output enable is disabled. This
requires extending a combined (latched) Rd and Wr based
signal for an extra cycle at the end of a memory transaction,
which may be the beginning of the next memory cycle. Unless
the direction pin is controlled with a SysClk based state ma­
chine, a signal like EnStart would be necessary to keep the
enable pin de-asserted in the subsequent cycle until the
direction pin control becomes valid. Some systems with high
noise tolerance, e.g., IBM-PC adapter boards, forgo the extra
cycle ideal and simply bus contend for a very short time ~a few
ns) into its memory system by having the read strobe directly
control the direction. DataEn, output from the CPU, can be
used in such systems to simplify control signal generation.

When there are no pending DMA, read, or write requests,
the R3051 tri-states the AlO(31 :0) bus during these non-bUS
clock cycles to reduce power consumption. One can optionally
add external pull up or pulldown resistors so that the AlD(31 :0)
bus is always defined for board level ATE and so that the input
pins of the latches and transceivers are stabilized.

Finally, systems that can output disable (oe to Z-state) all
memory readable devices within:

tdisable < tclkl2 - t3051 dataenn + taddr - tcap - twire

might not require the transceiver bank and thus could reduce
the parts count by 4.

7

APPLICATION NOTE AN-86

EPROM and Static RAM Memory
The memory on the example board is populated with 125

nsec Erasable PROMs (EPROMs) and 45 nsec Static RAMs
(SRAMs). Four 27C256 32Kx8 EPROMs are used to form
128K bytes of ROM. The EPROMs are placed in sockets and
thus can easily be removed for reprogramming or replacement;
alternative designs may wish to add circuitry to allow in-board
programming of the EPROMs (e.g. Flash Erase EPROMs).

The EPROMs have a relatively long output disable time (oe
to z-state), typical of ROMs and thus require data buffers to
prevent contention on the multiplexed AD(31 :0) bus, since the
following equation is not met:

tclkl2 >= tdisablecontrol + tdisable - taddr + tcap + twire

In addition, the disable time for these EPROMs is long
enough that, except for relatively slow systems (under 20
MHz), extra clocks need to be added to the next bus cyc~e ~o
prevent bus contention with other memory banks. This IS
determined by:

tclk >= tdisablecontrol + tdisable - tdata + tcap + twire

The SRAM bank is formed using four IOT71256 32Kx8
SRAMs for a total of 128K bytes. The RAM chips have
common data I/O pins, separate read and write strobes, and
chip selects. RAMs without a separate read strobe (out~ut
enable pin) may require more complex address decoding
when used in a multiple bank configuration.

DUART Timer, and Interrupt Controller
An MC68681 DUART and an MAX235 RS232 transceiver are

used to form two RS232 serial communication links. The OUART
control registers are word addressed, but only 0(7:0) are used. The
MC68681 is an example of a Motorola-type I/O interface as explained
above.

An iP8254 timer/counter chip is used for a real-time clock
or timer. The iP8254 is an example of an Intel-type I/O
interface. The iP8254's need for separate read and write
strobes matches up well with the R3051.

Software control of these chips is best described by their
respective data sheets. Typically, most software programs for
the 7RS382 have used the DUART in a polling mode and the
timer in a square wave mode. Interrupts Int(5:3) are contr~lIed
by UARTlntOC, Timer OutS, and Timer OutA respectlve~y
from MSB to LSB. The 16R8 PAL, called MEMINT.JEO, IS
used to control these interrupts latches in the assertion
transition of the original interrupt lines.

The controller holds the interrupt line to the processor for
Timer A and Timer B until they are acknowledged (as required
by the R3051). Acknowledgement is indicated by reading the
interrupt controller at Vi rtual Address BF80001 0 and BF800014
(Physical Address 1 F80001 0 and 1 F800014) respecti~ely.
This action incidentally reads extraneous data from the TImer
chip itself on D(7:0). The DUART interrupt must be ac­
knowledged by using the DUART control registers.

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

The output disable to data in z-state time for these I/O BusReq and BusGnt pins are not presently used on this board.
peripherals is relatively long, as is typical for I/O devices. This If DMA is to be used, the R3051 control outputs Rd, Wr, Burst,
forms the critical timing path forthe placement of EnStart in the DataEn, and ALE are pulled high or low so that they remain
Memory Controller and Memory Enable PALs. inactive when tri-stated.

Expansion Connector SCHEMATICS AND PAL EQUATIONS
Two 50-pin connectors are provided which bring out the Appendices include the System Design Example Board

R3051 RISController pins to allow off-board expansion. The Schematics and the PAL equations.

AD(O) 54 AD(o).....----
55 AD(1)==

R3051 AD(1)
56 AD(2):=

AD(2)
59 AD(3»== PLCC-84 AD(3)
60 AD(4»):= AD(4)
61 ADL5):= AD(5)
62 ADL6~ AD(6)
63 AD(7)=:

AD(7)
64 AD(8)=:

AD(8)
67 AD(m)=:

1J!.
AD(9)

68 AD 10)=: RSVD(O) AD(10)
)== 1Jl.. RSVD(1) AD(11) 69 AD 11

12 RSVD(2) AD(12) 70 AD(12)==

1Jl.. RSVD(3) AD(13) 71 AD(13)==

1..§. RSVD(4) AD(14) 72 AD(14 >=
AD(15) 75 AD 15 >=

76 AD 16 >== AD(16)
77 AD 17) >== AD(17)
78 AD 161.>==

---..... SINTN(O) 27
AD(18)

79 AD 19»=: SINTN(O) AD(19) =< SINTN(1) 26 SINTN(1) AD(20) 80 AD2Ql)==
;::::::::(SINTN(2) 25 SINTN(2) AD(21) 83 AD 2tl)==
;::::::::(INTN(3 24 INTN(3) AD(22) 84 AD 22»=:
p=(INTN(4 23 INTN(4) AD(23) 1 AD 23 >==
p=(INTN(5J 20 INTN(5) AD(24) 2 AD 24 >==
'---' 3 AD 25 >= AD(25)

4 AD 26 >= AD(26)
7 AD 27 >=

,---..... BRCOND(O) 33
AD(27)

8 AD 28 >=
;::::::::(BRCOND(1) 30

BRCOND(O) AD(28)
9 AD 29 >==

;::::::::(SBRCOND(2) 29
BRCOND(1) AD(29)

10 AD 30 >=
;::::::::(SBRCOND(3) 28

SBRCOND(2) AD(30)
11 AD 31)==

'-----'
SBRCOND(3) AD(31)

ADDR(2)'--
ADDR(2) 51

52 ADDR(3
ADDR(3)

~ ACKN 36 ACKN RON 45 RDNr-

F=<. RDCENN 35 RDCENN WRN 44 WRN)=:

:===<: BUSERRORN 37 BUSERRORN BUSGNTN 39 BUSGNTN)==

:===<: BUSREON 34 BUSREON ALE 46 ALE)==
L..-.../

DATAENN 43 DATAENN)==

BURSTNIWRNEARN 53 BURSTN):=

DIAG(O) 47 DIAG(O) "'--

48 DIAG(1)"
RESETN 38 RESETN DIAG(1)
CLK2XIN 14 CLK2XIN SYSCLKN 40 SYSCLKN

Figure 7. R3051 RISController

8

IDT79R3051™ SYSTEM DESIGN EXAMPLE

+5V

4.7K
TL770SA

7 SENSE VCC 8

2 RESINN 2 RESIN RESET 6

16

4.7K

CT 3 CT RESET ..."S:-_ P_O_W_R_E_S_E_T-<N

~ GND U32 REF 1

1UF~ANDt r REF

TO.1UF

Figure 8. Reset Logic

TESTEN(4)
TESTEN(O)

+5V
L~

3.6864 MHZ

OSC
VCC ~ ~

19

Q 8 IOOSC ,1-.-L GND
..-i

6
SYSCLKN 8

~ OSC
~ VCC ~

OSC2XIN ~
...-l Q 8 11

GND

4.7K:
>

> 4.7K ,>

-'-
!6 !6

- ~

+5V

4.7K 4.7K

16

+5V

FCT240

OEA
OEB

~ DAO QAO
DA1 QA1 ~

QA2
14

DA2
12

DA3 QA3
~ DBO QBO

DB1 OB1 p..g.
DB2 OB2 ~

OB3
9

DB3

Figure 10. Clock Logic

9

APPLICATION NOTE AN-86

16 16

4.7K 4.7K

SINTN(O)
SINTN 1
SINTN 2

BRCOND 0
BRCOND 1

SBRCOND 2
SBRCOND 3

4.7K 4.7K

16 16 16

BUSREQN

Figure 9. Unused Inputs

IOCLK
SYSCLK

CLK2XIN

IOOSC

IDT19R30S1™ SYSTEM DESIGN EXAMPLE

NOTES:
MEMSPAREO-·CARDCSNIXCSNO
MEMSPARE1 -' C4 I WRlASTN I WORlDBOOTN
MEMSPARE2·· TESTEN I SHADOW RAM I DATAENN I XCSN1

22V10

A(17) 1 ClK A(28) 13 IN10 1/09 A(27) 11 IN9 1/08 A(26) 10 IN8 1/07 A(25) 9 IN7 1/06 A(24) 8 1N6 1/05 A(23)
7 INS 1/04 A(22)
6 IN4 1/03 A(21) 5 1N3 1/02 A(20)
41N2 1/01 A(19) 3 1N1 A(18) 1/00
2 1NO

+5V
MEMDEC.JED

T
~

16 16 16
(~4.7K< ~4.7K< ~4.7K
(> .~ > .~ > 22V10

---.. SYSClK 1 ClK
~ TESTEN(1) 13 IN10 1/09
~ MEMSPARE(2) 11 IN9 1/08
~ MEMSPARE(O) 10 IN8 1/07
~ TIMERCSN 9 IN7 1/06
~ UARTCSN 8 IN6 1/05
~ EPROMCSN 7 INS 1/04
~ RAMCSN 6 1N4 1/03 F===< BURSTN 5 1N3 1/02 F===< WRN 41N2 1/01 F===< RDN 3 1N1 F==< RESETN

1/00
L-.../ 2 INO

~ MEMCONT.JED
4.7K~

< >
16

-=-
22V10

1 ClK
13 IN10 1/09
11 IN9 1/08
10 IN8 1/07

9 IN7 1/06
8 IN6 1/05
7 INS 1/04
6 IN4 1/03
5 IN3 1/02
41N2 1/01
3 1N1 1/00
2 1NO

MEMEN.JED
4.7K

16

23
22
21
20
19
18
17
16
15
14

23 (CO)
~(C1)
~(C2)
20
19
18
17
16
15
j.5(C3)

23
22
21
20
19
18
17
16
15
14

Figure 11. Memory Controller

10

APPLICATION NOTE AN-86

+5V

RAMCSN
EPROMCSN

UARTCSN
TIMERCSN

MEMSPARE 0
MEMSPARE 1
MEMSPARE 2

4.7K

16

-=- +5V

I'
16 16 16

> > ~4.7K ~4.7K< ~4.7K(
>

ACKN.,,--
RDCENN):::=

CYCENDN):::=
BUSERRORN):::=

ENSTARTN>=
MEMSPARE(1) >=

'--

+5V
~

16
> 4.7K

RESETN
WRENNA
WRENNB
WRENNC
WRENND

WRENN
WRDATAEN

RDENN
RDDATAENN

GUARTCSN

+ 22UF

T

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

WROATAEN

ROOATAENN

.--.. 0(31:0)
~

AO(31:0)
~ 74 FCT623T

TESTEN(2) ~ GAB
ALE 74 FCT373 .-----1l!. GBA

47KJ
AO(O) 3 DO 00 2

BEN(O) AD 0 2 A1 B1 18 DO
VAO(1) 4 01 01 5 BEN(1)'\.. VAO 1 3 A2 B2 17 01,'\..
VAO(2) 7 02 02 :

BEN(2)'\.. VA02 4 A3 B3 16 o 2,'\..
/AO(3) 8 03

BEN(3)'\.. VA03 5 A4 B4 15 o 3,'\..

I6 /;40(4) 13 04 g! 12 A(4) '\.. VA04 6 A5 B5 14 o 4,'\..
VAO(5) 14 05 05

15 A(5)'\.. VA05 7 A6 B6 13 o 5,'\..
VAO(6) 17 06 06

16 A(6)'\.. VA06 8 A7 B7 12 o 6,'\..
VAO(7) 18 07 Q7 19 A(7)'\.. VA07 9 A8 B8 11 o 7,'\..

V t---1.L LE '\.. V '\..

~ OE

74FCT623T
.-..-L GAB

74 FCT373 t-r---lll GBA
AD 8) 3 DO 00 2 A(8 AD 8) 2 Al Bl 18 0(8)

/AO 9) 401 01 5 A(91'\.. VA09) 3 A2 B2 17 0(9)'\..
/AO 10 7 02 02 6 A 10 '\ VAO 10 4 A3 B3 16 0(10)'\..

/AO 11 8 03 03 9 All '\ VAOll 5 A4 B4 15 0(11)'\..

VAO 12 13 04 12 A 12,'\.. VAO 12 ~A5 B5 14 0(12)'\..

VAO 13 14
04

05 15 A 13,'\.. /AO 13 7 A6 B6 13 0(13)'\

VAO 14 17
05

06 16 A 14 '\ /AO 14 8 A7 B7 12 0(14),\

VAO 15 18
06

07 19 A 15'\ VAO 15 9 A8 B8 11 0(15),\
07

/ .--11. LE
'\.. / '\

.---1- DE

~
74 FCT623T

GAB
74 FCT373 .-~ GBA

AD 16 3 DO 00 2 A(16) AD 16 2 Al Bl 18 0(16)

/AO 17 4 01 01 5 A(17) '\ VAO 17 3 A2 B2 17 0(17)'\..

/AO 18 7 02 02 6 A(18) '\ /AO 18 4 A3 B3 16 0(18)'\..

/AO 19 8 03 03 9 A(19) '\ /AO 19 5 A4 B4 15 0(19)'\..

VAO 20 13 04 04 12 A(20)'\.. VAO 20 Ji A5 B5 14 0(20)'\..

VAO 21 14 05 05 15 A(21)'\.. VAO 21 7 A6 B6 13 0(21)'\..

VAO 22 17 06 06 16 A(22)'\.. VA022 8 A7 B7 12 D(22).'\..

VAO 23 18 07 07 19 A(23)'\.. VAO 23 9 A8 B8 11 0(23).'\..

/ .----11. LE '\.. V '\..

.-1- OE

1
74 FCT623T

~ GAB

74 FCT373 GBA
AD 24 3 DO 00 2 A 24 AD 24 2 A1 B1 18 0(24)

VAO 25 4 01 01 5 A 25 '\.. VAO 25 3 A2 B2 17 0(25).'\..

VAO 26 7 02 02 16 A 26 '\.. VAO 26 4 A3 B3 16 0(26).'\..

VAO 27 8 03 03 19 A 27 '\.. VAO 27 5
A4 B4 15 0(27).'\..

VAO 28 13 04 04 12 A 28 '\.. VAO 28 6 A5 B5 114 0(28).'\..

VAO 29 14 05 05 15 A 29'\.. VAO 29 7 A6 B6 13 0(29) '\

VAO 30 17 06 06 16 A 30 '\.. VAO 30 8 A7 B7 12 0(30) '\

VAO 31 18 07 07 19 A 31'\.. VA031 9 A8 B8 11 U(31) '\

/ _--1.L LE '\.. V '\ 0(31:0) ..--.

.---1- OE' ~

4.7K
BEN(3:0) ,--,

~

< 16 A(31:4)
<-J

--

Figure 12. Address Latch Data Transceiver Demultiplexer

11

10T79R3051 Th1 SYSTEM DESIGN EXAMPLE

r-----...
~
~
~
P=<
P=<
L...-..../

D(31 "0)

ADDR(2)
ADDR(3)

A{16:4)

71256
10 AD DOO 11 D{O)

9 A1 D01 12 D(1)",\
A(4) 8 A2 D02 13 D(2)_",\

/A(5) 7 A3 D03 15 D{3r,
/A(6) 6A4 004 16 D(4)",\
/A(7) 5 A5 D05 17 D(5),,\
/A(8) 4 A6 D06 18 D(6),,\
/A(9) 3 A7 D07 19 D(7),,\
/A(10) 25 A8 "\
/A(11) 24 A9 /A(12) 21 A10 /A(13) 23 A11 +5V
/A(14) 2 A12 W /A(15) 26 A13 /A(16) 1 A14 vee
/ GND 11 20 CS

--XL WE
~ OE

RAMeSN
WRENNA
WRENNB
WRENNe
WRENNO
RDENN

27256
10 AO DO 11 D(O)

9 A1 D1 12 D(1)'\
A(4) 8 A2 D2 13 D(2)'\

V A(5) 7 A3 D3 15 D(3)'\
VA(6) 6 A4 D4 16 0(4)"'\
VA(7) 5 A5 D5 17 D(5)",\
VA(8) 4 A6 D6 18 0(6)"
/A(9) 3 A7 D7 19 0(7)'\
/A(10) 25 A8 '\
/A(11) 24 A9 +5V /A(12) 21 A10 /A(13) 23 A11

L~

/A(14) 2 A12 /A(15) 26 A13 VPP ~ /A(16) 27 A14 vee f1 / GND

~ es
~ OE

EPROMeSN

NOTE: BANK A - - LlTILE ENDIAN LSB BYTE 0
- - BIG ENDIAN LSB BYTE 3

~
9

A(4) 8
/A(5) 7
/A(6) 6
V A(7) 5
VA 8) 4
VA(9) 3
/A(10) 25
/A(11) 24
/A(12) 21
/A(13 23
/A14) 2
VA(15) 26
VA(16) 1
V

20

,-----ZL
~

~
9

A4 8
VA (5) 7
VA(6) 6
VA(7) 5
VA(8) 4
/A(9) 3
/A 10) 25
/A(11) 24
/A(12) 21
/A(13) 23
/A14 2
/A(15) 26
/A(16 27
/

~ ga.

Figure 13. ROM and Static RAM Memory

12

APPLICATION NOTE AN-a6

71256

AO DOO 11 D{8

A1 D01 12 D{91'\

A2 D02 13 D 10'\

A3 D03 15 D 11'\

A4 D04 16 012'\

A5 D05 17 D 13"'\

A6 D06 18 D 14"'\

A7 D07 19 D 15 '\

A8 "'\

A9
A10
A11 +5V

A12 W' A13
A14 vee

GND 11 es
WE
OE

27256

AO DO 11 0(8)

A1 01 12 0(9),\

A2 D2
13 D(10) '\

A3 D3
15 D(11),\

A4 D4
16 0(12)_,,\

A5 D5
17 D(13)",\

A6 D6
18 D(14)_"\

A7 D7
19 0(15)",\

A8 '\

A9 +5V
A10 L~
A11
A12
A13 VPP ~.
A14 vee f1 GND

es
OE

10T79R3051™ SYSTEM OESIGN EXAMPLE APPLICATION NOTE AN·B6

0(31'0)

71256 71256

~ AO 000 11 0(16) ~ AO 000 11 0(24)

9 A1 001 12 0(17)"'\. 9 A1 001 12 0(25) "'\.
A(4) B A2 002 13 0(18)"'\. A(4) B A2 002 13 0(26)"'\.

VA(5) 7 A3 003 15 0(19)_"'\. /A(5) 7 A3 003 15 0(27)"'\.
V A(6) 6A4 004 16 0(20) "'\. /A(6) 6 A4 004 16 0(28) "
//>..(7) 5 AS 005 17 0(21)" /A(7) 5 AS 005 17 0(29)"'\.
VA(8) 4 A6 006 18 0(22)" VA(8) 4 A6 006 18 0(30)"'\.
VA(9) 3 A7 007 19 0(23)" /A(9) 3 A7 007 19 0(31)"'\.
VA(10) 25 A8 " /A(10) 25 AS "'\.
VA(11) 24 A9

/A(11) 24 A9
VA(12) 21 A10

/A(12) 21 A10 VA(13) 23 A11 +5V /A(13) 23 A11 +5V
VA(14) 2 A12 J

VA(14) 2 A12 J /A(15) 26 A13
V A(15) 26 A13 VA(16) 1 A14 vee VA(16) 1 A14 vee

V GNO ~
V GNO 14

20 es 20 es -=-
~ WE ~ WE
~ OE ~ OE

27256 27256

~ AO 00 11 0(16) ~ AO 00
11 0(24)

9 A1 01 12 0(17)"'\. 9
A1 01

12 0(25) "
A(4) 8 A2 02 13 0(18)"'\. A(4) B

A2 02
13 0(26) "

VA(5) 7 A3 03 15 0(19) " VA(5) 7
A3 03

15 0(27) "
/A(6) 6A4 04 16 0(20)" VA(6) 6

A4 04
16 0(28) "

VA(7) 5 AS 05 17 0(21)" V/>..(7) 5
AS 05

17 0(29)"'\.
/A(8) 4 A6 06 18 0(22)" VA(B) 4

A6 06
18 0(30)"'\.

/A(9) 3 A7 07 19 0(23) " VA(9) 3
A7 07

19 0(31)"
/A(10) 25 A8 " V/>..(10) 25

A8
"'\.

/A(11) 24 A9 +5V
VA(11) 24

A9 +5V /A(12) 21 V A(12) 21
/A(13) A10 L;-' VA(13) 23 A10 L;-' 23 A11 A11 VA(14) VA(14) 2
VA(15)

2 A12
VA(15) 26 A12

~~ 26 A13 vpp ~~ A13 VPP VA(16) 27 A14 vee rr VA(16) 27
A14 vee ~

V GNO V GNO h
~ cs n: cs
~ OE 22 OE

NOTE: BANKO •• LITTLE ENOIAN MSB BYTE 3
•• BIG ENDIAN MSB BYTE 0

Figure 13. ROM and Static RAM Memory

13

IDT79R3051™ SYSTEM DESIGN EXAMPLE

0(7:0) 07
/06
V05
V04
V03
V02

V 01
VOO

AOOR(3:2) 1/
A 5)
A4)

A(S:4)

V AOOR(3)
/AOOR(2)

V
GUARTCSN
WRENN
RESETN

IOClK

SYSClK

AOOR(2)
/AOOR(3)

/
00

VD1
V02
V03
V04
V05
V06
V07
V

+5V
L~

68681

~IACK
OTACK~

19 07 OPO
29

22 06 TXOA
30

18 05 RXOA
31

23 04 IPO
7

17 03 OP1
12

24 02 TXOS
11

16 10 01 RXOS
25 00 IP1

4
28

6
OP2

36 RS4 IP2
S RS3
3 21
1

RS2 IRQ
RS1

3S CS
8 RW

34 RES
~ IP3 OP3 ~
~ IP4 OP4 ~
tmi IPS OPS ~
32 ClK OP6 ~

+5V ~ X2 OP7 t1l5
L~

-~

19 AO
20 A1

8254
8 00
7 01
6 02 OUTO 10 OUT(O)

S 03
4 04
3 05
2 05
1 07 OUT1

13 OUT(1)

.--__ +---+---=-21., CS
.---_-+--I-~22=-t RO

~_W_R_E_N_N_A ______ -+-r_~r-+-~2~3 WR
OUT2 17 OUT(2)

TIMERCSN
ROENN

~ GATEO
~ ClKO

~,J.i GATE1
~ ClK1

'- r12- GATE2
,----+...:.1 =i8 ClK2

APPLICATION NOTE AN-86

O~(O)
TXOA
RXOA
IP(O)
OP(1)
TXOS
RXOS
IP(1)
OP(2)
IP(2)

UARTINTOC

.'\(4)

/

TESTEN(3)

AOOR(2)

/ .------
.----

c=> __ ~IN~T~E~N~N _____________________________ ___

Figure 14. Input/Output Devices

14

IDT19R305fI'" SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

+5V
+5V

~ ,,~

16
<' MAX235
.~4.7K VCC 1L

DB25

8 TI1 T01 3 RTSN(O) 5 RTS
7 TI2 T02 4 TXD(O 3 TXD
9 R01 RI1 10 RXD(O 2 RXD
6 R02 RI2 5 CTSN(O) 4 "' CTS

15 TI3 T03 2 RTSN(1) ..Q -<DTR
16 TI4 T04 1 TXD(1 ~ -<DSR
23 R03 RI3 24 RXD(1) ,.2 -<GND
17 R04 RI4 18 CTSN(1)
22 TIS T05 19 DTRN 1)
14 R05 RI5 13 DSRN 1) DB25

5 <RTS
-1 ,---1Q. EN 3 TXD

,n SD 2 RXD

~ GND 4 "' CTS
6 DTR

20 -
> DSR

4.7K "> ~ f-< GND

1E

-=:!:=--='=' ~

-
-r---

16R8
1

ClK
9 19 INTN(4)

8
IN7 07 .113 (DT1 BN)

7
IN6 06 fs (DT1AN)

6
IN5 05 INTN(3)

5
IN4 04 .lli (DTOBN)
IN3 03

4
IN2 02

.H (DTOAN)
3 13 INTN(5)

2
IN1 01

.1? INO 00
11

OE

MEMINT.JED

>
"> 4.7K

16

~

-
Figure 14. Input/Output Devices

15

IDT79R3051™ SYSTEM DESIGN EXAMPLE

+5V

12V
....-----''''f_< GND
A-----''''+_< GN D

'--+--"""""+-< +5V

Figure 15. Power Connector

4.7K~
16

Figure 17. Spares

16

GND

DIAG(O)
BURSTN
ADDR(2)

GND
AD(O)
AD(2)
AD(4)
AD(6)

GND
AD(8)

AD(10)

AD(12)
AD(14)

GND
AD(16)
AD(18)
AD(20)
AD(22)

GND
AD(24)
AD(26)
AD(28)
AD(30)

GND

J1

GND

DIAG(1)
+5V

ADDR(3)
GND

AD(1)
AD(3)
AD(5)

AD(7)
GND

AD(9)

AD(11)
AD(13)
AD(15)

GND
AD(17)

AD(19)
AD(21)
AD(23)

GND
AD(25)
AD(27)
AD(29)
AD(31)

GND

APPLICATION NOTE AN-a6

Figure 16. 50-Pin Connector

o;:fuUF ~UF

T T
Figure 18. Primary Power Decoupling Capacitors

IDT79R30SP'" SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-a6

J2

GND 1 GND 2
ALE 3 GND 4
RDN 5 DATAENN 6
WRN 7 BUSERRORN 8

ACKN 9 RDCENN 10
BUSREQN 11 BUSGNTN 12

GND 13 GND 14
J5

SINTN(O) 15 SINTN(1) 16
SINTN(2) 17 INTN(3) 18

INTN(4) 19 INTN(5) 20
BRCOND(O) 21 BRCOND(1) 22

GND GND 2
4

SBRCOND(2) 23 SBRCOND(3) 24

GND 25 TESTEN(O) 26
WRDATAEN 27 MEMSPARE(O) 28

6
8
10

RDDATAENN 29 MEMSPARE(1) 30 TESTEN(1) +5V 12

RDENN 31 MEMSPARE(2) 32 IOCLK IOOSC 14
INTENN 33 34 TESTEN(4) +5V 16

35 36 SYSCLK SYSCLKN 18
37 38 TESTEN(O) +5V 20
39 GND 40
41 42

SYSCLKN 43 RESETN 44
45 +5V 46

CLK2XIN 47 48

GND 49 GND 50

Figure 19. 50-Pin Connector

+5V

1,uF
T

+5V

TTTTT TTTTT
~ =

TTTTT TTTTT
~ =

TTTTT TTTTT
Figure 21. Oecoupling Capacitors

17

IDT79R305FM SYSTEM DESIGN EXAMPLE

{TITLE : MEMDEC.LPLC
UPAL 1 MEMORY AND I/O ADDRESS DECODER PAL FOR THE R305X
BEHAVIORAL BUS EMULATOR MEMORY EVALUATION BOARD

PURPOSE: DECODES DEMULTIPLEXED ADDRESS TO GENERATE CHIP SELECTS.
LANG : LPLC - TM OF CAPILANO COMPUTING SYSTEMS
AUTHOR : ANDY NG, IDT INC.
UPDATES: C2503 03-18-91 AP NOTE FIRST RELEASE

}

MODULE UPAL 1
TITLE UPAL 1 ;
TYPE AMD 22V10;

INPUTS;
{ DEMUL TIPLEXED MEMORY ADDRESS LINES}
A17 NODE[PIN1] ; {MSB ADDRESS LINES 31-17
A 18 NODE[PIN2] ;
A 19 NODE[PIN3] ;
A20 NODE[PIN4] ;
A21 NODE[PIN5] ;
A22 NODE[PIN6] ;
A23 NODE[PIN7] ;
A24 NODE[PIN8] ;
A25 NODE[PIN9] ;
A26 NODE[PIN10] ;
A27 NODE[PIN11];
A28 NODE[PIN13] ;

{ OUTPUT FEEDBACK NODES (NEEDED FOR LPLC'ISM) }
A29 NODE[PIN16] ;
A30 NODE[PIN15];
A31 NODE[PIN14];
MEMSPAREO NODE[PIN19];
MEMSPARE1 NODE[PIN18];
MEMSPARE2 NODE[PIN17];

APPLICATION NOTE AN-86

OUTPUTS; { ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW}

{ CHIP SELECTS}
RAMCSN NODE[PIN23] ATTR[CL]; {STATIC RAM CHIP SELECT
EPROMCSN NODE[PIN22] ATTR[CL]; {EPROM CHIP SELECT }
UARTCSN NODE[PIN21] ATTR[CL]; {UNGATED UART CHIP SELECT
TIMERCSN NODE[PIN20] ATTR[CL]; {TIMER CHIP SELECT }

{ I/O PINS USED AS INPUTS}
A29 NODE[PIN14] ATTR[CL]; {MSB ADDRESS LINES 31-17
A30 NODE[PIN15] ATTR[CL];
A31 NODE[PIN16] ATTR[CL] ;
MEMSPAREO NODE[PIN19] ATTR[CL];
MEMSPARE1 NODE[PIN18] ATTR[CL];
MEMSPARE2 NODE[PIN17] ATTR[CL] ;

{ OUTPUT ENABLES}
RAMCSNEN NODE[PIN23EN] ;
EPROMCSNEN NODE[PIN22EN] ;

18

IDT79R30S1™ SYSTEM DESIGN EXAMPLE

UARTCSNEN NODE[PIN21 EN] ;
TIMERCSNEN NODE[PIN20EN] ;
A29EN NODE[PIN14EN];
A30EN NODE[PIN15EN] ;
A31 EN NODE[PIN16EN] ;
MEMSPAREOEN NODE[PIN19EN];
MEMSPARE1EN NODE[PIN18EN];
MEMSPARE2EN NODE[PIN17EN];

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES}
RESETEN NODE[RESET];
PRESETEN NODE[PRESET];

{ 7RS382 COMPATIBLE PHYSICAL ADDRESS DECODE MAP}
{RAM OOOOOOOOH - 0001 FFFFH 32K }
{ EPROM 1 FCOOOOOH - 1 FC1 FFFFH 32K
{ UART 1 FEOOOOOH - 1 FE0003FH }
{ TIMER 1 F800000H - 1 F80002CH }

TERMS; {LPLC ''TABLE'' ALGORITHM TAKES TOO LONG TO COMPILE}

{ NOTES: MEMSPAREO IS BEING USED FOR A BOARD CHIP SELECT
DRIVABLE BY ANOTHER MEMORY SYSTEM. WITHOUT IT
ASSERTED LOW, THIS BOARD WILL NOT ISSUE ANY MEMORY
SIGNALS NOR OUTPUT ENABLE SHARED CONTROL PINS. }

{ NOTES: MEMSPARE1 IS NOT BEING USED. IT COULD BE USED AS AN
OUTPUT IF IT OR THE UPAL2 OUTPUT IT IS CONNECTED TO IS
TRISTATED. }

{ NOTES: MEMSPARE2 IS BEING USED AS A TESTEN INPUT PIN TO
TRISTATE THE OUTPUTS DURING BOARD TESTING. ANOTHER
USE WOULD BE FOR A BOARD CHIP SELECT - MEMCSN.
MEMSPARE2 IS CONNECTED TO A UPAL3 INPUT PIN.

{ I/O PINS USED ONLY AS INPUTS}
A29EN = 0;
A30EN = 0;
A31EN = 0;
MEMSPAREOEN = 0 ;
MEMSPARE1 EN = 0 ;
MEMSPARE2EN = 0 ;
A29 NOT=O;
A30 NOT=O;
A31 NOT=O;
MEMSPAREO NOT = 0 ;
MEMSPARE1 NOT = 0 ;
MEMSPARE2 NOT = 0 ;

{ RESET AND PRESET ARE NOT USED IN THIS PAL. }
RESETEN =0;
PRESETEN = 0 ;

RAMCSNEN = !MEMSPARE2 ;
RAMCSN NOT = !MEMSPAREO AND

!A31 AND !A30 AND !A29 AND !A28
AND !A27 AND !A26 AND !A25 AND !A24
AND !A23 AND !A22 AND !A21 AND !A20

19

APPLICATION NOTE AN·86

IDT79R3051™ SYSTEM DESIGN EXAMPLE

AND IA19 AND IA18 AND IA17

EPROMCSNEN =!MEMSPARE2;
EPROMCSN NOT = IMEMSPAREO AND

IA31 AND IA30 AND IA29 AND A28
AND A27 AND A26 AND A25 AND A24
AND A23 AND A22 AND IA21 AND IA20
AND IA19 AND IA18 AND IA17

UARTCSNEN =IMEMSPARE2;
UARTCSN NOT = IMEMSPAREO AND

IA31 AND IA30 AND IA29 AND A28
AND A27 AND A26 AND A25 AND A24
AND A23 AND A22 AND A21 AND IA20
AND IA19 AND IA18 AND IA17

TIMERCSNEN = !MEMSPARE2 ;
TIMERCSN NOT = IMEMSPAREO AND

END;
END UPAL1.

IA31 AND IA30 AND IA29 AND A28
AND A27 AND A26 AND A25 AND A24
AND A23 AND IA22 AND IA21 AND IA20
AND IA19 AND IA18 AND IA17

20

APPLICATION NOTE AN-as

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-8S

{TITLE : MEMCONT.LPLC
UPAL2 MEMORY CONTROLLER PAL FOR THE R305X BEHAVIORAL BUS EMULATOR
MEMORY EVALUATION BOARD

PURPOSE: PRODUCES READ, WRITE, AND BUS ERROR ACKNOWLEDGE CONTROLS (RDCENN,
ACKN, BUSERRORN) BASED ON A 4 OR 5 BIT COUNTER AND CYCLE END
STALL CYCLE (WAIT STATE) EQUATIONS.

LANG : LPLC - TM OF CAPILANO COMPUTING SYSTEMS
AUTHOR: ANDY NG, lOT INC.
UPDATES: C4B28 03-18-91 AP NOTE FIRST RELEASE

}

MODULE UPAL2 ;
TITLE UPAL2 ;
TYPE AMD 22V10;

INPUTS;
{ REGULAR INPUT PINS}
SYSCLK NODE[PIN1] ;
RESETN NODE[PIN2] ;
RON NODE[PIN3] ;
WRN NODE[PIN4] ;
BURSTN NODE[PIN5] ;
RAMCSN NODE[PIN6] ;
EPROMCSN NODE[PIN7] ;
UARTCSN NODE[PIN8] ;
TIMERCSN NODE[PIN9] ;
MEMSPAREO NODE[PIN10] ;
MEMSPARE2 NODE[PIN11] ;
TESTEN NODE[PIN13];

{ REGISTER FEEDBACK PINS}

{UN-INVERTED SYSTEM CLOCK
{ MASTER RESET }

{ READ
{WRITE }

{ BURST READ I WRITE NEAR
{ RAM CHIP SELECT }

{ EPROM CHIP SELECT
{ UART CHIP SELECT }
{ TIMER CHIP SELECT }

{ }
{ }

{TEST PIN TO Z-STATE OUTPUTS

C WIDTH[5] NODE[PIN15,PIN14,PIN21,PIN22,PIN23];
ENSTARTN NODE[PIN16];
CYCENDN NODE[PIN18];
RDCENN NODE[PIN19] ;
ACKN NODE[PIN20] ;
BUSERRORN NODE[PIN17] ;

OUTPUTS; {ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW}

{ REGISTERED OUTPUT PINS}
{ BINARY UP COUNTER INPUTS MSB TO LSB C4, C3, C2, C1, CO }
C WIDTH[5] NODE[PIN15,PIN14,PIN21,PIN22,PIN23] ATTR[RL];
ENSTARTN NODE[PIN16] ATTR[RL]; {READIWRITE OUTPUT ENABLE START}
CYCENDN NODE[PIN18] ATTR[RL]; {CYCLE END (COMPOSITE ACK) }
RDCENN NODE[PIN19] ATTR[RL]; {R305X READ BUFFER CLOCK ENABLE}
ACKN NODE[PIN20] ATTR[RL]; {R3050X ACKNOWLEDGE }
BUSERRORN NODE[PIN17] ATTR[RL]; {R305X BUS ERROR }

{ OUTPUT ENABLES}
CEN WIDTH[5] NODE[PIN15EN,PIN14EN,PIN21EN,PIN22EN,PIN23EN];
ENSTARTNEN NODE[PIN16EN];
CYCENDNEN NODE[PIN18EN] ;
RDCENNEN NODE[PIN19EN] ;
ACKNEN NODE[PIN20EN] ;
BUSERRORNEN NODE[PIN17EN] ;

21

IDT79R3051™ SYSTEM DESIGN EXAMPLE

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES}
RESETEN NODE[RESET] ;
PRESETEN NODE[PRESET] ;

TABLE;

{ RESET AND PRESET ARE NOT BEING USED.
RESETEN =0;
PRESETEN = 0;

{ PURPOSE: PROVIDES REGISTERED VERSION OF RON AND WRN.

NOTE: QRDN AND QWRN ARE KEPT LOW ONE EXTRA CLOCK BY CYCENDN.
THIS IS BECAUSE THE RISING EDGE OF RON OR WRN MAY NOT
HAVE ENOUGH HOLD TIME FROM THE RISING EDGE OF
(BUFFERRED) SYSCLK.

NOTE: QRDN AND QWRN DO NOT NECESSARILY TRANSITION BACK HIGH
BETWEEN CONSECUTIVE MEMORY CYCLES, E.G., WRITE FOLLOWED
BY A WRITE. }

{ QRDN NOT := RESETN AND (IRON OR (!QRDN AND !CYCENDN» ; }
{ QWRN NOT := RESETN AND (!WRN OR (!QWRN AND !CYCENDN» ; }

{ PURPOSE: C[4]-C[0] PROVIDES A 5-BIT BINARY UP COUNTER. IT IS RESET
ANYTIME RESETN IS ASSERTED AND AT THE END
OF EVERY MEMORY CYCLE AFTER CYCENDN IS ASSERTED.
IT BEGINS COUNTING UP WHEN A READ OR WRITE CYCLE IS
INITIATED.

NOTE: CYCENDN IS ASSUMED TO ASSERT WITH THE LAST RDCENN
ON READS AND WITH ACKN ON WRITES. THUS CYCENDN WILL CLEAR
THE COUNTER WHETHER OR NOT RON OR WRN HIGH TRANSITION
MEETS THE REGISTER SETUP AND HOLD TIME REQUIREMENTS.

{NOTE: TO ADD A GENERAL PURPOSE READY (A.K.A. BUSYN AND WAITN)
INPUT, CHANGE EACH OF THE COUNTER C[4:0] EQUATIONS SO
THAT THEIR VALUE CAN BE HELD WITH AN ADDITIONAL TERM, E.G.:
C[O] := RESETN AND CYCENDN AND (!RDN OR !WRN)

AND ((C[O] XOR 1)
OR (C[O] AND !READY)) ;

A READY INPUT CAN BE USED FOR DUAL-PORT MEMORY INTERFACING,
EEPROM WRITE INTERFACING, ETC.

CEN[O]
CEN[1]
CEN[2]
CEN[3]
CEN[4]

!TESTEN;
!TESTEN;
!TESTEN;
!TESTEN;
!TESTEN;

C[O] := RESETN AND CYCENDN AND (!RDN OR !WRN)
AND (C[O] XOR 1) ;

C[1] := RESETN AND CYCENDN AND (!RDN OR !WRN)
AND (C[1] XOR C[OD ;

C[2] := RESETN AND CYCENDN AND (!RDN OR !WRN)
AND (C[2] XOR (C[1] AND C[O])) ;

C[3] .- RESETN AND CYCENDN AND (!RDN OR !WRN)

22

APPLICATION NOTE AN-a6

1DT79R3051™ SYSTEM DESIGN EXAMPLE

AND (C[3] XOR (C[2] AND C[1] AND C[O])) ;
C[4] := RESETN AND CYCENDN AND (!RDN OR !WRN)

AND (C[4] XOR (C[3] AND C[2] AND C[1] AND C[O])} ;

{ PURPOSE: ENSTARTN OUTPUT PROVIDES THE TIMING FOR THE LEADING
EDGE OF OEN AND WEN STROBES SO THAT 1. THE ADDRESS LINES HAVE
TIME TO BE DECODED AND 2. OE/DATA PINS HAVE TIME TO Z-STATE
FROM READS ON THE PRECEDING CYCLE. THE CYCENDN TERM IS
NEEDED TO HOLD OFF A CONSECUTIVE MEMORY CYCLE, E.G., WHEN
WRITE DEASSERTS AND REASSERTS WITHIN THE SAME CLOCK.
ENSTARTN SHOULD NOT BE USED TO END WRITE TRANSCEIVER
ENABLES AS IT DEASSERTS WITH THE WRITE LINE INSTEAD OF
HOLDING FOR ONE MORE 1/2 CLOCK. }

ENSTARTNEN =!TESTEN;
ENSTARTN NOT:= !MEMSPAREO AND RESETN AND (C >= 1) AND CYCENDN;

APPLICATION NOTE AN-8S

{ PURPOSE: CYCLE END GOES LOW (SYNCHRONOUSLY) DURING THE LAST RDCENN ON
READS AND DURING ACKN ON WRITES. IT RETURNS HIGH
SYNCHRONOUSLY BY INTERLOCKING ON THE COUNTER OUTPUTS
WHICH COUNT ONE GREATER THAN THE ASKED FOR VALUE BEFORE
RESETTING BACK TO ZERO (VIA CYCENDN). THUS CYCENDN WILL
DEASSERT ON THE SAME CLOCK AS THE RDN, WRN, OR BURSTN RISING
EDGES REGARDLESS OF WHETHER OR NOT THOSE RISING EDGES MEET
THE REGISTER'S SETUP AND HOLD TIMES. }

{NOTE: TO FIT CYCENDN INTO A 16V8, TWO OUTPUTS MAY BE NEEDED.

CYCENDNEN = !TESTEN;
CYCENDN NOT := RESETN AND CYCENDN AND (

);

(!RAMCSN AND (C == 02H) AND !RDN AND BURSTN}
OR (!RAMCSN AND (C == 08H) AND !RDN AND !BURSTN)
OR (!RAMCSN AND (C == 03H) AND !WRN)
OR (!EPROMCSN AND (C == 03H) AND !RDN AND BURSTN)
OR (!EPROMCSN AND (C == OCH) AND !RDN AND !BURSTN}
OR (!UARTCSN AND (C == 06H) AND BURSTN)
OR (!TIMERCSN AND (C == 06H) AND BURSTN}
OR ({!BUSERRORN} (C == 1 FH) }

{ NOTE: IN THIS EXPERIMENT MEMSPAREO IS PULLED LOW AND CAN BE
USED TO DISABLE THIS CONTROLLER'S RDCENN, ACKN, AND BUSERRORN.
SINCE MEMSPAREO IS ATTACHED TO THE MEMDEC.LPLC PAL, THE
MEMDEC PAL COULD COMBINE THE CSN'S SO THAT THESE SIGNALS
ARE ONLY DRIVEN WHEN NEEDED. }

{ NOTE: ANOTHER POSSIBILITY IS TO USE MEMSPAREO AS AN EXTRA CHIP
SELECT. }

{ PURPOSE: READ BUFFER CLOCK ENABLE IS USED BY THE R305X TO STROBE
DATA INTO ITS INTERNAL READ BUFFERS. }

{NOTE: IT IS ASSUMED THAT THE UART AND TIMER ARE
IN UNCACHABLE MEMORY SPACE AND WILL NOT BE BURST READ.
IF THEY ARE BURST READ, THE STATE MACHINE LOOPS 4 TIMES.

RDCENNEN =!MEMSPAREO;

23

IDT79R305FM SYSTEM DESIGN EXAMPLE

RDCENN NOT := RESETN AND CYCENDN AND (
(!RAMCSN AND !RDN

);

)

AND ((C == 02H)

)

OR (!BURSTN AND (C == 04H»
OR (!BURSTN AND (C == 06H»
OR (!BURSTN AND (C == 08H»

OR (!EPROMCSN AND !RDN

)

AND ((C == 03H)

)

OR (!BURSTN AND (C == 06H»
OR (!BURSTN AND (C == 09H»
OR (!BURSTN AND (C == OCH))

OR (!UARTCSN AND !RDN
AND ((C == 06H)

)
)

OR (!TIMERCSN AND !RDN
AND ((C == 06H)

)

{ PURPOSE: ACKNOWLEDGE IS PRIMARILY USED TO END WRITE CYCLES. IT
SHOULD BE PULSED ONE (HALF) CLOCK CYCLE BEFORE THE WRITE
STROBE IS NEEDED. ON READ CYCLES, ACKNOWLEDGE WILL
IMPLICITLY BE GENERATED BY THE R30SX, HOWEVER, IF OPTIMAL
TIMING IS DESIRED, ACK SHOULD BE DRIVEN NO SOONER THAN 1
CLOCK BEFORE THE END OF A SINGLE READ AND FOR BURSTS NO
SOONER THAN 4 CLOCKS BEFORE THE END OF THE LAST READ.

ACKNEN =!MEMSPAREO;
ACKN NOT := RESETN AND CYCENDN AND (

(!RAMCSN AND !WRN {WRITE CYCLE}
AND ((C == 03H)

)
)

OR (!RAMCSN AND !RDN AND !BURSTN {READ CYCLE}
AND ((C == OS H)

)
)

OR (!EPROMCSN AND !RDN AND !BURSTN {READ CYCLE}
AND ((C == 09H)

)
)

OR (!UARTCSN AND !WRN AND BURSTN { WRITE CYCLE}
AND ((C == 06H)

)
)

OR (!TIMERCSN AND !WRN { WRITE CYCLE}
AND ((C == 06H)

)

);

24

APPLICATION NOTE AN-86

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-8S

{ PURPOSE: BUSERRORN SIMPLY ENDS A WAYWARD UNDECODED BUS CYCLE. ON
READS IT CAUSES AN EXCEPTION. ON WRITES IT DOES NOT CAUSE
AN EXCEPTION CONDITION FOR THE PROCESSOR. TO DO THAT, LATCH
BUSERRORN AND FEED IT TO AN INTERRUPT PIN OR A BRANCH
CONDITION PIN. }

BUSERRORNEN = !MEMSPAREO ;
BUSERRORN NOT := RESETN AND CYCENDN AND (

(C == 1 FH)

) ;

END;
END UPAL2.

25

IDT79R3051™ SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-86

{TITLE : MEMEN.LPLC
UPAL3 MEMORY READ AND WRITE ENABLE PAL FOR THE R305X BEHAVIORAL BUS
EMULATOR MEMORY EVALUATION BOARD

PURPOSE: GENERATES READ AND WRITE ENABLES FOR MEMORY CONTROLS.
LANG : LPLC - TM OF GAPILANO COMPUTING SYSTEMS
AUTHOR : ANDY NG, IDT INC.
UPDATES: C7C4F 03-18-91 AP NOTE FIRST RELEASE

}

MODULE UPAL3 ;
TITLE UPAL3 ;
TYPE AMD 22V10 ;

INPUTS;
{ DEMUL TIPLEXED MEMORY ADDRESS LINES}
SYSCLK NODE[PIN1] ; {INVERTED SYSCLKN
POWRESETN NODE[PIN2]; { POWER UP RESET
RDN NODE[PIN3] ; { READ LINE }
WRN NODE[PIN4] ; { WRITE LINE }
ENSTARTN NODE[PIN5] ; {ENABLE START
CYCENDN NODE[PIN6] ; { CYCLE END }
BENO NODE[PIN7] ; { BYTE ENABLE 0 }
BEN1 NODE[PIN8] ; { BYTE ENABLE 1 }
BEN2 NODE[PIN9] ; { BYTE ENABLE 2 }
BEN3 NODE[PIN10] ; { BYTE ENABLE 3 }
UARTCSN NODE[PIN11]; {UART CHIP SELECT }
MEMSPARE2 NODE[PIN13] ; { SPARE INPUT }

{ OUTPUT FEEDBACK NODES (NEEDED FOR LPLC'ISM) }
RESETN NODE[PIN23] ;
WRENN NODE[PIN18] ;
WRDATAEN NODE[PIN17] ;

OUTPUTS; { ATTRIBUTES C - COMBINATIONAL, R - REGISTERED, H - HIGH, L - LOW}

{ WRITE ENABLES}
WRENNA NODE[PIN22] ATTR[RL]; {WRITE ENABLE FOR BYTE 0
WRENNB NODE[PIN21] ATTR[RL]; {WRITE ENABLE FOR BYTE 1
WRENNC NODE[PIN20] ATTR[RL]; {WRITE ENABLE FOR BYTE 2
WRENND NODE[PIN19] ATTR[RL]; {WRITE ENABLE FOR BYTE 3 }
WRENN NODE[PIN18] ATTR[RL]; {WRITE ENABLE MOTO-TYPE I/O }
WRDATAEN NODE[PIN17] ATTR[RL]; {WRITE DATA XCEIVER ENABLE

{ READ ENABLES}
RDENN NODE[PIN16] ATTR[RL]; {READ OUTPUT ENABLE (FOR WORDS)}
RDDATAENN NODE[PIN15] ATTR[RL]; {READ DATA XCEIVER ENABLE }

{MISCELLANEOUS CONTROLS}
RESETN NODE[PIN23] ATTR[RL]; {SYNCHRONIZED RESET }
GUARTCSN NODE[PIN14] ATTR[RL]; {GATED/GUARDED UART CHIP SELECT}

{ I/O PINS USED AS INPUTS}
{NONE}

{ OUTPUT ENABLES}
WRENNAEN NODE[PIN22EN] ;
WRENNBEN NODE[PIN21 EN] ;
WRENNCEN NODE[PIN20EN] ;

26

IDT19R3051™ SYSTEM DESIGN EXAMPLE

WRENN DEN NODE[PIN19EN] ;
WRENNEN NODE[PIN18EN];
WRDATAENEN NODE[PIN17EN];
RDENNEN NODE[PIN16EN] ;
RDDATAENNEN NODE[PIN15EN];
RESETNEN NODE[PIN23EN] ;
GUARTCSNEN NODE[PIN14EN] ;

{ ASYNCHRONOUS RESET AND SYNCHRONOUS PRESET NODES}
RESETEN NODE[RESET];
PRESETEN NODE[PRESET];

TABLE;

{ RESET AND PRESET ARE NOT USED IN THIS PAL. }
RESETEN = 0;
PRESETEN = 0 ;

{ PURPOSE: WRITE BYTE ENABLES AND WRITE WORD ENABLE ALLOW
SUFFICIENT TIME FOR THE ADDRESS TO DECODE AND
FOR A VALID CHIP SELECT BEFORE ENABLING THE
WRITE STROBE FOR A SPECIFIC BYTE BANK.

NOTE: BANK A IS THE BIG ENDIAN'S LSB BYTE3 OR THE LITTLE
ENDIAN'S LSB BYTEO. IT ALWAYS HOLDS D(7:0).
BANK D IS THE BIG ENDIAN'S MSB BYTEO OR THE BIG
ENDIAN'S MSB BYTE3. IT ALWAYS HOLDS D(31 :23).

}

WRENNAEN = !MEMSPARE2 ;
WRENNA NOT := RESETN AND (

!WRN AND IBENO AND IENSTARTN AND CYCENDN
);

WRENN BEN = IMEMSPARE2 ;
WRENNB NOT := RESETN AND (

IWRN AND IBEN1 AND IENSTARTN AND CYCENDN
);

WRENNCEN = IMEMSPARE2 ;
WRENNC NOT := RESETN AND (

IWRN AND IBEN2 AND IENSTARTN AND CYCENDN
);

WRENNDEN = IMEMSPARE2 ;
WRENND NOT := RESETN AND (

!WRN AND IBEN3 AND !ENSTARTN AND CYCENDN
);

{PURPOSE: WRENN IS USED TO PROVIDE A WRITE LINE THAT HOLDS
LOW FOR AN EXTRA CYCLE, SO THAT IT CAN BE USED FOR
MOTOROLA-TYPE I/O DEVICES ON THEIR MULTIPLEXED
READtWRITE LINE. }

WRENNEN =IMEMSPARE2;
WRENN NOT := RESETN AND (

(IWRN AND CYCENDN)
OR (IWRENN AND ICYCENDN)

27

APPLICATION NOTE AN-a6

IDT79R30SFM SYSTEM DESIGN EXAMPLE

);

{PURPOSE: WRDATAEN AND RDDATAENN DRIVE THE OUTPUT ENABLE
CONTROLS ON A FCT623T TRANSCEIVER BANK FOR THE
DATA BUS. THE CONTROLS CAN BE USED FOR ANY
DUAL-OUTPUT ENABLE TRANSCEIVER (1 FOR EACH
DIRECTION. OUTPUT ENABLE/DIRECTION CONTROLLED
TRANSCEIVERS (FCT245) REQUIRE MORE INTERFACING
IF OUTPUT CONTENTION IS TO BE AVOIDED BY
ONLY CHANGING THE DIRECTION WHEN THE OUTPUTS ARE
DISABLED. }

{NOTE: WRITE DATA ENABLE DEASSERTS ONE CLOCK AFTER
WRN DOES TO PROVIDE SUFFICIENT HOLD TIME FOR THE
WRITE DATA INTO THE MEMORY (SEE UPAL2 QWRN FOR A
MORE DETAILED EXPLANATION).

NOTE: WRDATAEN IS ACTIVE HIGH FOR THE FCT623T OUTPUT ENABLE
CONTROL. FOR THE FCT861 OUTPUT ENABLES, USE ACTIVE
LOW.

NOTES: THE FIRST OR-TERM ASSERTS WRDATAEN WHILE THE SECOND
OR-TERM DEASSERTS WRDATAEN. }

WRDATAENEN = IMEMSPARE2 ;
WRDATAEN := RESETN AND (

(IWRN AND IENSTARTN)
OR (WRDATAEN AND (IENSTARTN OR ICYCENDN))

);

RDENNEN =IMEMSPARE2;
RDENN NOT := RESETN AND (

IRON AND IENSTARTN AND CYCENDN
);

{PURPOSE: RDDATAENN IS CONNECTED TO THE MEMORY BOARD'S
DATA TRANSCEIVER OUTPUT ENABLE (FCT623T OR FCT861)
AND ONLY ENABLES FOR THIS BOARD'S CHIP SELECTS.
IF THE MEMORY CONTROLLER IS USED FOR ANOTHER
BOARD'S MEMORY, THEN THE TRANSCEIVER OUTPUT ENABLE
SHOULD BE DISABLED FOR THOSE CHIP SELECTS (VIA
MEMSPARE2. }

{NOTE: IN MOST SYSTEMS, R305X'S DATAENN OUTPUT CAN BE
CONNECTED DIRECTLY TO THE TRANSCEIVER ENABLE PIN
INSTEAD OF USING A SYNTHESIZED RDDATAENN. }

RDDATAENNEN = IMEMSPARE2 ;
RDDATAENN NOT:= RESETN AND (

IRON AND IENSTARTN AND CYCENDN
);

{ PURPOSE: RESET SYNCHRONIZES THE POWER UP RESET FOR THE
MEMORY CONTROLLER STATE MACHINES AND FOR THE R305X. }

RESETNEN =IMEMSPARE2;
RESETN NOT := IPOWRESETN ;

{ PURPOSE: GUARDED/GATED UART CHIP SELECT, GUARTCSN GATES

28

APPLICATION NOTE AN-a6

IDT79R3051™ SYSTEM DESIGN EXAMPLE

UARTCSN BECAUSE THE UART BEING USED HAS A MOTOROLA­
TYPE flO DEVICE INTERFACE WHICH MULTIPLEXES ITS
READIWRITE INPUT PIN SUCH THAT THE CHIP SELECT MUST
STROBE IN OR OUT DATA. THIS IS IN CONTRAST TO AN
INTEL-TYPE flO DEVICE INTERFACE WHICH WOULD HAVE A
SEPARATE READ STROBE AND WRITE STROBE AS WELL AS A
CHIP SELECT. IT IS IMPORTANT NOT TO HAVE A
GLITCH (FROM ADDRESS DECODING THE CHIP SELECT) ON
READS IN ORDER TO ALLOW THE 1/0 DEVICE TO UPDATE
FIFO POINTERS, ETC. THUS GUARTCSN STARTS LATE AND
ENDS EARLY, SO THAT READIWRITE IS HELD VALID
THROUGHOUT THE CHIP SELECT. }

GUARTCSNEN =!MEMSPARE2;
GUARTCSN NOT := RESETN AND (

!UARTCSN AND !ENSTARTN AND CYCENDN
);

END;
END UPAL3.

29

APPLICATION NOTE AN-8S

1DT79R305FM SYSTEM DESIGN EXAMPLE APPLICATION NOTE AN-8S

{TITLE : MEMINT.LPLC
UPAL4 MEMORY 1/0 INTERRUPT CONTROLLER PAL FOR THE R305X BEHAVIORAL
BUS EMULATOR MEMORY EVALUATION BOARD

PURPOSE: REPLICATES THE TIMERIUART INTERRUPT CONTROLLER ON THE 7RS382 BOARD.
ADDITIONAL FUSE BITS ADDED FOR 16V8 COMPATIBILITY.

LANG : LPLC - TM OF CAP lLANO COMPUTING SYSTEMS
AUTHOR: lOT INC.
UPDATES: C3F98 01-04-91 16V8 PCB VERSION FIRST RELEASE A.N.

}

{ U24A_382 INTERRUPT PAL}
{ 1-2-90,12-14-89 }
{JEDEC file's CHECKSUM = 379E} {NOTE: 01-04-91 - NOT APPLICABLE TO 16V8}

CONTROL PAL FOR 8254 TIMER'S AND UART INTERRUPT
USED FOR EVALUATION BOARD 382}

MODULE U24A_382;
TITLE U24A_382;
TYPE MM116R8;

{ FUSE BITS FOR 16V8 FAMILY ATTRIBUTES USED AS A 16R8}
FUSE 2048 .. 2079 00000000000000000000000000000000 ;
FUSE 2080 .. 2111 00000000000000000000000000000000 ;
FUSE 2112 .. 2143 00000000000000001111111111111111 ;
FUSE 2144 .. 217511111111111111111111111111111111 ;
FUSE 2176 .. 2193 111111111111111101

INPUTS;

MRESI NODE[PIN2];
UARTINTI NODE[PIN3];
PMRDI NODE[PIN4];
CSTIMI NODE[PIN5];
EA02 NODE[PIN6];
EA04 NODE[PIN7];
OUT1 NODE[PIN8]; {input from Timer output OUT1}
OUTO NODE[PIN9]; {input from Timer output OUTO}

DTOA!
DTOBI
TOINTI

DT1A!
DT1BI
T11NTI

NODE[PIN14]; {feedback}
NODE[PIN15]; {feedback}
NODE[PIN16]; {feedback}

NODE[PIN17]; {feedback}
NODE[PIN18]; {feedback}
NODE[PIN19]; {feedback}

OUTPUTS;

UINT51
OTOA!
OTOBI
TOINTI

OT1A!
OT1BI
T11NTI

NODE[PIN13];
NODE[PIN14];
NODE[PIN15];
NODE[PIN16]; { goes to R3000's UINT3}

NOOE[PIN17];
NODE[PIN18];
NODE[PIN19]; {goes to R3000's UINT4}

30

IDT79R3051™ SYSTEM DESIGN EXAMPLE

TABLE;
{ 8254 TIMER generates 2 square-wave outputs OUTO and OUT1.

When OUTO goes from high to low, this PAL asserts interrupt
TOINT/, which will interrupt R3000 through UINT3.
Same scheme applies to OUT1, T1INT/ and UINT 4.
Reading physical addresses 1F80 0010 and 1F80 0014 (which are
virtual addresses BF80 0010 and BF80 0014 in this 382 board)
will clear interrupt UINT3 and UINT 4, respectively.

This PAL also synchronizes UART interrupt signal}

DTON .- OUTO; {delay TIMER's OUTO through a register}
DTOB/ .- DTON; {delay again}
TOINT/ NOT := MRES/ AND

((NOT DTON AND DTOBI) OR
(NOT TOINT/ AND (NOT EA04 OR EA02 OR CSTIM/ OR PMRDI));

DT1 N .- OUT1 ;
DT1 B/ .- DT1 N;
T1INT/ NOT := MRES/ AND

((NOT DT1N AND DT1BI) OR
(NOT T1INT/ AND (NOT EA04 OR NOT EA02 OR CSTIM/ OR PMRDI));

UINT5/ .- UARTINT/ OR NOT MRES/ ;
{put UART's interrupt through a register to synchronize
it with R3000 clock}

END;
END U24A_382.

31

APPLICATION NOTE AN-86

t;)® DESIGNING A DISCRETE DRAM APPLICATION

CONTROLLER FOR THE R3051 NOTE

RISCONTROLLERTM FAMILY AN-gO
Integrated Device Technology, Inco

By Bob Napaa

INTRODUCTION

The lOT A3051™ RISController™ family utilizes a high­
performance computing core to achieve high performance
across a variety of applications. Further, the amount of cache
incorporated in the R3051 family allow these CPUs to achieve
very high performance even with simple, low speed, low cost
memory sUbosystems.

The R3051 RISController CPU family includes a full R3000A
core RISC processor, and thus is fully software compatible
with the standard MIPS processor. In order to provide high­
bandwidth to the CPU core, the family also incorporates
on-chip up to 8 kB of instruction cache and 2 kB of data cache.
The external memory interface from the R3051 family is very
flexible, and allows a wide variety of implementations according
to the price / performance goals of the application. For a
detailed reference to the system interface of the R3051 family,
the reader is advised to refer to the "R3051 Family Hardware
User's Manual".

This applications note is a design example on the interface
to a non-interleaved DRAM memory SUb-system. The goals of

ADDRESS"BUS

this sub-system are to provide a simple, extensible memory
interface using off-the-shelf components, and to illustrate
basic design techniques for systems using an R3051 family
CPU.

GENERAL DESCRIPTION OF THE DRAM
SYSTEM

Figure 1 illustrates a typical system based on the R3051
RISController family. The R3051 family uses a double­
frequency input clock for its internal operation and provides a
nominal frequency reference clock output for the external
system. This output clock, SysClk,synchronizes the external
memory sub-systems to the R3051.

Memory transactions from the R3051 use a single, time
multiplexed 32-bit address and data bus and a simple set of
control Signals. External logic then performs address
demultiplexing and decoding, memory control, interface timing,
and data path control.

The system shown in Figure 1 runs at 25 Mhz (2x clock =
50 Mhz). The R3051 interfaces to a DRAM system as the main

lOT R3051/52
RISControlier

SysClk 1------,

CONTROL LINES

2880 drw 01

Figure 1. R3051 RISController Family Based System

32

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

memory, to an EPROM system and to various 1/0 devices and
controllers. Address latches decouple the address bus from
the data bus. Address decoders select among the various
external modules. The output clock from the R3051 (SysClk)
is buffered (BSysClk) to reduce the loading effect and to
provide clock drive capability with minimum clock skew for the
system. This applications note will focus on the DRAM control
and data path sub-system.

The main DRAM memory system is based on 1 to 4 banks
of non-interleaved DRAMs with 80 nsec of access time (trac =
80 nsec). The density of the DRAMs used is 256K x 4 to
provide a maximum memory space of 4 Mbytes. The DRAM
memory space occupies the lower 4 Mbytes of the physical
memory space (A21 :AO). Figure 2 illustrates the architecture
of the main DRAM memory system.

Table 1 illustrates the decoding scheme used in accessing
the DRAM memory space. To simplify address decoding,
software will insure that all references to the DRAM memory
occur with address bit A(22) low, and thus only that bit will be
used in the decoding. Address bits A(21 :20) will select among
the four banks, and the Rd and Wr outputs from the R3051
differentiate between read and write accesses.

APPLICATION NOTE AN-90

Each 1 MB bank of DRAMs is individually controlled by
separate RAS and CAS control signals. Thus, each bank may
be independently selected. The banks are arranged so that
each bank represents a single, contiguous range of 1 MB (as
opposed to an interleaved memory structure).

Data buffers isolate the DRAM banks from the R3051 data
bus to reduce the loading effect and to prevent any bus
contentions between the R3051 and the DRAMs from
occurring. Note that this also alleviates concerns about the
relatively slow tri-state times associated with DRAM devices.
The data buffers selected are actually bi-directionallatching
transceivers; the use of a latching transceiver greatly simplified
the timing control of the DRAM accesses, as will be described
later.

DRAM addresses are provided by multiplexing the latched
R3051 address bus, using IDT FBT2827B memory drivers.
This device type was chosen based on its ability to drive large
capacitive loads, such as that found when driving 32 DRAMs.
A single FBT output has sufficient drive to drive all four banks
of the DRAM sub-system.

DRAM
BANKO
-- ...
RASO

---00
CASO

T
DRAM

BANK 1

RAS1 ADDRESS ----+
ADDRESS MUX CAS1 DATA ..

T BUFFERS
FCT543T DATABU

~
..

FBT .. DRAM
2827B BANK 2 ..

s

--RAS2 CONTROL
~ CAS2

T
DRAM

BANK3 .. --
~

RAS3
CAS3

~

DRAM
PAL ~ REFRESH .. CONTROL
~ TIMER

CONTROL SYSTEM FCT161 2880 drw02

BYTE
~ DECODER f-

..... FACT32
BSysClk ~

Figure 2. DRAM Memory System Architecture

33

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

A22 0 0 0

A21 0 0 1

A20 0 1 0

WR 1 1 1

RO 0 0 0

SELECTION READ READ READ
BANKO BANK 1 BANK 2

0 0 0

0 0 0

1 0 1

1 0 0

0 1 1

READ WRITE WRITE
BANK 3 BANKO BANK 1

APPLICATION NOTE AN-gO

0 0 1 1 X

1 1 X X X

0 0 X X X

0 0 1 0 1

1 1 0 1 1

WRITE WRITE READ WRITE NO
BANK 2 BANK 3 OUTSIDE OUTSIDE ACCESS

DRAM DRAM
SPACE SPACE

Table 1. DRAM Memory Space Decoding

In an R3051 system, it is possible to perform a 32-bit read
access even when smaller data elements are requested.
However, on writes, it is important to enable only those bytes
which are actually being written by the CPU. The R3051 bus
interface provides four individual byte enables to indicate
which byte lanes are involved in a particular transfer. The
DRAM sub-system uses a byte decoder (OR gate) to
individually select from 1 to 4 bytes for write accesses. Each
write byte enable is connected to those DRAMs which reside
on that particular byte lane (across the multiple banks)

An 8-bit refresh timer requests the refreshing of the DRAMs
every 9.6 Jlsec. Although this is more frequent than is actually
required by the DRAMs, the use of this value simplified the

RIP*=O

REF _ACK*

WR*=1 &
RO*=1

WR*=O &
WRNEAR*=1&
A22=O

control logic associated with page mode write. DRAMs require
that RAS be maintained low no longer than 10J.l.sec; by
choosing a refresh value smaller than this maximum time, the
system is assured that maximum RAS low time will not be
violated.The operation of the DRAM memory system is
synchronized by 8SysClk.

STATE MACHINE IMPLEMENTATION

A simple state machine is used to perform the major
aspects of DRAM control. The state machine uses a simple
four-bit counter (C(3:0)) to dictate the timing for the DRAM
control and CPU response, and is sequenced using 8SysClk.
There are nine major states to the state machine, as illustrated
in figure 3; these states are dictated by the type of transfer
requested and the state the DRAM control logic was left in by
the prior transfer. Three PALs are required to implement the
entire DRAM control logic.

WR*=1 &
RO*=1

WR*=O & WRNEAR*=1 OR
RO" =0 OR
REF REQ=10R
A22;-1

WR*=O&
WRNEAR*=O&
A22=0

2BBOdrw03

Figure 3. State Machine

34

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

The state machine uses the Reset pulse to reset its internal
states and to synchronize its operation to the R3051. During
the RESET state, it also performs one refresh cycle before
entering the IDLE state.

In the IDLE state, the state machine arbitrates between a
refresh cycle and a bus access. A DRAM bus access is started
whenever Rd or Wr are asserted and A22 is low. A refresh
request is detected using the REF_REO (Refresh_Request)
pulse from the refresh timer.

The state machine supports 4 types of bus accesses:
"Block refill read", "Single read", "Single write" and "Page
write", according to the types of transfers which the R3051
may request.

After a "Single write" or a "Page write" access, the machine
enters the IDLE RAS ASSERTED state. This state is very
much analogous to the IDLE state, except thatthe RAScontrol
signal to the DRAMs remains asserted. This state allows
subsequent "near" writes to be retired using page mode
accesses, which are much quicker than standard accesses.
When the IDLE RAS ASSERTED state must be exited (Le. an
action other than near write is requested) the RASsignal must
be pre-charged prior to another DRAM transaction.

THE DRAM MEMORY SYSTEM
IMPLEMENTATION DETAIL

The DRAM memory system consists of the control system,
the address path and the data path as illustrated earlier in
Figure 2.

PAL System
The state machine and control PAL system consists of 3

standard speed PALs: Pal 1 (PAL22V1 0-1 0), Pal2 (PAL20R8-
10) and Pal 3 (PAL 16R8-1 0). Figure 4 illustrates the control
system and the address path. The PAL equations are included
in the appendix to this applications note.

Pal 1 is driven by SysClk directly. This allows the CIP line
to detect transitions on the Rd and Wr signals from the R3051.
Signals generated by Pal 1 include:
• 4 RAS signals (one per DRAM bank)
• The DRAM_ACK and DRAM_RDCEN response signals to

the R3051 family CPU.
These signals are used to provide termination response
to the processor.

• The CIP (·-=C,-y-cl,-e-_I,-n-_="Pr-o-g-re-s-s) indicates to the rest of the
control system that a bus access is being performed.

• The DRAM_WN (DRAM_WrNear) signal indicates that the
RAS signals are kept asserted after a "Single write" or a
"Page write" access.

Pal 2 is also driven by SysClk directly. Pal 2 generates:
• 4 CAS signals (one per DRAM bank)
• DRAM_LE (DRAM_Latch_Enable), which latches the

read data into the data buffers.
• The S (Select) controls the memory drivers selection.
• The T/R (TransmiVReceive) controls the data buffers

during read acces=s-=e,....,s,...."..~-:--
• The DRAM_WR (DRAM_Write), used during write

accesses.

35

APPLICATION NOTE AN-90

Pal3 uses the buffered CIP signal (BCIP) which is delayed
with respect to CIP by the buffer propagation delay. This is
important to ensure the proper operation of Pal 3, which is
driven by the buffered SysClk (BSysClk). Pal 3 generates the
master 4-bit counter. It also generates:
• The RIP (ReseUn_Progress), which indicates that a

reset cycle is being performed.
• The REF_ACK (Refreshj.cknowledge) signals that a

refresh cycle is being performed.
• The GATE_COUNTER controls the operation of the

counter when transitioning between bus accesses and
refresh accesses.

Refresh Timer
The refresh timer consists of 2 "7 4FCT161" counters

cascaded together as shown in Figure 4. The refresh timer
issues a REF_REO pulse every 9.6Ilsec. The refresh timer is
loaded with the value b00001111 after each refresh. It is
incremented by oneforevery clock cycle. Atvalue b11111111,
it will issue the REF_REO pulse. This amounts to a total count
of 240 which at 25 Mhz reflects a 9.6 Ilsec refresh period.

The refresh period is set to be shorter than the maximum
15.51lsec refresh period that most DRAM require. The refresh
interval has been set to 9.6llsec in order not to violate the RAS
maximum pulse width of 10 Ilsec (tras = 10 Ilsec max). In an
IDLE RASASSERTED state, the RASsignals are left asserted
while the CAS signals are de-asserted.

Byte Decoding
The byte decoding uses a "74FACT32" OR gate to OR the

BE signals from the R3051 with the DRAM WR signal to
produce the write-byte signals WB(3:0). The DRAM_WRsignal
ensures that the W8(3:0) are only asserted during DRAM
write accesses and that the WB(3:0) meet the ''write command
hold time" (twch = 20 nsec) of the DRAMs. It also ensure that
the WB(3:0) are asserted before the CAS signals for "Early
Write" accesses. Every WB signal enables one byte of the
DRAM banks and of the data buffers during write accesses to
allow for partial word write operations. The W8(3:0) are
always issued one clock cycle before the CAS signals are
asserted, in orderto meet the timing requirements for a DRAM
"Early Write" cycle.

Address Path
The DRAM address path consists of 2 "74FBT28278"

memory drivers to multiplex the row and column address of
the DRAMs. The "FBT2827" have a 25 n series resistance
incorporated in the output buffers and are used to drive
multiple memory banks with large capacitive loading. The S bit
from Pal 2 selects between the row address and the column
address that drive all the DRAM banks. Figure 4 illustrates the
address path architecture. The address to the DRAMs is
always set one clock cycle before the assertion of either the
RAS or the CAS signals, in orderto guarantee proper address
set-up time to the DRAMs.

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMIL V

A22

A21

A20

R5
WR

RIP

REF_ACK

C3

C2

C1

CO

REF_ACK

DRAM_WN

BURST

RIP

CIP

WR
A20

A21

C3

C2

C1

CO

SYSCLK

RAS3

RAS2

RAS1

RASO

DRAM_WN

DRAM_ACK

DRAM_RDCEN

'FCT244A

CAS3

CAS2

CAS1

CASO

DRAM_LE

S

T/R

RIP

C3

C2

C1

CO REF_ACK

BEO

BE1

BE2

BE3

FBT
2827B

ROW
ADDRESS

APPLICATION NOTE AN-gO

WBO

WB1

WB2

WB3

DRAM

ADDRESS

BUS

2680 drw04

Figure 4. Control System and Address Path

Data Path
The data path consists of the DRAM banks and 4 74FCT543

latched transceivers. Figure 5 illustrates the architecture of
the data path and of the data buffers. Latching transceivers
are used to allow more access time to the DRAMs; the data is
captured by the latches one-half cycle before they are needed
by the CPU. During this half-cycle, the data propagates
through the buffer; if traditional buffering transceivers had

36

been used, the buffer propagation delay would have occurred
at the expense of the DRAM access time.

Up to four banks of DRAMs are used, with each bank
having its own set of RAS and CAS signals to minimize the
loading impact of multiple DRAM devices. Address bits A21
and A20 determine the bank selection.

The latched transceivers serve three roles in the DRAM
sub-system: they isolate the DRAMs from the AID bus of the

'DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

R3051 to minimize loading; they latch the data from the
DRAMs on reads to allow a better timing model; and they are
used to prevent bus contention from occurring at the end of a
read (as the processor begins another transaction). The
R3051 is connected to the A bus of the transceivers, and the
DRAM system is connected to the B bus.

In a processor write access, the R3051 drives both the
address and the data. In this case the latches are left transparent
to pass the processor data through directly to the DRAMs.
Only those transceivers whose byte lanes are involved in the
write are output enabled, since only those DRAMs will be
written into. DRAMs not accessed in this write will output the
current contents of their memory at that location, since the OE
of the DRAMs is asserted. DRAM_WR controls the LEAB,
leaving the latch transparent throughout the write. WB(3:0}
controls the OEAB of the latches, thus enabling only those
bytes that are written.

DRAM

ADDRESS

BUS

DRAM
BANKO

OEO

DRAM
BANK1

RAS1

OE1

DRAM
BANK2

RAS2

OE2

DRAM
BANK3

RAS3

OE3

APPLICATION NOTE AN-gO

In a processor read access, the DRAM system drives the
data bus. The DRAM system is synchronized to the rising
edge of BSysClk, and the R3051 samples the input data on the
falling edge of SysClk before terminating the access. Thus,
the DRAM control design, which drives the RAS and CAS
signals on the rising edge of SysClk, actually removes CAS
one-half cycle before the data is sampled by the CPU. Thus,
data output by the DRAMs is actually latched by the
transceivers, and remains valid when the CPU samples the
AID bus one-half clock cycle later.

The DRAM_LE from the DRAM controller is connected to
the LEBA pin, which latches the data into the transceivers. The
TiR signal connected to the CEBA pin, which controls the
direction of the bi-directional transceiver. The DataEn signal
from the R3051 is connected directly to the OEBA pin to
control the timing of the output enable onto the AID bus. This
ensures that the output buffers are tri-stated before the next
R3051 access starts and prevents any bus contention.

DATA BUFFERS
FCT543T

BBUS ABUS DATA BUS TO R3051

OEBA DATAEN

CEAB CEBA T/R

LEAB LEBA DRAM_LE

2880 drw05

Figure 5. DRAM Banks and Data Buffers

37

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

THE DRAM MEMORY SYSTEM TIMING

The R3051 system interface allows this DRAM interface to
be simply constructed. Features of the R3051 which are used
in this DRAM system include:
• On-chip four-deep read and a four-deep write buffers.

These buffers decouple the system interface speed from
the speed of the execution engine on-chip.

• Single word reads and four-word refills. Block refills
amortize the relatively long latency of DRAMs over
multiple words, taking advantage of high-bandwidth
capabilities (e.g. Page Mode) offered by DRAMs.

• The WrNear signal, which informs the external DRAM
sub-system that two consecutive writes have the same
upper 22 address bits (equivalent to a local page of 256
words), and can be written using a Page Mode access.
For the system running at 25 Mhz, the clock period is 40

nsec. DRAMs with 80 nsec of access time require 160 nsec (tre
=160 nsec) to complete one read access (as per DRAM data
sheet). A 5 clock cycles (200 nsec) read access time allows an
acceptable margin for address decoding, control signal
propagation, and bus interface.

For a 4 word block refill read, the initial latency (time to read
the first word) is the same as for a single word read access
(200 nsec). For the next 3 consecutive words, the DRAM
memory system provides a word every 2 clock cycles (every
80 nsec). A block refill access can be completed in 11 clock
cycles (440 nsec), which is an average of 110 nsec per word.
Thus, block refill, with this simple scheme, provides a significant
improvement in the average access time per word (over 2
clock cycles per word savings).

The state machine to manage write operations takes
advantage of two features of the R3051:
• On a write cycle, the write data from the processor is held

one full clock cycle after the clock edge where the
processor samples its ACK input. Thus, the DRAM
system can give an early acknowledge, and still rely on
the CPU to continue driving data.

• The WrNear output from the CPU, which indicates that
this write may be retired using a page mode write. This
reduces the number of cycles required to perform write­
intensive operations, such as building the program stack
or flushing the write buffer.
The state machine for single word writes is optimized to

allow subsequent near writes to be retired using page mode
accesses. The DRAM memory system takes advantage of the
WrNear signal from the R3051 by defaulting to the case that
any single write to the DRAM system will be followed by
another write with the same upper 22 address bits (within the
local page of 256 words). Given this assumption, the RAS
signals must be kept asserted after every write access to
remain in the page mode of the DRAMs.

Thus, an initial single write can be performed in 4 clock
cycles (160 nsec) since the RAS signals are not de-asserted
and the RAS precharge time (trp = 70 nsec) will be deferred
until the end of the page write mode. Note that this is faster
than a single read; the state machine takes advantage of the
fact that the processor will drive data a full clock cycle after
acknowledge is given.

38

APPLICATION NOTE AN-90

A consecutive write to the same DRAM page can be
performed in 3 clock cycles (120 nsec) since the RAS signal
is already asserted and doesn't need to be precharged. When
this state is exited (when a write outside of page or a different
type of access occurs) the RAS signal needs to be precharged
for 2 clock cycles (80 nsec) before responding to the pending
access.

Single Write Cycle/Page Write Cycle
Figure 6 illustrates the timing diagrams for a single write

access followed by a page write. The R3051 initiates a single
DRAM write access by the assertion of Wr and with A2210w.
Since the state machine is in the I DLE state, RAS is deasserted
and the ROW addresses are flowing through the address
multiplexer. The CI P is issued on the next clock edge to inform
the rest of the machine that the write is being processed, thus
preventing the commitment of any other state (e.g. refresh).
The appropriate RAS signal is issued on the same edge as the
CIP. The DRAM_ACK is issued on the following edge and the
CAS signal on the 4th edge to terminate the write access. At
the end of the access, the CI P is removed while the RAS signal
is kept asserted in anticipation of a consecutive write access
within the same page. At the end of an initial write access, the
DRAM_WN signal remains asserted. This signal informs the
rest of the state machine that the RAS signals are kept
asserted.

Idle, RAS Asserted State
At the end of a write access the state machine enters this

state where a RAS signal is kept asserted while the state
machine awaits a subsequent transaction. If the next access
is a local write (WrNearfrom the R3051 is asserted) the state
machine enters the page write mode. If a different access type
occurs (read, block refill, not local write) or a refresh is
pending, the state machine exits this state.

Upon exiting this state, the machine precharges the RAS
signal before responding to the pending access. For the ease
of discussion, any access that requires the RAS signals to be
precharged before the access is processed will be referred to
as "delayed" access. If an access outside the DRAM space is
detected (Wr or Rd asserted while A22=1) the RAS signals are
immediately de-asserted and the machine goes into the IDLE
state. This is an important condition; an intervening write to
another memory location causes the R3051 to report
subsequent writes as "near" to that other memory location,
and thus the DRAM controller should not process these writes
as near. writes.

Page Write Cycle
A page write cycle is a write access to the DRAM following

another write with the same upper 22 address bits. Figure 6
illustrates the timing diagram for a page write access. The
R3051 initiates a page write cycle by the assertion of Wr,
wrNear and A22 = O. On the following clock edge CIP and
DRAM_ACK are issued, and on the 3rd clock edge CAS is
asserted. and the access is terminated (CIP is negated). The
RAS and DRAM_WN signals are kept asserted, allowing

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTld FAMILY APPLICATION NOTE AN-90

CYCLE 2 PAGE CYCLE 3
CYCLE 1 WRITE WRITE IDLE CYCLE 4 DELAYED WRITE

C1 WT: WT, C2 C1 WT ,22 ... I~LE C1 WT WT WT WT C2

SYSCLK* _~~n-tl-~ISL
BSYSCLK* -~r-v-0'"Ln...h-~rL

: : :: :
RESET*' ::

WR* -, f' I

RD*

BURST*/ 1\ I
WRNEAR*

DATAEN*

A21:20 I II II

DATA31:0 _ f(I DATA II I DATA II I DATA

REF_REO

S* ~f---+---h

CAS*

CIP*

RIP* ~---+-+4---~-4--~--+-~f---+--~--~~--~--+-~~-+---

Ln'---.;....i\~~r-Ih\---!-i ==:=:I/-!--+-...... i~\~:-_:f-_-...;.+_-_:f-_--11+
1

,-

2880 drw06

Figure 6. Single Write, Page Write and Delayed Write Timing Diagrams

39

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

subsequent page writes to be rapidly processed. The state
machine exits this state into the IDLE RAS ASSERTED state
to await subsequent page mode writes.

Delayed Write Cycle

The delayed write cycle has exactly the same sequence as
a single write but is delayed by two clock cycles. A delayed
write is a "non-near"write detected in the IDLE RASASSERTED
state. Figure 6 illustrates the timing diagrams for a delayed
write access.

The R3051 initiates a delayed write access by the assertion
of Wr and A22 = 0 while RAS and DRAM_WN are asserted. On
the next clock edge RAS is de-asserted while the DRAM_WN
is kept asserted. The precharging of the RAS signal takes two
clock cycles. The DRAM_WN signal is kept asserted to inform
the state machine that the control signals for this access have
to be delayed by two clock cycles. This is true for all the
delayed accesses.

Single Read Cycle
A single read cycle is a read access to the DRAM following

an IDLE state in which the RAS and the DRAM_WN are not
asserted. Figure 7 illustrates the timing diagrams for a read
access. The R3051 initiates a single read access by the
assertion of Rd with A2210w while the state machine is IDLE
and all RASoutputs are de-asserted. The CIPis issued on the
next clock edge to inform the rest of the machine that a cycle
is ongoing, thus preventing the commitment of any other state.
The appropriate RAS signal is issued on the same edge as the
CiP. Two clock cycles later, the CAS, DRAM_RDCEN and the
DRAM_ACK are issued to terminate the cycle.

For a read access both the DRAM_ACK and the
DRAM_RDCEN are required to end the cycle. The processor
will not actually sample RdCEn until one-clock after the clock
edge used to generate DRAM_RDCEN, and thus will not
sample the data until one and one-half clock cycles after the
edge used to generate DRAM_RDCEN. From the timing
diagrams it is clear that the CAS and the RAS signals are
removed half a clock cycle before the falling edge of the clock
when the R3051 samples the data. DRAM_LE latches the
DRAM data into the transceivers and holds it for one clock
cycle. At the end of the access the CIP is removed.

Delayed Read Cycle
The timings of a delayed read are exactly the same as for

a single read but shifted by two clock cycles to accommodate
RAS pre-charge time. A delayed read cycle is a read access
to the DRAM following an IDLE RAS ASSERTED state in
which the RAS and the DRAM_WN are still asserted. Figure 8
illustrates the timing diagrams for a delayed read access.
Once a read access is detected, the RAS signal is de-asserted
while the DRAM_WN is kept asserted. The RAS signal is
precharged for two clock cycles. At the end of a delayed read,
the DRAM_WN and the CIP are removed and the machine
enters the IDLE state.

40

APPLICATION NOTE AN-90

Block Refill Cycle
A block refill cycle is a 4 word read access to the DRAM

following an IDLE state. Figure 7 illustrates the timing diagrams
for 4-word block refill access. The R3051 indicates a block
refill read access by the assertion of Rd and Burst with A22
low. The DRAM control sub-system handles block refill
accesses using the Throttled Block Refill mode of the R3051.
In a throttled read, RdCEn is used to control the data rate of
memory back to the CPU. The Ack input is not provided back
to the processor until the transfer has sufficiently progressed
such that the last word of the transfer is clocked into the on­
chip read buffer before the processor core requires it.

In the block refill access the first word read takes the same
time as a single read while the 3 subsequent words are read
into the read buffer at the rate of 1 word every two clock cycles.
The DRAM_RDCEN is issued with every word being read to
cause the R3051 to latch the data into the read buffer. The
DRAM_ACK is issued between the second and the third word
read. This ensures that for 4 subsequent falling edges of
SysClk the read buffer can provide data to the R3000A core
at the rate of a word every clock cycle.

Block refill uses the page mode characteristics of the
DRAM to obtain subsequent words at a high data rate. In this
access, the RAS signal is kept asserted while the CAS signal
is toggled 4 times to produce 4 data words. Every word from
the DRAM system is latched into the transceivers as for a
single read operation, using the DRAM_LEta clock the latched
transceivers. At the end of the access RAS and CIP are de­
asserted, and the state machine returns to the IDLE state.

In the block refill access, address lines Addr(3:2) from the
R3051 act as a two-bit counter to provide the address of 4
consecutive words. These two lines are incremented on the
falling edge of SysClk. This timing could prove critical at high­
frequencies: this is only half a clock margin (20 nsec) before
the CAS signals are asserted, in which address set-up time to
CAS must be provided. These two lines are part of the address
path and are driving large capacitive loads. Two minimize
additional delay due to loading, two sets or more of memory
address drivers could then be used to minimize the effect of
the capacitive loads and to ensure proper operation.

Delayed Block Refill Cycle
A delayed block refill cycle is a block refill access to the

DRAM following an IDLE RASASSERTED state in which the
RAS and the DRAM_WN are asserted. Figure 9 illustrates the
timing diagrams for a delayed block refill access. A delayed
block refill is exactly the same as a block refill with the
exception that the access is shifted by two clock cycles to
accommodate RAS precharge requirements. The DRAM_WN
signals to the machine that the access has a delayed timing.
At the end of the access, the DRAM_WN and the CIP are de­
asserted.

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN·90

SYSCLK*

BSYSCLK*

RESET*

WR*

RD*

CYCLE 1 READ CYCLE 2 BLOCK REFILL READ

C1 WT; WT. WT C2 C1 WT WT WT WT WT WT WT WT WT C2

BURST*/ -I---+--;.---;.--;...---n
WRNEAR* ~~ __ ~-+ __ ~ __ +-~ __ ~ __ +-~~-+-J

DATAEN*

A21:20

DATA 31:0

ROW/COLUMN
ADDRESS

RAS*

CAS*

CIP*

RIP*

GATE_COUNTER*

COUNTER

DATA ADDR DATA 0 DATA DATA 2 DATA 3

o A

2880 drw07

Figure 7. Single Read and Block Refill Read Timing Diagrams

41

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN·90

CYCLE 2 CYCLE 3
CYCLE 1 WRITE .. PAGE WRITE ... IDLE.. CYCLE 4 DELAYED READ

C1 WT; WT: C2 C1 WT C2 IDLE C1 WT WT WT WT WT C2

SYSCLK· -~1Lf1-rL1Lfl- IL
BSYSCLK* n h h in h in in h in n in h h in h h rL

- r L{ L{ '-1 '-r L{ '-1 '- r '-1 '- r '-1 L{ '-f L{ '-1 L{ '-

rr--
~--~~--~--~~~

S* --+--"';"'--,,",
!\ Irt\ II

ROW/COLUMN
ADDRESS

RAS·

CAS·

ROW

t\

I OLUMN I

IL~

I OLUMN I

[I

IL~

ROW! I COLUMN I

I \~+----!---¥! I
~-+--

I\~-.;--tl'­
l lr~

I 1,_ 1\
RIP* ---+---+---!-----4---+--+-----4---+--+--+---+---+---+---+---+---+--O+--

GATE_COUNTER*

a~~+_~--+---~+_~-+~~+_~-+__¥I,­
I\'--!--fl/!\,--!--+,II

COUNTER ~~O~~!~ll_1~~1~2~1~3~!I~O~!1~1~1~2~~I~O~~ __ ~!~11~!I~2~!1~3~ll~4~ll~5~11~6

2880 drw 08

Figure 8. Delayed Single Read Timing Diagrams

42

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN-gO

SYSCLK*

BSYSCLK*

RESEr

WR*

RD*

BURsr/
WRNEAR*

DATAEN*

A21:20

DATA 31:0

REF_REO

DRAM_ACK*

DRAM_RDCEN*

REF_ACK*

S*

ROW/COLUMN
ADDRESS

RAS*

CAS*

T/R*

CIP*

RIP*

DRAM_WR*

GATE_COUNTER*

CYCLE 1
PAGE WRITE CYCLE 2 DELAYED BLOCK REFILL READ

C1 WT; C2 C1 WT WT WT WT WT WT WT WT WT WT WT C2

ADDR DATA 0 DATA 1 DATA 2 DATA 3

2880 drw 09

Figure 9. Delayed Block Refill Read Timing Diagrams

43

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

Refresh Cycle
A refresh cycle is initiated every time a REF_REO pulse is

detected. The state machine responds immediately by
asserting the REF _ACK signal on the following clock edge.
This disables the refresh timer until the refresh access is
completed. Figure 10 illustrates the timing diagrams for a
refresh arbitration and the actual refresh access.

If a REF_REO occurs during an access or atthe same time
as an access, the refresh is delayed until the access is
terminated (signaled by CIPde-asserted). Asserting REF _ACK
at the detection of REF_REO ensures that the following
access will be a refresh access and prevents the commitment
of any other state. Delaying a refresh request until the end of
a bus access doesn't affect the DRAM operation, since the
refresh period selected is much less than the maximum
refresh period of a DRAM row. The refresh period is every 9.6
Ilsec and the longest access is the delayed block refill with 14
clock cycles (until CIP is removed) which is 0.56 Ilsec. Thus,
the refresh will be serviced at a maximum of 1 0.16 Ilsec, which
is substantially below the maximum 15.5 Ilsec refresh
requirement of the DRAMs. By the same reasoning, if the
granted access is a delayed access, the RAS signal will be
precharged prior to the 10 Ilsec RAS pulse width maximum
requirements. If a Page Mode Write is granted, it will be retired
in 3 cycles, or .12llsec, and thus RAS will be precharged forthe
refresh no longer than 9.721lsec after it was asserted.

The refresh access is a CA5-before-RAS refresh in which
all four CAS and RAS signals are issued. The CAS signal is
issued 1 clock cycle before the RAS signal. A refresh access
takes 10 clock cycles. This time is long enough to allow the
RAS signals to be precharged if needed (delayed refresh). A
delayed refresh has then the same timing as a refresh access.

44

APPLICATION NOTE AN·90

Figure 11 shows the timing diagrams for the delayed
refresh cycles. GATE_COUNTER controls the operation of the
4-bit counter when transitioning between bus accesses and
refresh accesses. It is mainly used in the arbitration phase
when a bus access and refresh access are requested at the
same time.

Reset Cycle
A reset cycle is initiated by the assertion of the Reset signal.

This is a hardware reset and is used to initialize the PALs to
the correct IDLE state. The RIP signal is asserted on the
following clock edge to inform the machine that a reset cycle
is in progress. After the Reset signal is de-asserted, the RIP
stays asserted and one refresh access is initiated. At the end
of this refresh access, the RIP is removed and the state
machine enters the IDLE state. Figure 12 illustrates the timing
diagrams of the reset operation.

Most DRAMs require at least 8 CAS before RAS refresh
accesses priorto a regular access, to insure proper in itialization.
The actual state machine provides only one refresh access. It
is the responsibility of the software to ensure that no DRAM
access is made prior to the elapsing of 8 refresh periods from
the refresh timer. This can typically be insured by normal
operation of the boot PROM; however, software could "spin­
lock" for a pre-determined number of loops to insure that
sufficient time has elapsed.

Idle State
The IDLE state is the state in which the machine is not

performing any bus access or a refresh access but is constantly
monitoring the bus for any access request. All the signals are
de-asserted and the 4-bit counter operation is halted.

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

CYCLE 1 BLOCK REFILL

APPLICATION NOTE AN-gO

CYCLE 2 REFRESH

WT WT : WT WT C2 C1 WT WT WT WT WT WT WT WT C2

SYSCLK*

BSYSCLK*

RESET*

WR*

RD*

BURST*/ -+--+--....... -'O---i-J
WRNEAR*

DATAEN*

A21 :20,f---i---;---;--+---i---+---+--+--i----+--+--""+--+---ii---t--+---

DATA 31:0

REF_ACK*

S·
--~-+--;---;--~

ROW/COLUMN -~v+-~-r+-~~~---;---~_+--~--+-__i~_+--~--+_~--_+--­
ADDRESS_f--~~~~~~~~---;---~_+--~--+-__i~_+--~--+_~---+---

RAS*

CAS*

T /R* __ I--....... --...;---;i--....... --_+'

DRAM_LE

CIP*

RIP*--~-+--;---;--+-~--+-~-+--~~--+-~-~--~~--+--

GATE_COUNTER*

2880drw 10

Figure 10. Refresh Arbitration and Refresh Timing Diagrams

45

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

CYCLE 1 CYCLE 2
PAGE WRITE IDLE

APPLICATION NOTE AN·90

CYCLE 3 DELAYED REFRESH

C1 WT" C2 IDLE C1 WT WT WT WT WT WT WT C2

SYSCLK·

BSYSCLK·

r,~~~j.!,~h"h h"hh"hhh-h"h-h-h-h-h
-I Y L-! L: L...! L...: L...! y L...! L...! Y ~ ~ ~ L.I ~ L-! L.

-rL(vLrLtL h-h-h-
RESEr

RD·

BURST·/ -1\ I
WRNEAR·

DATAEN*

A21:20 -~!
-t--- i

DATA 31:0 II I i DATA

ADDR
REF_REO

REF_ACK·

I

S· -ht..-';""'--j-III
ROW/COLUMN

ADDRESS

RAS·

CAS·

T/R*

DRAM_LE

Clp·

RIp·

DRAM_WN*

DRAM_WR*

GATE_COUNTER·

COUNTER

I I COLUMN X

-~

n - II

~ - II

I 3 !I 0 il 1 I 2 !I 0

1\

\ I

Figure 11. Delayed Refresh Timing Diagrams

46

2880 drw 11

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

CYCLE 1 CYCLE 2
PAGE WRITE IDLE

APPLICATION NOTE AN-90

CYCLE 3 DELAYED REFRESH

C1 wr; C2 IDLE - C1 wr wr wr wr wr wr WT C2

SYSCLK* ~~ iL.Jl.JL-
- 1 1 1 1 1 1 1 1

BSYSCLK* -r\{'-f\-rLf'- N\..(L
RESET*

WR* -~ I

RD*

BURST*/ -~ I
WRNEAR* ~~~ __ ~ __ ~~--~--~~ __ ~--+-~ __ ~--~ __ ~_+--~~
DATAEN*

A21 :20~ -i--f-Ix'-!-__ -+-_~-+--~--+-__+--_+_--+_~--_+_--_+_____i~_+--_+_-----i
DATA 31:0 II I DATA

S* -M II
ROW/COLUMN

ADDRESS

RAS*

CAS*

T/R*

DRAM_LE

CIP*

RIP*

DRAM_WN*

DRAM_WR*

GATE_COUNTER*

I I OLUMN I

-~ iL~

n - II

n - II

a

COUNTER 113 !I 0 !l1 112 iI 0

1\

II

il I' il

i\ il

il

]1 il2 il3 il4 il5 il6 il7 ilB 119 aD

2880 drw 12

Figure 12. Reset Timing Diagrams

47

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

CRITICAL TIMING CALCULATIONS
The following is a timing analysis of some of the critical

paths in the DRAM system.

DRAM Data for a Read or block Refill access
As illustrated in all the timing diagrams, the CAS signal is

asserted for only 1 clock cycle for a read or a write access. For
a write access there is no critical timing since the DRAM
latches the data in at the CAS leading edge, and the processor
insures sufficient data hold time by holding data for one cycle
after ACK is detected.

For a read or a block refill access the DRAMs provide the
data to the R3051 and the maximum delays must be considered.
Figure 13 illustrates the detailed timing for a portion of a block
refill access which is also true for a read access. The R3051
uses the SysClk for its reference with a period Tclk of 40 nsec.
The CAS and the DRAM_LE signals are delayed with respect
to SysClk by the Pal 2 propagation delay T1. The data is
available from the DRAM after T2 (tcac = 25 nsec max). The
critical path requires that the DRAM data be available and
meet the setup time of the transceivers before the DRAM_LE
is asserted. The timing calculation for this data path is as
follows:

Tclk

- T1 max

- T2 max

- T setup

= 40.0 nsec
= 8.0
=32.0
= 25.0
=7.0
= 3.0 FCT543T data setup time.
=4.0

The available margin is 4.0 nsec. Some 80 nsec DRAMs
have T2 (tcac = 20 nsec) which could offer more margin.

T elk Sample Data edge
~---------. I

I

DATAl FROM DRAM

DATA -----~==::>-----

DRAM_LE --------....1 \~---
2880 drw 13

Figure 13. Read or Block Refill Access

48

APPLICATION NOTE AN-gO

Transceivers Turn Off time
For a read or a block refill access, the DRAMs provide the

data to the R3051 through the latched transceivers. As
illustrated in Figure 7, the R3051 reads the data from the bus
half a clock cycle before it starts a new access in which it can
drive address on the bus. This information is explained in
detail in the R3051 User Manual.

The critical path requires that the transceivers be tri-stated
before the R3051 starts driving the bus in the next clock cycle.
The DataEn signal directly from the R3051 enables the B to A
output buffers of the transceivers (FCT543T). The Da~aEn is
delayed by T3 from the falling edge of SysClk at which the
R3051 samples the data (as per R3051 data sheet). The
transceivers disable the output buffers within T4. Figure 14
illustrates the timing for this path.

Tclk/2
- T3 max

- T4max
T margin

= 20.0 nsec
= 6.0
= 14.0
= 9.0
= 5.0 nsec

This margin of 5 nsec is long enough to accommodate for
any SysClk skews.

....J T3max
r-

~------------------j
T4max

DATA31:0 ______ -«===::J,....... __ _
DATA FROM Fcrn43T

_ ___________________ ~~,~Tma~in
AD 31:0 c::::::>-

FROM R3051 NEW ADDRESS

2BBOdrw 14

Figure 14. Termination of a Read or Block Refill Access

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

DRAM_ACK and DRAM_RDCEN Timings

The DRAM_ACK and the DRAM_RDCEN are issued for
one clock cycle only as illustrated in the timing diagrams. They
are removed by the clock edge which the R3051 uses to
sample them. The R3051 requires that these two signals be
held constant for a minimum of 4 nsec after the clock edge.
These two signals are usually combined with similar signals
from other memory sub-systems (e.g. EPROM) to form one
set that is routed to the R3051. This extra delay, plus the Pal
1 minimum propagation delay are long enough to meet the
R3051 required hold time.

PERFORMANCE
The performance of the different types of R3051 bus

accesses to the DRAM memory is usually measured by the
number of clock cycles it takes to send the Ack back to the
R3051. This time is computed from the beginning of the
external access. The performance of the DRAM system can
be summarized as follows:

• single read: 4 clock cycles.
• block refill: 7 clock cycles.
• first write: 3 clock cycles.
• page write: 2 clock cycles.

49

APPLICATION NOTE AN-90

The above numbers (with the exception of page write) will
be increased by 2 in the case of delayed accesses.

Thus, relatively high memory performance is obtained with
minimal external logic parts count, and low-cost commodity
DRAM. More aggressive designs could utilize faster DRAMs,
and techniques such as memory interleaving, to achieve still
higher levels of performance.

CONCLUSION
The R3051 RISControlierfamily bus interface was designed

to allow memory systems of differing complexity and
performance to be implemented. Even a relatively simple
DRAM system, as the one described here, offers very high
performance. With simple modifications, this approach is
applicable to higher frequencies (33 and 40 Mhz) and to
interleaved memory systems yielding even higher performance.

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

TITLE:
PURPOSE:

PALl
RAS

AUTHOR:
DATE:

BOB NAPAA, IDT INC.
4/5/91

MODULE PALl;
TITLE PALl;
TYPE AMD 22VlO;

INPUTS;

SYSCLKB
ENABLEB
RDB
WRB
BURSTB
RIPB
REFACKB
A22
A2l
A20
C3
C2
Cl
CO

{FEED BACK PINS}
CIPB
RAS3B
RAS2B
RASlB
RASOB
DRAMWNB
DRAMACKB
DRAMRDCENB

OUTPUTS;
CIPB
RAS3B
RAS2B
RASlB
RASOB
DRAMWNB
DRAMACKB
DRAMRDCENB

{OUTPUT ENABLES}
CIPBEN
RAS3BEN
RAS2BEN
RASlBEN
RASOBEN
DRAMWNBEN
DRAMACKBNODE[PIN22EN];
DRAMRDCENBEN

NODE [PINl] ;
NODE [PIN2] ;
NODE [PIN3] ;
NODE[PIN4];
NODE[PIN5];
NODE[PIN6];
NODE[PIN7];
NODE [PIN8] ;
NODE [PIN9] ;
NODE[PINlO] ;
NODE [PINll] ;
NODE[PINl3];
NODE[PINl4];
NODE[PINl5];

NODE [PINl6] ;
NODE [PINl7] ;
NODE[PINl8] ;
NODE[PINl9] ;
NODE[PIN20] ;
NODE [PIN2l] ;
NODE[PIN22] ;
NODE[PIN23];

NODE [PINl6]
NODE [PINl7]
NODE [PINl8]
NODE [PINl9]
NODE[PIN20]
NODE[PIN2l]
NODE[PIN22]
NODE[PIN23]

ATTR[RL] ;
ATTR[RL] ;
ATTR[RL] ;
ATTR[RL] ;
ATTR[RL) ;
ATTR[RL) ;
ATTR[RL) ;
ATTR[RL) ;

NODE[PINl6EN];
NODE[PINl7EN);
NODE[PINl8EN];
NODE[PINl9EN);
NODE [PIN20EN] ;
NODE[PIN2lEN);

NODE [PIN23EN) ;

50

APPLICATION NOTE AN·90

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN-gO

TERMS;

RAS3BEN
RAS3B NOT

RAS2BEN

RAS2B NOT

:=

OR

OR

OR
OR

OR

OR

OR
OR

OR

OR

OR

OR

OR

:=

ENABLEB;

RAS3B AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND
!A22 AND A2l AND A20 {read/block refill}

!RAS3B AND !CIPB AND !RDB AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}
RAS3B AND !CIPB AND RIPB AND !DRAMWNB AND !RDB AND

!A22 AND A2l AND A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}
!RAS3B AND !CIPB AND !RDB AND !BURSTB AND !C3 {keep block refill}
!RAS3B AND !CIPB AND !RDB AND !BURSTB AND !DRAMWNB AND

!Cl {keep delayed block refill}
RAS3B AND REFACKB AND RIPB AND DRAMWNB AND !WRB AND
!A22 AND A2l AND A20 {write}

RAS3B AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND
!A22 AND A2l AND A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed write}

!RAS3B AND !WRB AND !CIPB {keep for write}

! RAS3B AND ! DRAMWNB AND REFACKB AND RIPB AND RDB AND
WRB AND BURSTB {no access pending}

!RAS3B AND lDRAMWNB AND REFACKB AND RIPB AND !WRB AND
! BURSTB AND !A22 AND A2l AND A20 {keep for page write}

!REFACKB AND CIPB AND !RAS3B AND lDRAMWNB AND CO
{remove in refresh}

RAS3B AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND ! C2
AND Cl AND CO {issue for refresh}
!RAS3B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2

AND !Cl AND !CO {keep for refresh}
! RAS3B AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2

AND ! Cl AND CO; {keep for refresh}

ENABLEB;

RAS2B AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND
!A22 AND A2l AND !A20 {read/block refill}

OR ! RAS2B AND ! CIPB AND ! RDB AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}

OR RAS2B AND ! CIPB AND RIPB AND ! DRAMt.'NB AND ! RDB AND
!A22 AND A2l AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}

OR !RAS2B AND !CIPB AND !RDB AND !BURSTB AND !C3 {keep block refill}

OR ! RAS2B AND ! CIPB AND ! RDB AND ! BURSTB AND ! DRAMWNB AND
!Cl{keep delayed block refill}

OR RAS2B AND REFACKB AND RIPB AND DRAMWNB AND ! WRB AND
!A22 AND A2l AND !A20 {write}

OR RAS2B AND REFACKB AND RIPB AND !DRAMWNB AND !WRB AND
!A22 AND A2l AND !A20 AND !C3 AND !C2 AND !Cl AND CO
{delayed write}

OR !RAS2B AND !WRB AND !CIPB {keep for write}

OR !RAS2B AND !DRAMWNB AND REFACKB AND RIPB AND RDB AND
WRB AND BURSTB {no access pending}

OR !RAS2B AND !DRAMWNB AND REFACKB AND RIPB AND !WRB AND
!BURSTB AND !A22 AND A2l AND !A20 {keep for page write}

OR ! REFACKB AND CIPB AND ! RAS2B AND ! DRAMWNB AND CO
{remove in refresh}

OR RAS2B AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND ! C2
AND Cl AND CO {issue for refresh}

OR !RAS2B AND !REFACKB AND CIPB AND DRAMWNB AND !C3 AND C2
AND !Cl AND !CO {keep for refresh}

OR ! RAS2B AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2
AND !Cl AND CO; {keep for refresh}

51

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN·90

RASlBEN ENABLEB;
RASlB NOT

RASOBEN
RASOB NOT

:= RASlB AND REFACKB AND RIPB AND DRAMWNB AND lRDB AND
!A22 AND lA2l AND A20 {read/block refill}

OR ! RASlB AND ! CIPB AND ! RDB AND DRAMACKB AND DRAMRDCENB
{keep for read/delayed read}

OR RASlB AND lCIPB AND RIPB AND lDRAMWNB AND lRDB AND
lA22 AND lA2l AND A20 AND lC3 AND lC2 AND lCl AND CO

OR
OR

OR

OR

OR
OR

OR

OR

OR

OR

OR

:=

OR

OR

OR

OR

OR

OR

OR
OR

OR

OR

OR

OR

OR

{delayed read/delayed block refill}

lRASlB AND lCIPB AND !RDB AND lBURSTB AND !C3 {keep block refill}

l RASlB AND l CIPB AND l RDB AND l BURSTB AND l DRAMWNB AND
!Cl{keep delayed block refill}
RASlB AND REFACKB AND RIPB AND DRAMWNB AND lWRB AND
lA22 AND lA2l AND A20 {write}

RASlB AND REFACKB AND RIPB AND !DRAMWNB AND lWRB AND

lA22 AND !A2l AND A20 AND !C3 AND !C2 AND lCl AND co
{delayed write}

lRASlB AND !WRB AND !CIPB {keep for write}
! RASlB AND l DRAMWNB AND REFACKB AND RIPB AND RDB AND

WRB AND BURSTB {no access pending}

lRASlB AND lDRAMWNB AND REFACKB AND RIPB AND lWRB AND
!BURSTB AND lA22 AND !A2l AND A20 {keep for page write}
! REFACKB AND CIPB AND ! RASlB AND ! DRAMWNB AND CO
{remove in refresh}

RASlB AND l REFACKB AND CIPB AND DRAMWNB AND l C3 AND l C2
AND cl AND co {issue for refresh}

l RASlB AND l REFACKB AND CIPB AND DRAMWNB AND l C3 AND C2
AND lCl AND lCO {keep for refresh}
l RASlB AND l REFACKB AND CIPB AND DRAMWNB AND l C3 AND C2

AND lCl AND CO; {keep for refresh}

ENABLEB;
RASOB AND REFACKB AND RIPB AND DRAMWNB AND !RDB AND
lA22 AND lA2l AND lA20 {read/block refill}

lRASOB AND lCIPB AND lRDB AND DRAMACKB AND DRAMRDCENB

{keep for read/delayed read}
RASOB AND l CIPB AND RIPB AND l DRAMWNB AND l RDB AND

!A22 AND !A2l AND !A20 AND lC3 AND !C2 AND !Cl AND CO
{delayed read/delayed block refill}

lRASOB AND lCIPB AND lRDB AND !BURSTB AND !C3 {keep block refill}

!RASOB AND !CIPB AND !RDB AND lBURSTB AND lDRAMWNB AND
l Cl {keep delayed block refill}

RASOB AND REFACKB AND RIPB AND DRAMWNB AND lWRB AND
!A22 AND lA2l AND !A20 {write}

RASOB AND REFACKB AND RIPB AND lDRAMWNB AND lWRB AND
!A22 AND !A2l AND lA20 AND lC3 AND lC2 AND !Cl AND co
{delayed write}

!RASOB AND !WRB AND !CIPB {keep for write}
lRASOB AND lDRAMWNB AND REFACKB AND RIPB AND RDB AND

WRB AND BURSTB {no access pending}
!RASOB AND !DRAMWNB AND REFACKB AND RIPB AND lWRB AND
!BURSTB AND !A22 AND !A2l AND lA20 {keep for page write}

l REFACKB AND CIPB AND l RASOB AND lDRAMWNB AND co
{remove in refresh}
RASOB AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND ! C2
AND Cl AND co {issue for refresh}

l RASOB AND l REFACKB AND CIPB AND DRAMWNB AND l C3 AND C2
AND !Cl AND !CO {keep for refresh}
! RASOB AND ! REFACKB AND CIPB AND DRAMWNB AND ! C3 AND C2

AND !Cl AND CO; {keep for refresh}

52

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN-gO

END;

END

DRAMWNBEN ENABLEB;

DRAMWNB NOT

DRAMACKBEN

DRAMACKB NOT

DRAMRDCENBEN

DRAMROCENB NOT

CIPBEN

CIPB NOT

PALl.

DRAMWNB AND ! CIPB AND RIPB AND ! WRB AND! C3 AND! C2 AND

!CI AND CO {write}

OR ! DRAMWNB AND ! REFACKB AND CIPB AND RIPB AND ! C3 AND ! C2

AND !CI AND !CO{remove at refresh}

OR !DRAMWNB AND RIPB AND !RAS3B {keep asserted if any RAS}

OR !DRAMWNB AND RIPB AND !RAS2B

OR !DRAMWNB AND RIPB AND !RASIB

OR !DRAMWNB AND RIPB AND !RASOB

OR !DRAMWNB AND RIPB AND !RDB AND !CIPB {keep for read}

OR !DRAMWNB AND RIPB AND !WRB AND !CIPB; {keep for write}

:=

OR

ENABLEB;

! CIPB AND ! RDB AND DRAMWNB AND BURSTB AND ! C3 AND ! C2 AND

! CI AND co {read}

! CIPB AND ! RDB AND ! DRAMWNB AND BURSTB AND ! C3 AND ! C2

AND CI AND CO {delayed read}

OR ! CIPB AND ! RDB AND DRAMWNB AND ! BURSTB AND ! C3 AND C2 AND
!CI AND !CO {block refill}

OR ! CIPB AND ! RDB AND ! DRAMWNB AND ! BURSTB AND ! C3 AND C2

AND CI AND !CO {delayed block refill}

OR ! CIPB AND ! WRB AND DRAMWNB AND! C3 AND ! C2 AND! CI AND ! CO

{write}

OR

OR

OR

OR

OR

:=

OR

OR

OR

OR

OR

.-
OR
OR

OR

!CIPB AND !WRB AND !DRAMWNB AND BURSTB AND !C3 AND !C2

AND CI AND !CO {delayed write}

!WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPB AND

CIPB AND !A22 AND !RAS3B {page write}

!WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPB AND

CIPB AND !A22 AND !RAS2B {page write}

!WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPB AND

CIPB AND !A22 AND !RASIB {page write}

!WRB AND !BURSTB AND !DRAMWNB AND REFACKB AND RIPB AND

CIPB AND !A22 AND !RASOB ; {page write}

ENABLEB;

! CIPB AND ! RDB AND DRAMWNB AND BURSTB AND ! C3 AND ! C2 AND

!CI AND CO {read}

! CIPB AND ! RDB AND ! DRAMWNB AND BURSTB AND ! C3 AND ! C2

AND CI AND CO {delayed read}

! CIPB AND ! RDB AND DRAMWNB AND ! BURSTB AND ! C3 AND CO

{block refill}

!CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND

AND CI AND CO {delayed block refill}

!CIPB AND !RDB AND !DRAMWNB AND !BURSTB AND !C3 AND

AND co {delayed block refill}

!CIPB AND !RDB AND ! DRAMWNB AND !BURSTB AND C3 AND

AND !CI AND CO; {delayed block refill}

ENABLEB;

CIPB AND REFACKB AND RIPB AND !RDB AND !A22 {read}

CIPB AND REFACKB AND RIPB AND !WRB AND !A22 {write}
! CIPB AND ! RDB {keep for read}

!CIPB AND !WRB ; {keep for write}

53

!C2

C2

!C2

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN-gO

TITLE:
PURPOSE:

AUTHOR:
DATE:

MODULE PAL2 ;
TITLE PAL2;

TYPE MMI 2 ORB;

INPUTS;

{SYSCLKB

REFACKB

DRAMWNB
BURSTB

RIPB
CIPB

WRB
A21
A20

C3
C2
{OUTENABLEB
C1
CO

{FEED BACK PINS}
CAS3B
CAS2B
CAS1B
CASOB
DRAMLE

DRAMWRB
SB

TRB

OUTPUTS;

TABLE;

CAS3B
CAS2B

CAS1B
CASOB
DRAMLE

DRAMWRB
SB
TRB

CAS3B NOT

PAL2

CAS
BOB NAPAA, IDT INC.
4/5/91

:=

OR

NODE [PIN1] ;

NODE [PIN2] ;

NODE [PIN3] ;
NODE[PIN4];
NODE [PIN5] ;
NODE[PIN6];
NODE [PIN7] ;

NODE [PIN8] ;
NODE [PIN9] ;
NODE[PIN10] ;

NODE [PINll] ;
NODE [PINl3] ;
NODE[PIN14] ;
NODE[PIN23];

NODE[PIN22];
NODE[PIN21];
NODE[PIN20];

NODE[PIN19];
NODE[PIN18];
NODE [PIN1 7] ;

NODE[PIN16] ;

NODE[PIN15];

NODE[PIN22];

NODE [PIN21] ;
NODE [PIN2 0] ;

NODE[PIN19] ;
NODE[PIN18] ;
NODE [PIN1 7] ;
NODE[PIN16];

NODE[PIN15];

CAS3B AND RIPB AND !CIPB AND DRAMWNB AND (A21 AND A20
AND !C3 AND !C2 AND IC1 AND CO) {read or write}
CAS3B AND RIPB AND ICIPB AND IDRAMWNB AND (A21 AND A20
AND IC3 AND IC2 AND C1 AND CO) {delayed read/write}

OR CAS3B AND RIPB AND ICIPB AND IBURSTB AND DRAMWNB AND
WRB AND !SB AND (A21 AND A20 AND IC3 AND CO) {block refill}

OR CAS3B AND RIPB AND ICIPB AND IBURSI'B AND IDRAMWNB AND
WRB AND ! SB AND (A21 AND A20 AND CO) {delayed block refill}

OR CAS3B AND RIPB AND ICIPB AND IBURSTB AND !DRAMWNB AND
!WRB AND ISB AND (A21 AND A20 AND !C3 AND !C2 AND !C1 AND
I CO) {page write}

54

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN-90

CAS2B NOT

CASlB NOT

CASOB NOT

DRAMLE NOT

OR CIPB AND DRAMWNB AND ! REFACKB AND CAS3B AND (! C3 AND ! C2

AND Cl AND !CO) {refresh}

OR CIPB AND DRAMWNB AND !REFACKB AND !CAS3B AND (!C3 AND !C2
AND Cl AND CO); {refresh}

CAS2B AND RIPB AND !CIPB AND DRAMWNB AND (A2l AND !A20
AND !C3 AND !C2 AND !Cl AND CO) {read or write}

OR CAS2B AND RIPB AND !CIPB AND !DRAMWNB AND (A2l ANi,) !A20

AND !C3 AND !C2 AND Cl AND CO) {delayed read/write}

OR CAS2B AND RIPB AND ! CIPB AND ! BURSTB AND DRAMWNB AND
WRB AND !SB AND (A2l AND !A20 AND !C3 AND CO) {block refill}

OR CAS2B AND RIPB AND ! CIPB AND ! BURSTB AND ! DRAMWNB AND
WRB AND !SB AND (A2l AND !A20 AND CO) {delayed block refill}

OR CAS2B AND RIPB AND ! CIPB AND ! BURSTB AND ! DRAMWNB AND
!WRB AND !SB AND (A2l AND !A20 AND !C3 AND !C2 AND !Cl AND
!CO) {page write}

OR CIPB AND DRAMWNB AND !REFACKB AND CAS2B AND
(!C3 AND !C2 AND Cl AND !CO) {refresh}

OR CIPB AND DRAMWNB AND ! REFACKB AND ! CAS2B AND
(!C3 AND !C2 AND Cl AND CO); {refresh}

CASlB AND RIPB AND !CIPB AND DRAMWNB AND (!A2l AND A20
AND !C3 AND !C2 AND!Cl AND CO) {read or write}

OR CASlB AND RIPB AND !CIPB AND !DRAMWNB AND (!A2l AND A20
AND !C3 AND !C2 AND Cl AND CO) {delayed read/write}

OR CASlB AND RIPB AND ! CIPB AND ! BURSTB AND DRAMWNB AND
WRB AND !SB AND (!A2l AND A20 AND !C3 AND CO) {block refill}

OR CASlB AND RIPB AND ! CIPB AND ! BURSTB AND ! DRAMWNB AND
WRB AND !SB AND (!A2l AND A20 AND CO) {delayed block refill}

OR CASlB AND RIPB AND !CIPB AND !BURSTB AND !DRAMWNB AND
!WRB AND !SB AND (!A2l AND A20 AND !C3 AND !C2 AND !Cl AND
!CO) {page write}

OR CIPB AND DRAMWNB AND ! REFACKB AND CASlB AND (! C3 AND ! C2
AND Cl AND !CO) {refresh}

OR CIPB AND DRAMWNB AND !REFACKB AND !CASlB AND (!C3 AND !C2
AND Cl AND CO); {refresh}

:= CASOB AND RIPB AND !CIPB AND DRAMWNB AND (!A2l AND !A20
AND !C3 AND !C2 AND !Cl AND CO) AND CASOB {read or write}

OR CASOB AND RIPB AND !CIPB AND !DRAMWNB AND (!A2l AND !A20
AND !C3 AND !C2 AND Cl AND CO) AND CASOB {delayed read/write}

OR CASOB AND RIPB AND ! CIPB AND ! BURSTB AND DRAMWNB AND
WRB AND !SB AND (!A2l AND !A20 AND !C3 AND CO) {block refill}

OR CASOB AND RIPB AND ! CIPB AND ! BURSTB AND ! DRAMWNB AND
WRB AND !SB AND (!A2l AND !A20 AND CO) {delayed block refill}

OR CASOB AND RIPB AND ! CIPB AND ! BURSTB AND !DRAMWNB AND
!WRB AND !SB AND (!A2l AND !A20 AND !C3 AND !C2 AND !Cl AND
!CO) {page write}

OR CIPB AND DRAMWNB AND ! REFACKB AND CASOB AND (! C3 AND ! C2
AND Cl AND !CO) {refresh}

OR CIPB AND DRAMWNB AND !REFACKB AND !CASOB AND (!C3 AND !C2
AND Cl AND CO); {refresh}

:=
OR

OR

TRB AND CAS3B AND CAS2B AND CASlB AND !CASOB {issue after}
TRB AND !CAS3B AND CAS2B AND CASlB AND CASOB {any CAS if}

TRB AND CAS3B AND !CAS2B AND CASlB AND CASOB {read cycle}
OR TRB AND CAS3B AND CAS2B AND ! CASlB AND CASOB
OR CAS3B AND CAS2B AND CASlB AND CASOB;

55

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY APPLICATION NOTE AN-gO

DRAMWRB NOT

SB Nor

TRB NOT

END;
END PAL2.

:=

OR

!CIPB AND RIPB AND !WRB AND DRAMWRB {issue for write}
! WRB AND ! BURSTB AND ! DRAMWNB AND DRAMWRB AND RIPB

AND REFACKB {issue for page write}

OR ! CIPB AND ! DRAMWRB AND CAS3B AND CAS2B AND CASIB
AND CASOB AND RIPB; {keep until end of write}

SB AND !CIPB AND DRAMWNB AND (!C3 AND !C2 AND !Cl
AND !CO) (read/write/block refill)

OR !SB AND !CIPB AND !BURSTB AND WRB AND !C3 {keep for block refill}

OR SB AND !CIPB AND !DRAMWNB AND (!C3 AND !C2 AND Cl
AND !CO) {delayed read/write/block refill}

OR !SB AND !CIPB AND !DRAMWNB AND !BURSTB AND WRB AND
!Cl {delayed block refill}

OR ! SB AND ! CIPB AND BURSTB AND WRB AND CO AND CAS3B AND
CAS2B AND CASIB AND CASOB {read and delayed read}

OR !SB AND !CIPB AND!WRB AND CAS3B AND CAS2B AND CASIB AND
CASOB {keep for write}

OR !WRB AND !BURSTB AND !DRAMWNB AND SB AND REFACKB; {page write}

:= TRB AND !CIPB AND WRB AND DRAMWNB AND (!C3 AND !C2

AND !Cl AND !CO) {read/block refill}

OR TRB AND !CIPB AND WRB AND ! DRAMWNB AND SB AND (!C3

AND !C2 AND Cl AND !CO) {delayed read/block refill}

OR !TRB AND !CIPB AND !SB; {keep asserted for read/block refill}

56

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

TITLE:
PURPOSE:

AUTHOR:
DATE:

MODULE PAL3 ;
TITLE PAL3;

TYPE MMI 16RB;

INPUTS;

{BSYSCLKB

RESETB
REFREQ
BCIPB

DRAMWNB
{OUTENABLEB

{FEED BACK PINS}

RIPB
C3
C2

C1
CO

REFACKB
GATECOUNTERB

OUTPUTS;

TABLE;

RIPB

C3
C2
C1

CO

REFACKB
GATECOUNTERB

RIPB NOT

PAL 3

COUNTER
BOB NAPAA. lor INC.
4/5/91

NODE [PIN1] ;

NODE [PIN2] ;
NODE [PIN3] ;

NODE [PIN4] ;
NODE [PIN5] ;
NODE [PINll] ;

NODE [PIN1B] ;
NODE [PIN17] ;
NODE[PIN16];

NODE [PIN15] ;
NODE[PIN14];

NODE[PIN13];
NODE[PIN12];

NODE [PIN1B] ;

NODE [PIN17] ;
NODE [PIN16] ;
NODE [PIN15] ;

NODE [PIN14] ;
NODE[PIN13];

NODE [PIN12] ;

OR

OR

!RESETB {reset}

!RIPB AND !RESETB {keep for reset}

! RIPB AND REFACKB {keep for refresh}

APPLICATION NOTE AN-gO

OR ! RIPB AND ! REFACKB AND ! C3 ; {keep until end of refresh}

C3 NOT

C2 NOT

:= ! GATECOUNTERB AND ! BCIPB AND REFACKB
OR !GATECOUNTERB AND BCIPB

OR GATECOUNTERB AND BCIPB AND REFACKB
OR !C3 AND !C2
OR !C3 AND C2 AND !C1
OR ! C3 AND C2 AND C1 AND ! CO
OR C3 AND C2 AND C1 AND CO;

:=

OR

! GATECOUNTERB AND ! BCIPB AND REFACKB

!GATECOUNTERB AND BCIPB
OR GATECOUNTERB AND BCIPB AND REFACKB

OR !C2 AND !C1
OR !C2 AND C1 AND !CO
OR C2 AND C1 AND CO;

57

DESIGNING A DISCRETE DRAM CONTROLLER
FOR THE R3051 RISCONTROLLERTM FAMILY

Cl Nor .-
OR
OR
OR
OR

co Nor :=

OR
OR
OR

!GATECOUNTERB
!GATECOUNTERB
GATECOUNTERB
!Cl AND !CO
Cl AND CO;

!GATECOUNTERB
!GATECOUNTERB
GATECOUNTERB
CO;

AND !BCIPB AND REFACKB
AND BCIPB

AND BCIPB AND REFACKB

AND !BCIPB AND REFACKB
AND BCIPB

AND BCIPB AND REFACKB

REFACKB NOT := REFACKB AND REFREQ AND RESETB {for refreq}

APPLICATION NOTE AN·90

OR !REFACKB AND !BCIPB AND RESETB {as long as cipb low}
OR !REFACKB AND !C3 AND RESETB AND GATECOUNTERB

{keep asserted}
OR REFACKB AND RESETB AND !RIPB {reset}
OR !REFACKB AND !GATECOUNTERB; {keep for reset}

GATECOUNTERB NOT : = GATECOUNTERB AND ! REFACKB AND! BCIPB AND RIPB

END;

END PAL3.

OR

OR
OR
OR
OR

{issue for both refack and
!GATECOUNTERB AND !BCIPB AND RIPB

{keep as long as cipb}
!GATECOUNTERB AND !REFACKB AND RIPB
!GATECOUNTERB AND !REFACKB AND RIPB
!GATECOUNTERB AND !REFACKB AND RIPB
!GATECOUNTERB AND !REFACKB AND RIPB

58

cipb}

AND C3
AND C2
AND Cl
AND CO;

t;)® IDT79R3051™ MAIN MEMORY APPLICATION

AND SYSTEM 1/0 INTERFACING NOTE
AN-92

Integrated Device Technology,lnc.

By Andrew Ng

INTRODUCTION
The IDT79R3051™ RISControlier™ family provides a

simple flexible external bus interface to directly support main
memo;Y and system I/O resources. The bu~ interface i~
straightforward in that it uses a single, multiplexed 32-blt
address and data bus and a small number of supporting
control signals. The bus interface is adaptable in that it can
handle different types and speeds of memory including DRAM,
SRAM and EPROM and different kinds of I/O resources.
Thus the simple, flexible R3051 bus interface allows design­
ers to make optimal trade-offs between system speed and
cost issues.

MAIN MEMORY DESIGN
The R3051 normally accesses its internal instruction and

data cache memories as in Figure 1 , while using external main
memory as a secondary source of memory as in Figure 5.
Since the R3051 contains its own internal instruction and data
caches, the complexity of the cache timing and interfacing i~
kept on-chip, which allows the external interface to be dedi­
cated to main memory and system I/O interfacing. The system
interface is decoupled from cache memory by the use of an
internal4-deep read buffer and an internal4-deep write buffer.
Th . truction and data cache allow the R3051 to access 1 e inS

instruction and 1 data word on each clock cycle. On reads,
when a cache miss or an uncachable reference occurs, the
R3051 begins an external read cycle which buffers 1 word on
non-burst reads and 4 words at a time on burst reads from
system I/O and main memory. On writes, the R3051 maintains
a write-through cache update policy which simultaneously
updates both the data cache and main memory. With the use
of its 4-deep write buffer, the R3051 can continue to execute
instructions from its instruction cache while the main memory
retires up to 4 words from the write buffer.

Read and Write Cycle Protocols
The simple read interface allows a wide range of memories

and I/O to be used with the R3051 , from slow I/O peripherals
to high speed burst accessed DRAM and SRAM. ,:"s shown in
Figure 2 and 3, the read interface supports both slngl!3 datum
accesses and 4-word burst accesses simply by providing a
Burst output signal and by providing dedicated LSB address
line outputs Addr(3:2) which are used as a word counter.
System I/O or main memory is only required ~o a~knowledge
each of the 4 words with the RdCEn input which IS used as a
read clock enable to latch each word into the 4-deep read
buffer. Read interfacing also has the option of using the Ack

BrCond(3:0)

+
CIk2xln ~ Clock

I I Master Pipeline Control 1-- General Registers (32 x 32) Generator I Uni

Int (5:0)

I

Exception/Control Registers

Memory Management Registers

Translation Lookaside Buffer
(64 Entries)

: Virtual Address

Physical Address Bus

~ • 32 V

I
Instruction I Data

I .I
Cache Cache

(8kB/4kB) (2kB)

• Data Bus t , • BUS INTERFACE UNIT

-.a. 4-deep I 4-deep I DMA I BIU
Write Buffer Read Buffer Arbiter Control

; ; ; +
Address/

Data
DMA
Ctrl

Rd/Wr SysClk
Ctrl

Figure 1. R3051 RISControlier Internal Architecture

The lOT logo is a registered trademark and RISControlier. R3051 , R3052, and BiCEMOS are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademark and R3000 is a trademark of MIPS Computer Systems, Inc.

59

ALU

Shifter

MulVDiv Unit

Address Adder

PC Control

32 /
/

2881 drwOl

1DT79R30SFM MAIN MEMORY AND SYSTEM YO INTERFACING

acknowledge input signal to optimally control when the R3051
core restarts its pipeline on burst read cycles.

The simple write interface allows a wide range of memories
and I/O to be used with the R3051 by buffering writes from the
R3051 core which are done atcache speeds. This allows main
memory and I/O to retire write cycles at their own rate of speed
by returning Ack, to acknowledge that the word has been
received as shown in Figure 4.

Basic System Functional Blocks
The following sections will describe the functional blocks

that are typical of R3051 main memory and system I/O
interfacing. As shown in Figure 5 these blocks include:

• Address De-multiplexing
• Address Decoding and Chip Selection
• Data Transceivers
• Wait-State Controller and Interface Handshaking
• Read/Write Enables and Strobes

The discussion concentrates on the general interface blocks
involved when using the following modules:

• SRAM Interfacing
• DRAM Interfacing
• EPROM Interfacing

SysClk

APPLICATION NOTE AN-92

• I/O Interfacing
• DMA Interfacing

Specific information on using the different memory and
I/O types is presented in detail in other application notes.

ADDRESS DE-MULTIPLEXER AND DECODER

The R3051 uses a multiplexed AlD(31 :0) bus to output its
address and to send and receive data. Thus main memory
must de-multiplex the address by using the R3051 's Address
Latch Enable control signal, ALE, before decoding the ad­
dress to select chip enables.

Latching AlD(31 :0)
Transparent latches such as the IDT54174FCT373 and the

IDT54174FCT841 pass inputs straight through to the outputs
when their Latch Enable input is high. When their Latch
Enable input is low, the data in the latches are held constant.
The R3051 provides the ALE output for direct connection to
the transparent latches' Latch Enable pins. Transparent latches
are typically used to allow address decoding to take place
when ALE is high and the address begins to become valid,
instead of waiting until the latch closes.

The Address Latch Enable, ALE, is designed to clock the
address into a transparent latch such as the FCT373. ALE is

Rd 1 I
AlD(31:0)

Addr(3:2)

ALE

DataEn

Ack

(~ Addr~BE) (oata

i
nputi=

-----~1 Word Address i x::::=
r--t\ ::::.':::: ~ -----+J1 ! \~-~~--~---+~~---

---------~---~~\~~----~I

Start
Read

Tum
Bus

AckJ Sample New
RdCEn Data Transaction

2881 drw02
Figure 2. R30S1 Single Word Read

60

1DT79R3051TM MAIN MEMORY AND SYSTEM 110 INTERFACING APPLICATION NOTE AN-92

SysClk

Rd

AlD(31:0)

. * 1 X 1'01' 1 X'----;.-..'10_' ~X~_'1-1'.;-------;.....::i:::. ~
____ ~!~~'O-O,~--~--~~--~--~--~--~--~~--

Addr(3:2)

ALE

DataEn

\~~~~~~~---~~~/~-

\;0 rp rp
Ack ------~----~~~r_~--~~--_+----~----~----+_----~----~---

RdCEn /

2880 drw03
Figure 3. R3051 4 Word Burst Read

also designed to meet the address hold time of latches. As
with all high speed processors, ALE should be considered a
critical signal. Thus Printed Circuit Board routing should
minimize ALE's trace length and crosstalk susceptibility.

Decoding A{31 :0)
Address decoding, which selects between the various

memory and I/O banks in the system, can be done with IDT54/
74FCT138/139 decoders as shown in Figure 6.

The time for the main memory chip selects to become valid
in such a scheme is:

tDecode = max (t3051 ALEProp + t373LEtoO, t3051 AddrProp + t373DtoO)
+ t138AtoO+ teap

Systems that require the chip selects to not have decoding
glitches while the address drives to a valid value can register
the decoder outputs by using SysClk as the clock and a
CycleStart signal as the clock enable. The CycleStart signal is
derived from the Rd and Wr control lines so that it asserts at
the beginning of every memory cycle.

Decoding Byte Enables with Chip Selects
During the address phase, the R3051 uses the lower 4 bits

of the multiplexed AlD(31 :0) bus to output BE(3:0). Byte
enables are used to determine which bytes of each word are
being read or written to support partial word accesses. Be­
cause BE(3:0) are used throughout the memory cycle, they

61

are latched by ALE along with the other AID bits.
In general, it is permissible to process all reads as 32-bit

reads-the processor will only take the data it requested from
the bus. However, in write operations, the system must insure
that only the specified bytes are written. Thus, the byte enable
outputs are used to control this.

There are two ways in which the byte enables may be used:

• Gate the byte enables with the memory chip selects.
Thus, only those bytes of memories which will be written
are selected. A single write enable can then be presented
to all banks of that memory subsystem. This solution
requires that each memory sUb-system further decode
the chip-selects, and thus one decoder per memory sub­
system is required.

• Gate the byte enables with the memory chips read/write
enables/strobes. Thus, although all of the devices in that
bank of memory are "selected", only those bytes to be
written are enabled for the writes. This is a common
strategy in DRAM sub-systems. Note that the individual
byte strobes may be broadcast to all memory systems,
and the address decoder will insure that only one sub­
system is "Selected". Thus, a single decoder for byte
enables can serve the entire memory system.

If the memories being used are 1-bit to a-bits wide, gating
the byte enables with the chip selects can be done. Because
the byte enables are predetermined within the R3051 by using
the LSB address bits, the endianness of the system, and the

IDT79R3051™ MAIN MEMORY AND SYSTEM VO INTERFACING

Wr

NO(31:0)

Addr(3:2)

ALE

----I~ Reset
--~~ CIk2xln

--~ rnt(5:0)
--..aI BrCond (3:0)

----~ BusReg
4----1 BusGnt

\'---+-----+-----t--'/
i G A:t X,---. __ D_a_ta_o,....u_t __ .,....>C

-------~!~)('---~----~W-Or-d-A-dd-re~S-s----~~

_----;......try'----.....;--~...;....<_c-

'f!
\'---+-----+-----t--'/

St rt Data Ack Negate New
Write Out Wr Transfer

Figure 4. R3051 Single Word Write

lOT R3051/E521E
RISControlier™

2881 drw04

ALE Addr(3:2)

Figure 5. R3051 with Main Memory

62

APPLICATION NOTE AN·92

System I/O

2881 drw05

IDT79R3051™ MAIN MEMORY AND SYSTEM VO INTERFACING

:2) -----
FCT244
BUFFER Addr(3

FCT373 ----- LATCH AlD(31:0)

ALE -----I>

A(3:2)

~ FCT138
DECODER

A(31:4)

BE(3:0)

~ CS(7:0)

~1:2)
BE(3:0)

2881 drw06

APPLICATION NOTE AN-92

Figure 6. Address De-multiplexer and Decoder

type of load or store instruction, the byte enables have the
same timing as the rest of the AID lines during the address
phase when ALE is asserted. This allows a memory decoder
to have individual chip selects for each byte of each bank with
no timing penalty. An example is shown in Figure 7.

As gating the byte enables with the chip selects usually
takes more output pins than gating the byte enables with the
read and write enables, the latter is usually preferred. The use
of byte enables with read/write enables will be discussed in the
read/write enable/strobe section.

Using Addr(3:2)
Since the lower 4 AID bits are used for byte enables during

the R3051's address phase, the R3051 provides the informa­
tion for addressing words through its Addr(3:2) output pins.
The R3051 uses 4 bytes per word and pre-decodes the byte
enables instead of providing the 2 LSB address lines. Addr(3:2)
are driven throughout external bus cycles and do not require
latching. During non-burst read cycles and all write cycles,
Addr(3:2) contains the instruction cache miss address. The
advantage of dedicating output pins for Addr(3:2) is that
during burst read cycles, Addr(3:2) are incremented from 0 to
3 by the R3051 RdCEn protocol so that the system memory
system does not have to provide a counter for this function.

Since each memory chip requires Addr(3:2), large memory
systems that use Addr(3:2) extensively may want to use
buffers. A common strategy may be to provide a buffered
version of Addr(3:2) to non-time critical areas of memory (e.g.
the boot prom), or to areas which do not perform burst
accesses (I/O devices), and directly use the outputs of the
R3051 in time-critical areas such as the DRAM control.

The crossover point where buffering is appropriate can be
determined by determining if the delay through an IDT54/
74FCT244 buffer and the capacitive derating from all the

63

Addr(3:2) inputs driven by the buffer (Addr(3:2) can be buff­
ered for separate branches of memory banks) would be less
than the delay from the capacitive derating from all the
Addr(3:2) inputs driven directly from the R3051. In addition,
the crossover doesn't occur until Addr(3:2) is delayed past
when rest of the A(31 :4) lines reach their inputs.

t3051Addr(3:2) + t244 + t244Cap ~ max(t3051Addr(3:2) +
t3051Cap, tA(31:4))

where:
t244Cap = (sum(ClnpuVOutput) + C244 + tTrace - 50)/33 pflnsec
t3051 Cap = (sum(ClnpuVOutput) + C3051 + tTrace - 25)/25 pf/nsec

Using Diag(1 :0)
Some systems may need to know whether a read cycle is

cachable or uncachable and whether a cachable read cycle is
an instruction or a data fetch. In Figure 8, this information is
provided by latching the diagnostic pins, Diag(1 :0) with the
same latch controls as the address lines. These signals are
useful for:
• Decoding whether a reference to the lowest half GB of

physical memory is from ksegO or kseg1.
• Tracing processor execution by knowing which address

caused the I-Cache miss.

DATA TRANSCEIVERS
The R3051 uses a multiplexed AlD(31 :0) bus to output its

address and to send and receive data. Thus main memory
must drive or receive data after the R3051 has tri-stated its
address. Further, to support high-performance memory sys­
tems, the R3051 family is capable of initiating a new bus
transaction one-half clock cycle after data is sampled for a
read operation.

IDT79R3051™ MAIN MEMORY AND SYSTEM VO INTERFACING

Determining if Data Transceivers are needed
Multiplexed CPU busses often use data transceivers to

separate the memory system from the processor bus. Read
cycles require the memory system to stop driving data on the
AID bus before the processor drives the next memory cycle's
address. Slow memories with relatively long output disable
times cannot meet this limitation without data transceivers.
However, some memories, such as the IDT718256
BiCEMOSTM 32Kx8 Static RAM, have very short access time
and output disable time which makes it possible to consider
attaching memory device data I/O pins directly to the multi­
plexedAlD(31 :0) bus. Alternatively, in lowfrequencysystems,
the amount of time provided by the R3051 may be sufficient
for the memory devices attached to the bus.

The key parameter is the memory output disable time, TOZ,
which has to be less than 1/2 clock to disable before the next
memory's address is driven. In addition the address and data
driven from the R3051 is delayed because of the extra
capacitance of the memory data I/O pins.

tOl ~ tSysClkl2 - tDisableControl + min(t3051Addr)

Data Transceivers also serve to isolate memory banks
from each other. In systems with varying speeds of memory,
transceiver banks can be used to separate chips with rela­
tively long output disable times from those with relatively quick
output disable times. Thus in many systems, fast scratch-pad
SRAMs may have their own set of transceivers, while slower
EPROMs and I/O peripherals might have a separate set of
transceivers.

BE(O) Ea OOa CS(O)BE(O)
0Ta. CS(1)IillO)

2 AOa "02a CS(2)BE(O)
A(31:2) A1a 03a CS(3)BE(O)

FCT139
DECODER

BE(1) Eb QQb CS(O)BE(1)
Q.1b CS(1)1ill1)

AOb Q2b CS(2)~1)
A1b 03b CS(3)BE(1)

BE(2) -----+-~ Ea OOa CS(O)BE(2)
01a CS(1)1ill2)

AOa 02a CS(2)~2)
A1a 03a CS(3)BE(2)

FCT139
DECODER

BE(3) ------+-~
Eb OOb CS(O)BE(3)

01b CS(1)1ill3)
AOb 02b CS(2)~3)
A1b 036 CS(3)BE(3)

2881 drw 07

Figure 7. Gating Byte Enables with Chip Selects

64

APPLICATION NOTE AN-92

Using IDT54n4FCT861's and IDT54!
74FCT245's for Data Transceivers

Most systems will use slower memories and thus require
data buffering through a transceiver interface. There are two
basic families of transceiver interfaces:

1: IDT54174FCT861 with separate enable pins for each
direction

2: IDT54174FCT245 with a direction pin and an enable pin

Using IDT54n4FCT861's for Data
Transceivers

The 1 O-bit transceiver FCT861 approach functionally com­
bines two 10-bit tri-statable FCT827 buffers internally. The
8-bit FCT623T transceiver is similar to the FCT861 except that
one of its output enables is active high. On read cycles, if there
is only one transceiver bank, then DataEn can be used directly
to control the read direction output enable. Otherwise, combi­
national logic such as an FCT157/257 multiplexer can be used
to combine DataEn with the chip selects of the bank whose
transceivers need to be enabled (see Figure 16 for a similar
common input OR gate circuit). Alternatively, some transceiv­
ers, such as the 9-bit IDT54174FCT863 and the 8-bit IDT54/
74FCT543 have two logically AND'ed output enables foreach
direction so that DataEn and the bank chip select can be
hooked up directly to the transceiver. State machines using an
inverted SysClk can also use a Rd derived signal to synchro­
nously assert and de-assert the read direction output enable.

The write direction output enable can use a signal derived
from Wr which asserts at the beginning of the cycle and waits
until after the data has been strobed into the memory or I/O
device before de-asserting to provide sufficient data setup
and hold time. For systems with 1 wait-state or more, the
derived write direction enable signal should ideally assert after
the AID bus finishes driving its address phase to reduce
switching noise.

The transceiver control's critical timing path is the transition
from a read cycle to a write cycle. After a read cycle, slower
memory chips take a relatively long time to disable from the
data bus. If the next memory cycle is a write, the transceivers
will drive data onto the same bus. Such systems can use the
second memory cycle's wait-states to delay the assertion of
the transceiver's write direction output enable until the first
memory cycle's memory has fully disabled. The cutoff for

Diag(O)

Diag(1)

ALE

FCT373

• or
FCT841

•
LATCH

~ 28

Figure 8. Latching Diag(1 :0)

Rdlnst

RdCache

81 drw 08

IDT79R3051™ MAIN MEMORY AND SYSTEM VO INTERFACING APPLICATION NOTE AN-92

AlD(31:0)

Addr(3:2)

ALE

861 RdEn

AlD(31:0)

Addr(3:2)

ALE

r~~~~~--~--~/
---+4; (~~ddr~BE ~ (Data'lnput >-+<",..(.a.....-_}'---__ _

!! ! i

___ ~!-'~! WoroAddress . r 1\'-___ _

. N 1,,:,',. i ~'--;""'----;"---;"'----';""'----i---"

Ki
~",,: I""""!-~--­

VI
Start
Read

Tum
Bus

Ack? Ack? AckJ Sample End
RdCEn Data Read

Figure 9a. Timing Diagram of FCT861 Read Direction Enable

},.:~-+----+------o-------;..----,{
~

i (~Add"BE X",..-+-____ .;.-i D_a_ta_O_u_tP_ut_-+-__ --+~r {)
---..... 1"'"* i Woro Address ~ i

--+--Ii 1+ I cp
0/",. ' K~~~--~---.;----~V-.;--~V

Start Tum Ack? Ack?
Write Bus

Ack Strobe End
Data Write

Figure 9b. Timing Diagram of FCT861 Write Direction Enable

65

2881 drw09

2881 drw 10

IDT79R305FM MAIN MEMORY AND SYSTEM I/O INTERFACING

determining if the memory output disable time is small enough
to require no wait-states is:

tSysClk >= tOisableControl + tMemReadOisable - tWriteData

Systems that use memory chips without an output enable
pin (i.e., a read is implied for every chip select with no write
enable) require special transceiver interfacing in order to
support partial word writes. During partial word writes, where
only some of the bytes are selected for writing, bytes which are
not being written may actually output onto their byte lanes, and
thus conflict with the transceiver write direction outputs. In
such memory sub-systems, there are two options: only chip
select those devices actually being written into; or, only enable
those transceivers whose byte lanes are used in this write
transfer. Either of these solutions will insure that no bus
conflict occurs.

Using IDT54n4FCT245's for Data
Transceivers

The a-bit FCT245 transceiver approach ideally requires
that the direction control only be changed when the outputs
are disabled to prevent bus contention. Although such sys­
tems are easy to design, this general discussion uses the
following assumptions:

APPLICATION NOTE AN-92

1 : Either a SysClk or SysClk based state machine is used.
2: The memories require at least 1 wait-state.

The output enable of an FCT245 needs to be determined
by finding the start and end of the memory cycle, which can be
determined by logically AND'ing Rd and Wr. The assertion of
the output enable can be easily delayed to occur well after the
transfer, depending on the number of wait-states in the
memory controller. That is, the transceiver only needs to be
enabled in time to allow the data to propagate through to the
CPU as the read data response is finally returned to the
processor. In read cycles, the output may be disabled using
the same clock edge as is used by the CPU to negate Rd. On
write transactions, the transceiver must be enabled until the
data set-up and hold time requirements of the memory being
written are met, which may extend until the next falling edge
of SysClk (note for the R3051 , the processor guarantees that
valid data will remain for one-half clock cycle after the negation
ofWr).

The TiR direction pin of the FCT245 should be asserted
before the output enable asserts, which can be achieved by
using a Rd or Wr derived signal. The direction should be held
until the next clock edge after Rd or Wrde-asserts; that is, until
after the output enable is de-asserted ..

1~~~~~--~--~1
ND(31:0)

Addr(3:2)

ALE

245DirTlR

(~ Add'~BE ~ (com '0", >t< ()
-----;.! -'f Word Address ~"'.

_~h cp
'~----i--"';""--------;"------;..-.t{

'-J-I,i". r-+--+--+--~, --!---

~ V

Start
Read

Turn Ack?
Bus

Ack?

VI
AckJ Sample End

RdCEn Data Read

Figure 10a. Timing Diagram of FCT245 Enable and T/RDlrection Controls for a Read

66

2881 drw 11

IDT79R3051TM MAIN MEMORY AND SYSTEM VO INTERFACING APPLICATION NOTE AN-92

AlD(31:0) i Data Output

Addr(3:2) Word Address

ALE

245DirT/R

Start Turn Ack? Ack? Ack Strobe End
Data Write

2881 drw 12
Write Bus

Figure 10b. Timing Diagram of FCT245 Enable and T/R Direction Controls for a Write

Systems that use memories without a dedicated output
enable pin require separate byte output enables in the data
path, as discussed above.

PULL-DOWN/UP RESISTORS ON R3051
OUTPUTS

The R3051 tri-states its outputs under three conditions:

1: If no external read or write memory cycles are being
executed, the AID bus will tri-state. Control signal outputs
will be driven to negated states.

2: If a DMA bus grant is given, all bus interface outputs will
tri-state.

3: If the Tri-State reset mode has been invoked, all outputs
except SysClk will be tri-stated.

The following paragraphs detail which outputs are affected
when the R3051 is in a tri-stated condition.

Pull-down/up Resistors on the AID Bus
The R3051 tri-states the AID bus when it finishes a write (or

read) cycle and there is not another pending memory cycle
that it needs to execute. This situation occurs when the R3051
is getting instructions from its internal instruction cache and it
executes a sequence without store instructions. Since the AI
D bus can be tri-stated for these periods, it is desirable for the
input pins of the address latches and data transceivers to
maintain the AID bus with defined, valid logic values by using
pull-up/pull-down resistors. The use of pull-up or pull-down

67

resistors also has the benefit of easing Automatic Test Equip­
ment programming on board-level and in-circuit tests.

Pull-down/up Resistors on Control Lines
for DMA

The R3051 has an on-chip Direct Memory Access (DMA)
arbiter that allows outside processors and controllers to take
control of the external memory systems, and perform transac­
tions. It does this by indicating a request to the R3051 , which
then tri-states its bus interface to allow it to be driven by the
external agent.

During DMA, the R3051 will execute instructions from its
internal caches until it has a cache miss, makes an uncacheable
reference, or its write buffer becomes full.

An external agent requests bus mastership by asserting
the R3051 BusReq input. If BusReq is asserted by the DMA
device, the R3051 tri-states its outputs and asserts BusGnt to
signal to the DMA device so that it can begin to drive its own
memory cycles. During DMA, the R3051 tri-states all outputs
except SysClk and BusGnt. During the time that the R3051
and the DMA controller transfer control back and forth, neither
one drives the control line outputs (to avoid bus conflicts). In
order to properly transfer control, the R3051 control outputs
should be kept in their de-asserted state. If the transfer time
is relatively short, the system designer may choose to rely on
bus capacitance to hold these signals in their negated posi­
tions. Alternatively, a more conservative strategy is to hold the
bus in a negated position with pull-down or pull-up resistors.
Thus Rd, Wr, Burst/WrNear, and DataEn should use pull-up
resistors and ALE should use a pull-down resistor.

IDT79R3051™ MAIN MEMORY AND SYSTEM 110 INTERFACING

Pull-down/up Resistors on Control Lines for
Tri-State

The R3051 has a reset mode vector which allows the chip
to tri-state all its outputs, except SysClk. This mode is attained
by asserting Tri-State via Slnt(1) while Reset is asserted. In
addition to the control lines above, BusGnt is tri-stated. Thus
for Automatic Test Equipment programming on board-level
and in-circuit testing, a pull-up resistor for BusGnt can be
used.

WAIT-STATE CONTROLLER LOGIC
Wait-states are used to extend the number of clocks within

a memory transfer to provide sufficient memory access and
data setup time for the particular type of memory being
accessed. Such control can be provided with a wait-state
controller state machine. In general, a wait-state machine has
four steps:

1: Detect the beginning of a memory cycle
2: Determine the type of cycle:

a: Which chip select (address decode)
b: Read or write
c: Single word or burst, write near or non-page write

3: Count out cycles until memory is ready and assert R3051
handshaking signals

4: Acknowledge the end the cycle

Thus, the basic control strategy is to use a counter which is
held at zero until a cycle is started, and which then increments
every clock cycle until the transfer is completed. This master
counter then provides the reference by which control outputs
to the memory, data path, and CPU are provided.

R3051 's use of both Clock Edges
The R3051 uses both edges of the clock to assert and de­

assert its control signals. This is to ameliorate the fixup time
between memory cycles, which for most processors, takes 1
full clock cycle. The R3051 is able to do the fixup in 1/2 clock
cycle. This would seem to complicate the design of state
machines which must latch these signals synchronously to
one edge or the other. However, as will be shown in the
following sections, a traditional state machine that follows a
small number of simple design rules can still use a single edge
clock.

The R3051 uses an input clock, Clk2xln, that runs at twice
the frequency of the processor. The R3051 provides an output
clock, SysClk, that runs at the same frequency as the proces­
sor and can be used to clock external state machines. The
polarity of SysClk was chosen intentionally so that either an
unbuffered SysClk or an inverted version of SysClk, (referred
to here as SysClk) can be used. Because all the R3051 control
outputs have very short propagation delays (less than 1/2
clock), a state machine can use either edge of SysClk.

In developing the set of constraints brought on by the use
of both the rising and falling clock edges, some observations
can be made:

68

APPLICATION NOTE AN-92

1: All c10ckable control line outputs, except DataEn assert off
the rising edge of SysClk.

2: All clockable control line outputs de-assert off the falling
edge of SysClk.

3: All control line inputs required by the R3051 are sampled
on the rising edge of SysClk.

Observations 1 and 2 can be specifically applied to two of
the primary control signals, Rd and Wr.

1 : Rd and Wr both assert off the rising edge of SysClk.
2: Rd and Wr both de-assert off the falling edge of SysClk.

The similarity of edge assertions for Rd and Wrcan be used
to simplify the wait-state controller.

Detecting the Beginning of a Memory Cycle
State machines looking forthe beginning of a memory cycle

can look for one of two things:

1 : Rd or Wr asserting
2: ALE asserting

In general, state machines have to choose between using
SysClk and SysClk. State machines such as those imple­
mented in ASICs can use both clock edges, however, to
simplify the discussion it will be assumed that only one or the
other clocks is being used. If SysClk is used, certain registers
must use SysClk directly from the processor to provide suffi­
cient hold time from the processor. Only a negative edge
clocked register can synchronously clock ALE under worst
case timing, since ALE is only high surrounding the falling
SysClk edge which requires a negative edge triggered flip­
flop. SysClk cannot be used because its inverter delay will put
it past when ALE could fall.

Machines which use SysClk (the inverted SysClk) will have
a delay from inverting SysClk. All state machines can use Rd
and Wr to determine the beginning of a cycle. SysClk ma­
chines are able to do this easily with wide margins on setup
and hold times to its registers. SysClk machines must use
SysClk directly from the processor and use registers with 0
hold time and also have a guaranteed minimum clock to output
delay to meet the R3051 's input hold time.

Determining the type of Memory Cycle
The type of memory cycle usually depends on the following

variables:

1: Type of memory
2: Read or write cycle
3: Burst or non-burst, write near or non-page write

These three variables are usually logically AND'ed to­
gether to form equations for determining the number of
wait-states before asserting RdCEn, Ack, or BusError as well
as any transceiver controls. The chip selects from the memory
decoder can be used to determine the type of memory to count

IDT79R3051™ MAIN MEMORY AND SYSTEM I/O INTERFACING APPLICATION NOTE AN-92

Reset Counter

ICS and !Rd and BurstIWrNear !CS and !Rd and BurstIWrNear !CS and !Rd and BurstIWrNear !CS and !Rd and BurstIWrNear

Count == 2? Count ==2? Count == 3? Count == 2?

Count == 3?

Count == 4?

Count == 5?

2881 drw 13

Figure 11. State Diagram of an Example Wait-State Controller for a Single Memory Type

the correct number of wait-states. By using the R3051's Rd
and Wr lines, the transceiver controls can be defined. On read
cycles, the R3051 's BurstlWrNear line determines if 1 word or
4 words are to be returned. On write cycles, BurstlWrNear
determines if a consecutive write is on the same 256 word
page as its predecessor. An example of a state transition
diagram that uses the read/write and burst/non-burst vari­
ables for one memory type is shown in Figure 11. Each
memory type in the system also has a state diagram.

Further variables that affect the type of memory cycle are
implied by the mode initialization vector which is supplied
during processor reset initialization. The variables determine
whether the data byte ordering is Big or Little Endian and
whether data cache miss refills are handled one word at a time
or as 4 word block refill reads. BigEndian and DBRefill are set
by multiplexing the interrupt lines on the de-assertion of reset,
an example of which is shown in Figure 12.

The mode vector of the R3051 was chosen to allow it to be
supplied by just using pull-up resistors on the appropriate
interrupt inputs. For example, the multiplexer shown in Figure
12 could be eliminated, and the pull-up resistors tied directly
to the Slnt(2:0) pins.

Note that to maintain compatibility with future versions of
the R3051 family, Int(5:3) should be high when Reset is de­
asserted. This also can be performed using pull-up resistors.

Memory Interface Handshaking
The R3051 uses two inputs, RdCEn and Ack,to indicate

that the memory system is ready to receive or return data. On
read cycles, RdCEn is sampled on the rising edge of SysClk

69

by the R3051 so that it can enable its internal read buffer clock
on the next falling edge of SysClk. Thus on single word reads,
a single RdCEn is asserted as the memory becomes ready as
shown in Figures 2 and 11. On 4 word burst reads, RdCEn is
asserted for each of the 4 words. Thus on burst reads, the wait­
state controller can optionally "throttle" each word into the
R3051 by delaying the return of each word by a varying
number of clocks. RdCEn can be generated by gating the
memory type and the count:

RdCEn not := Reset and CycleEnd and Bus Error and (
(IRamCS and IRd

);

and ((Counter == 02H)
or (IBurstIWrNear and (Counter==03H»
or (IBurstIWrNear and (Counter==04H»
or (IBurstIWrNear and (Counter==05H»

The acknowledge input, Ack, has two uses. On burst reads,
Ack can be used to optimize the processor execution engine
restart. On writes, Ack is used to signal the end of the cycle,
as will be explained later. The R3051 throttles burst reads into
its internal read buffer at the rate of the memory system;
however, it reads data from the read buffer on every clock
cycle. Therefore, the R3051 will either wait until the 4th RdCEn
has occurred to begin reading the internal read buffer, or until
the memory system signals Ack to the processor. Asserting
Ack on a burst read cycle causes the R3051 to start reading
words from the read buffer in the next cycle; thus, the memory

IDT79R3051™ MAIN MEMORY AND SYSTEM VO INTERFACING

Slnt(O)
BigEnd lOa

Userlnt(O) lOb FCT157

Tri-State 11a or

Userlnt(1)
11b FCT257

DBRefili
12a MULTI-
12bPLEXER

Userlnt(2) •

2881 drw 14

Figure 12. Reset Vector Circuit

system times the assertion of Ack so that the 4th word can be
presented by the memory system just before it is read from the
read buffer. Thus for optimal speed burst reads, Ack should be
asserted 3 clocks before the last RdCEn occurs, as shown in
Figure 3.

On write cycles, Ack is sampled on the rising edge of
SysClk by the R3051 so that the cycle ends on the next falling
edge of SysClk as shown in Figure 4. Ack is used by the wait­
state controller on write cycles to acknowledge that data is
being strobed into memory. Ack can be generated by gating
the memory type and count.

Note that in writes, the WrNear output from the processor
may also affect the write timing. For example, when writing to
Page Mode DRAMs, it will be possible to retire near writes
faster than non-near writes.

An example of generating Ack from gating the memory type
and count is:

Ack not := Reset and Cycle End and BusError and (
(!RamCS and !Wr

);

and ((""'B-ur-'stIW,-;;-:'7'r7':N-ea--r and (Counter == 03H))
or (!BurstIWrNear and (Counter== 02H))

or (!RamCS and !Rd
and ((!""'B-ur-'stIW,-::-;-:"r~N:-ea-r and (Counter == 02H))

Stopping the Counting

Four common ways to end the memory cycle and stop the
counter include:

1: Use a SysClk state machine and look for the de-asserting
edge of Rd or Wr

70

APPLICATION NOTE AN-92

2: Use a SysClk state machine and gate the type of cycle into
the counter to reset it independently of the de-asserting
edge of Rd and Wr (predict the end of the cycle)

3: Use registers with asynchronous resets and gate Rd and
Wr into the reset

4: Interlock a SysClk register looking for the asserting edge
of Rd or Wr with a SysClk register looking for the de­
asserting edge of Rd or Wr

In method 1, the SysClk registering of Rd or Wr is straight­
forward. However, if the counting is based on SysClk, the state
machine will not be able to bring Ack or RdCEn low during the
first possible clock cycle that they are sampled for by the
R3051. This is, because the state machine will not detect the
assertion of Rd or Wr in time. This implies that a SysClk based
state machine will have a minimum of one or more wait-states.

In method 2, SysClk based state machines must determine
when to stop counting independent of the de-assertion of Rd
or Wr. In general they cannot use Rd or Wr to terminate the
cycle because Rd or Wr may de-assert within the buffered
(inverter delayed) SysClk register's setup or hold time. Thus
SysClk based state machines should use its counter to
determine when the cycle will end, e.g., with CycleEnd.
Cycle End or a similar signal uses the chip selects and a
counter to determine the end of the memory cycle, without
using the de-asserting edges of Rd and Wr. Logic equations
for CycleEnd and the LSB of an N-bit binary up counter look
like:

CycleEnd not := Reset and CycleEnd and (

);

(!RamCS and (Counter == 02H) and !Rd and Burst)
(!RamCS and (Counter == 05H) and !Rd and !Burst)
(!RamCS and (Counter == 03H) and IWr and Burst)
(!RamCSand (Counter==02H) and IWrand !Burst)
({Bus Error Timeout} (Counter == OFH))

Counter(O) := Reset and CycleEnd and BusError and (!Rd or !Wr)
and (Counter(O) xor 1)

A Timing Diagram of CycleEnd showing how CycleEnd
asserting at the end of the memory cycle will reset the wait­
state counter independently of Rd and Wr is shown in
Figure 13.

Counters using Cycle End use the type of cycle to deter­
mine when the wait-state counter should stop and reset
independent of the de-asserting edge of Rd or Wr.

Wait-state machines implemented in ASICs can consider
using method 4 which involves interlocking SysClk and SysClk
based registers as· shown in Figure 15. ASICs can also
selectively combine two independent SysClk and SysClk
state machines to avoid 1/2 cycle interlock timing constraints.

Bus Errors

Bus errors can be handled by timing out with the wait-state
controller counter as it is about to overflow. For all types of
memory cycles, the R3051 de-asserts its control edges, e.g.,

IDT79R3051™ MAIN MEMORY AND SYSTEM UO INTERFACING APPLICATION NOTE AN-92

SysClk

SysClk

Rd r~T-~----~~--+--W/
ND(31:0) -------''-4(~~ Addr&BE) ; -i-------t---+----+~(Data Input) ---

l l

Addr(3:2) --~x:;·:.:.:. : v-----
. . Word Address :::.YL--i:

r ALE _-:.-Jrt\ ~~------~----~--+---4---~L--
\~---+-+-~--w/

I\""'---~~/
--~--~-+----~~I\ I~~-Cycle End

Counter ________ ~~----~X~--2--~~~--3--~~~-----
Ack? Ack/ Sample End

RdCen Data Read

2881 drw 15

Figure 13. Timing Diagram of CycleEnd

Rd or Wr, on tbe clock following the assertion of BusError.
SysClk based state machines can look for the de-asserting
edge of Rd or Wr in order to reset the wait-state machine's
counter. In SysClk based state machines, Bus Error can di­
rectly reset the wait-state machine's counter or the overflow
count can be used to assert CycleEnd which will then resetthe
counter.

Bus errors signal an exception to the R3051 only if it is a
read cycle. If exceptions need to be noted for write or DMA
cycles, Bus Error should be gated into an interrupt line. The
i~terrupt must be held until the R3051 can acknowledge it,
since the R3051 re-registers its interrupt inputs on each clock
cycle in which it is executing instructions in its run or fixup
state.

READ ENABLES AND WRITE ENABLES

Memories and I/O devices have a combination of chip
selects, read enables, and write enables to drive data out of
the device and to strobe data into the device. Because the
exact timing and functions of the selects, enables, and strobes
differ for DRAM, SRAM, and I/O, this section discusses read
and write enables and their relationship to the byte enables.

71

Read Enables

In general, a memory or I/O device has an output enable pin
to enable its data outputs on a read cycle. Typical designs will
address all a-bit and 16-bit I/O devices using 32-bit word
addressed, (Le., use Addr(3:2) as their LSBs). Even though
the R3051 produces byte enables on read cycles, it is rare to
require use of the byte enables for reads as the R3051 will
internally mask the bytes not being used. The output enable
for the device can be derived from Rd or from DataEn.
. If more than one memory device uses a single transceiver,
It may be necessary to generate device Output Enables using
a delayed version of DataEn. If one of the memory or I/O
devices has a long output disable to tri-state time, then extra
time must be allowed for that device to tri-state before another
device is enabled. An equation determining if the read enables
should be delayed on a back to back read cycle is:

tSysClk >= tDisableControl + tOldMemoryDisable - tNewMemoryData +
tCap

The output enable control should be asserted at least until
the clock cycle that Rd and DataEn de-assert to provide
sufficient data hold time to the R3051.

IDT79R3051™ MAIN MEMORY AND SYSTEM VO INTERFACING

Rd ---:--cr-­
t1eSe'f ---t~

CycleEnd

APPLlCAnON NOTE AN-92

D Q I---...... --l~ Counter(O)

Wr-~Kr--'
t1eSe'f -+--t~

Cycle End -+--t~ FCT374

SysClk __ -.!I~

Figure 14. Using cycreEild in a SysClk Based Counter

o

FCT374 FCT374

SysClk --~I~ SysClk --~I~

Figure 15. Using Interlocked RegIsters

72

2881 drw 16

2881 drw17

IDT79R3051™ MAIN MEMORY AND SYSTEM VO INTERFACING

Gating Write Enables and Byte Enables

Memory and I/O devices have a write enable pin or a similar
protocol to strobe data into the device. A special case occurs
for partial word stores, where only the pertinent bytes of a word
have their byte enables asserted. Partial word stores occur
when a store byte, store half-word, or store tri-byte instruction
is executed. Because of the efficiency and optimization capa­
bilities of modern compilers, such as the MIPSTM and lOT
Compilers for the R3000™ family, the hardware must always
assume that the software will make use of the partial word
store instructions. Thus the write enables (or as shown earlier
the chip selects) of each byte of a word must be gated with
their respective byte enables. Gating the byte enables into the
write enables can be done with an FCT157/257 multiplexer by
configuring it as a set of four OR gates with a common input
term as shown in Figure 16. The write enable signal can be
derived from Wr.

5V

BE(O) ---i---PI

BE(1) ---+--~

WrEn(3:0)

BE(2) ---t---"

BE(3) ---+--~

----------------4------4~ WrEn

2881 drw 18

Figure 16. Gating Byte Enables into the Write Enables

73

APPLICATION NOTE AN-92

SUMMARY
The main memory interface of the R3051 is conventional

and simple. Basic blocks include address de-multiplexing,
address decoding, data transceivers, wait-state controller, as
well as the memory and I/O modules themselves. The R3051's
uses both edges of the clock for control signals to reduce inter­
cycle latency. Thus conventional wait-state controller
algorithms can be used if the following guidelines are fol­
lowed:

1: In SysClk based wait-state controllers, the input clock
should be unbuffered from the processor's SysClk output.
SysClk controllers will have a minimum of 1 or more wait­
states. SysClk registers require small hold time and a
minimum clock to output propagation delay to meet the
R3051 input hold time.

2: In SysClk (inverted version of processor SysClk output)
based wait-state controllers, the master reference counter
must be reset independently of the de-asserting edges of
Rd or Wr. This can be done by gating the memory type and
cycle type into a Cycle End output which deterministically
resets the counter.

The R3051's integration of an instruction cache, a data
cache, read buffers, and write buffers allows simple main
memory interfacing which can be implemented using a small
amount of external logic. Thus the R3051 reduces the cost
and board size of RISC processing, while maintaining very
high throughput.

(~5 INTERFACING THE R3051™ APPLICATION

TO THE SONICTM NOTE
AN-95

Integrated Device Technology, Inc.

by Danh Le Ngoc (Integrated Device Technology, Inc.) and Paul Cheng & Bill Harmon (National Semiconductor)

OVERVIEW
The lOT R3051 TM family is a series of high-performance 32-

bit microprocessors featuring a high-level integration and
high-performance. The R3051 family integrates the MIPS
R3000ATM RISC CPU, along with 8KB of instruction cache
and 2KB of data cache. The R3051 family uses a simple time­
multiplexed 32-bit address and data bus to provide a low cost
system interface (and to minimize the cost of ASIC devices
designed to interface with the processor). In orderto minimize
the impact of a time-multiplexed bus, the R3051 family incor­
porates a 4-deep read buffer and 4-deep write buffer into the
interface, allowing relatively slow memory systems to be
mated to a high-speed processor. The R3051 family is able to

ClK

Datal
Address

DRAM
Controller
79R3721

VRAM

Control ~-t~"~l--.-::c:.::o:n:tro:"::e:..r ~

R305FM
Family

Video
Timing

Boot Prom and
I/O Controller

offer 35 MIPS of integer performance at 40MHz without
requiring external SRAM or caches.

The R3051 family is designed to bring the high-perfor­
mance inherent in the MIPS RISC architecture into low cost
simplified embedded applications such as laser printers,
X-Window terminals and network bridges and routers. Figure
1 illustrates the simplified block diagram of the R3051-based
X-Window terminal.

The focus of this application note to describe the interface
between the R3051 and National Semiconductor's System
Oriented Network Interface Contro"er(SONIC).

Even
Memory Bank

Address Data

Odd
Memory Bank

Address Data

Frame Buffer

Bus
Exchanger
79R3720

x
Window

2887 drwOl

Figure 1. X-Window Terminal

SONIC Is a Trademark of National Semiconductor
RISControlier is a Trademark of Integrated Device Technology

74

INTERFACING THE R3051™ TO THE SONICTM

The SONICTM is National Semiconductor's System Ori­
ented Network Interface Controller (DP83932). This Ethernet
controller is intended to provide a high performance 32 or
16-bit Ethernet connection for systems that require efficient,
high throughput, low power network connectivity. The SONIC
can be employed in an R30S1-based system, in order to
tightly couple the system's CPU and main memory to the
network. Figure 2 depicts this interface.

The SONIC is ideally suited to embedded processing
applications such as X-Terminals, due to its unique feature
set. The SONIC completely supports all the required specifi­
cations set forth in the IEEE 802.3 standard, including the
Media Access Control (MAC) requirements contained in the

APPLICATION NOTE AN-95

IEEE 802.3 layer management specification. Additionally,
SONIC's high performance DMA channels allow it to use a
very small percentage of the bus bandwidth, while its efficient
linked list buffer management scheme limits the number of
descriptor and data fetches required. It is also important to
note that the SONIC utilizes internal content addressable
memory (CAM) to provide a 100% perfect address filter for
both multicast and physical address packets. This alleviates
the need to waste bus bandwidth, memory space, and CPU
time on unwanted packets. Finally, the SONIC contains an
integrated Manchester encoder/decoder, which is required in
all Ethernet applications. This provides a savings in board
space, as well as improved reliability.

1
SONIC RX± CD± TX±

<31:0>
data

<31:0>
addr RA<5:0> I ~ I~ I~ ~ ~ ~~Ul~ ~IUl ~IUlI~I~I~ UlI~ ~ cnOUl~cncn~OUlUl

AID <31 :0> and Add <3:2>

<AlDO:31>
(Add 2,3)

3051

Control Bus

Figure 2. SONIC Interface to the R3051

75

MEMORY

Add/Data Control

2887 drw02

INTERFACING THE R3051TM TO THE SONICTM

FUNCTIONAL OVERVIEW

System Interface

The R3051 has a multiplexed 32-bit address and data bus.
Since the SONIC's address and data buses are demultiplexed,
it is necessary to employ a set of external latches to connect
the SONIC to the processor's address and data buses. In
many applications, these latches may also be used to
demultiplex the R3051 bus to other parts of the system
memory and I/O.

In order to allow the R3051 to have access to the SONIC's
internal registers, as well as allow the SONIC to gain control
of the system bus and perform DMA operations, the SONIC is
interfaced to the system bus as both a slave and a master. As
a slave, the SONIC appears as a block of 256 bytes, consist­
ing of sixty-four 32 bit words. The SONIC can be mapped into
any location of memory and will typically provide for a 7 cycle
register access. In R3051 applications, the SONIC will typi­
cally be mapped into the processor kseg1, which is an
unmapped, uncached address space typically used for pro­
cessor I/O resources.

As a master, the SONIC will arbitrate with the R3051 for
ownership of the bus and proceed to operate as a 32-bit DMA
engine between the network and the system memory. While
operating on the bus, the SONIC is capable of performing
32-bit/3 cycle DMA operations. It is important to note that the
ability to place the SONIC on the same bus as the R3051 and
the system memory is critical: this eliminates the need for
the Ethernet controller to have a local buffer, which the CPU
must spend time and bandwidth to transfer to main memory.
The ability of the SONIC to place data directly in main memory
and communicate with the CPU through linked list descriptors,
as well as register accesses, makes the SONIC/R3051 inter­
face CPU and bandwidth efficient.

Network Interface

With respect to the physical layer design, both AUI drop
cable Ethernet and thin wire Ethernet are supported. The
block diagram in Figure 2 contains a 15 pin AUI drop cable
connector for standard drop cable Ethernet implementations,
as well as a thin wire Ethernet connection via the National
Semiconductor coaxial transceiver interface (CTI, DP8392).
Either of these network connections can be chosen through
the use of a single jumper between the 5 volt supply and the
5 volt to -9 volt DC-to-DC converter. In either case, the AUI
signals (RX±, TX±, and CD±) are sent back to the SONIC.
These signals are interfaced to the ENDEC portion of the
SONIC, which provides for communication between the AUI
interface and the non-return to zero (NRZ) signals (RXD,TXD,
and COL) of the Media Access Control (MAC) module of the
SONIC. It should be noted that the integrated ENDEC module
of the SONIC alleviates the need for an external Ethernet
Manchester encoder/decoder, such as National's CMOS Serial
Network Interface (CMOS SNI, DP8391 0).

76

APPLICATION NOTE AN-95

ARCHITECTURE AND DESIGN

Bus Interface

The SONIC's bus interface can be externally configured to
operate in one of two modes. If the SONIC's BMODE pin is
tied to ground, the SONIC will operate on the bus exactly like
an 80386 microprocessor. If the SONIC's BMODE pin is tied
to 5 volts, the SONIC will operate on the bus exactly like a
68030 microprocessor. In this design, the most appropriate
mode of operation was achieved by connecting BMODE to 5
volts.

The bus interface, as depicted in Figure 3, consists of 2
parts. There is an address bus interface and a data bus
interface. Since the R3051 's address and data buses are
multiplexed, it is necessary to utilize a set of '244 buffers and
'373 latches to multiplex the SONIC busses onto the CPU bus.
The '244 buffers are required to tri-state the SONIC's address
lines from the system bus during the data portion of master
transfers, while the '373 is required to latch the register
addresses being sent to the SONIC during slave operations.
The output enable signal of the '244 is asserted when the
SONIC is the masterof the bus and both the SONIC's address
strobe (AS) is asserted and the master logic's address latch
enable (ALE) signal is asserted. The '373 should latch the
address when the R3051 is the bus master and it asserts its
ALE signal.

The data bus interface requires the use of 2 sets of '244
buffers. The first set of buffers (Buffer 1) prevent the SONIC
from placing data onto the system's multiplexed address and
data bus prematurely. In the slave mode of operation, the
output buffer is enabled once the address output drivers are
tri-stated. This is signaled by the assertion of the DataEn
signal. In the case of a master operation, the buffers are
enabled once the address buffers external to the SONIC are
tri-stated, which takes place upon the deassertion of the ALE
signal.

The second set of buffers is enabled when the SONIC's
registers are being written by the R3051 and data is being
presented on the multiplexed system address/data bus, or
when the SONIC is reading system memory and the memory
is placing data on the multiplexed address I data bus. The
assertion of the DataEn signal by the system signals that data
is now ableto be placed on the bus. The actual logic represen­
tation for the bus interface can be found in the bus interface
logic segment of the Control Logic section of this application
note.

Slave Operation

The timing diagram for a slave access of the SONIC is
shown in Figure 4. The falling edge of the R3051 's ALE signal
latches the output of an address decoder and the address
lines being passed to the register address lines of the SONIC.
If the address decode selects the SONIC, a signal called
"AdrDec" will be asserted. The logic for generating this signal

INTERFACING THE R3051™ TO THE SONICTM APPLICATION NOTE AN-95

AID (31:0)

Addr(3:2)

SONIC

AS

Addr (31:0)

SONIC

Control

Bus

Control

Bus
Data (31:0)

RA (5:0)

CS

ADDRESS BUS INTERFACE DATA BUS INTERFACE

Figure 3. Address and Data Bus Interface

Slave Cycle
One Slave Operation

SysClk

ALE ~~ __________ ~ ____________ ~rl~ ____________ _
AID (Read) ~ 0-0--------
AID (Write) --1 Addr I Data In from 3051 I

Rd or Wr I rlL. __________ _
DataEn

SRN!

Addr
RA <5:0>

AdrDec

CS

Rd2

Data

III III

____ ..,:.. Time May Vary ~I

1111111 t
W

__________________________ ~r__l~ ____________ _

Data Out
2887 drw04

Figure 4. Slave Access Timing Diagram

77

2887 drw 03

INTERFACING THE R305FM TO THE SONICTM APPLICATION NOTE AN-95

AdrDec

3051 SONIC

ALE Rd I--a-t--t .>o--t--.J

elK

AID Address
Decoder

D Q
AdrDec

R

Rd2

Tri-stat Buffer
2887 drw 05

Figure 5. Slave Interface Block Diagram

SONIC to 3051 BUS REQUEST

SR 1llLI.I.. _____ ...A.U1I1 Bus Operation! 11.11 1 __________ _

~I t~ ______ ~--~nn~t~-----

t t

III
2887 drw06

Figure 6. Bus Request T ming Diagram

is shown in Figure 5. The value of this signal is passed to the
chip select (CS) and slave address strobe (SAS) signals of the
SONIC on the rising edge of the bus clock. The acknowledge
signals back to the R3051 (ACK for a write and RdCEn for a
read) are asserted 2 clocks after the SONIC generates its
slave acknowledge signal (SMACK). These signals remain
asserted to the R3051 for a clock cycle, after which they are
removed. The ACK and RdCEn signals inform the R3051 that
the data has been latched or is valid, respectively. The
deassertion of these signals results in the deassertion of CS
and SAS to the SONIC. The logic for implementing this part of
the design can be found in the slave logic segment of the
Control Logic section.

Master Operation

The first step in designing the master interface is imple­
menting the bus request logic. The timing diagram for this is
shown in Figure 6. The bus request (BR) signal of the SONIC
is passed to the R3051 's bus request (BusReq) on the falling
edge of the bus clock. The SONIC then waits for the bus grant

78

(BusGnt) from the R3051 , which is passed directly to the
SONIC's bus grant (BG) signal. The assertion of BG causes
the SONIC to assert bus grant acknowledge (BGACK) and
begin its master DMA operations. It is important to note that
the assertion of BGACK causes the SONIC to deassert BR,
which would cause the bus request logic to deassert BG to the
SONIC. Thus, the BusReq signal to the R3051 should be the
logical "OR" of the SONIC BR and BGAck outputs. A block
diagram of the bus request logic appears in Figure 7, while the
actual illustration of the logic is found in the bus request logic
segment of the Control Logic section.

Once the SONIC has gained control of the bus, it will begin
to perform master DMA operations, as illustrated in the
Figure 9 timing diagram. Ideally, if the memory is fast enough,
the SONIC will be able to perform 3 cycle DMA. At 25 MHz,
less than 3.75% of the bus' bandwidth will be consumed by the
network interface.

There are two very important points to note. First, the
R3051's ACK signal is basically equivalent to the SONIC's
DSACK signals, but the SONIC's DSACK signals require that

INTERFACING THE R30SpM TO THE SONICTM

the memory system provide a total of 8 ns hold time from the
rising edge of the clock, while the R3051 requires only 4 ns.
Second, the ALE signal generated from the SONIC's control
signals will be deasserted 3 ns later than the R3051 's would
be. However, this should not be a significant factor, since the
address set-up and hold time provided to the memory system's
latches is consistent with the R3051 's specification.

When interfacing to the multiplexed bus, it is necessary for
the master logic to generate an ALE signal for the system bus.
The ALE signal is asserted on the rising edge of the second
cycle in the SONIC's memory access. It is necessary to assert
the ALE in this cycle, in order to guarantee that the latch will
be provided with an adequate amount of set-up time for the
address. The ALE signal is then removed on the falling edge
of the same clock cycle. The deassertion of ALE triggers the
assertion of DataEn on a read operation, in order to inform the
memory that the bus' address drivers are tri-stated and data
can now be driven. The DataEn signal is actually arrived at by
delaying the the ALE signal through a buffer or PAL, since the

APPLICATION NOTE AN-95

ALE signal is also responsible for disabling the output buffers
of the address drivers.

The final piece of interface logic is used to make the
SONIC's read and write (MR/w) strobe compatible with the
R3051 's read (Rd) and write (Wr) signals. The SONIC's read!
write signal is passed to the appropriate read or write strobe

3051 SONIC

BR

BG
Logic

BGACK

2887 drw07

Figure 7. Bus Request Interface Block Diagram

Master Cycle One Memory Transfer

~ysClk

AS W 11111 1111111 II

Addr 111111111111 111111111111

MRIW 111111111111 I 111111111111

ALE
III

AID (Read) t----1 [I] I
AID (Write) H Data Out IH

Rd orWr III I
RW III I II

DataEn (Read) III III

DataEn (Write)

ACK or RdCEn UJ
DSACK

~----~----~~~----~----~---

ACK2

InDE
111

II
III III

2887 drw 08
Figure 8. Master Access Timing Diagram

79

INTERFACING THE R3051™ TO THE SONICTM

Tri-stat Buffer

3051

ALE

DataEn

Wr

Rd
Burst

SONIC

M/RW

ACK I---------l~ DSACK

2887 dlW 09

Figure 9. Master Interface Block Diagram

of the system bus, on the falling edge of AS. The Rd or Wr
signal is then de asserted on the falling edge of the last clock
cycle. The block diagram for the master interface is found in
Figure 9, while the logical implementation is shown in the
master interface logic segment of the Control Logic section.

Physical Layer

Figure 10 contains a block diagram of the physical layer
interface, while a schematic of the physical layer design is
located on the last page of this application note. This design
can be used in either a thin wire or standard drop cable
Ethernet environment. When the design is used in a thin wire
Ethernet application, the 5 volt supply must be connected to
the DC-to-DC converter, so that the necessary -9 volt output
can be supplied to National Semiconductor's Coaxial Trans-

SONIC
DP83932

CD+ - r-~ .: CD- Q~
RX+ ::

:: j : RX-

TX+
.. 0

TX- : ~ ... ,-
.:

> O.Ol~F~ 270Q,5%~ 300,1%
A

A

GND A

GND

APPLICATION NOTE AN-95

ceiver Interface (CTI, DP8392). The CTI provides an interface
between the 10 MHz Manchester encoded coax cable and the
10 MHz Manchesterencoded differential signals ofthe SONIC's
ENDEC. In the case of a standard drop cable Ethernet
application, the 5 volt supply is left unconnected, so that the
CTI will not receive power. This allows the signals of the
SONIC's ENDEC to pass directly to the AUI cable, via the 15
pin AUI connector. In examining the schematic of the physical
layer design, it can be seen that there is a pulse transformer
at the AUI side of the CTI. This is placed here to isolate the CTI
from the SONIC's ENDEC Signals, when the AUI drop cable
connection is being employed. This transformer also provides
the IEEE 802.3 specified isolation between the coax and the
differential AUI signals, when thin wire Ethernet is being used.
It is also necessary to provide a termination for the 78n AUI
cable's differential receive and collision pair (RX± and CD ±).
This is the reason for the 39n -1%resistors and .01~F
capacitors that are shown in Figure 10.

Additionally, there are 2 more significant considerations.
First, each one of the transmit pairs (TX+ and TX-) requires a
270n non-precision pull down resistor to complete the internal
source follower amplifiers that drive these signals. Second,
there is an isolation transformer placed between the differen­
tial signals of the SONIC's ENDEC and the AUI cable. This
isolation is necessary to guarantee that the SONIC meets the
IEEE 802.3 fail safe specification of a 16V DC level appearing
on the AUI cable's differential signals. This external isolation
is necessary, because in the powered down state the CMOS
process, in which the SONIC is manufactured, may not be
able to withstand this voltage.

-~CD+
.4~

~~
z ~CD- C\I

~ ~RX+ en
.4~

C')

:5 .- RX-
ex>

.4~
a..

... g -J> TX+
Cl

:. - --'TX-
~

VEEr.
-9 Volt s

1 DC - DC :1
CONVERTER

(
5 Volts

" ~,

/~~noo\ I +:;<~?~

AUICABLE 2887 dlW 10

Figure 10. Physical Layer Interface Block Diagram

80

INTERFACING THE R3051™ TO THE SONICTM APPLICATION NOTE AN-95

Control Logic

This application note was developed with the intention of in state machine form, as opposed to being partitioned into
displaying the necessary requirements for interfacing the actual PAL devices. This leaves the freedom for the designer
SONIC to the R3051 system bus. Therefore, the actual to incorporate this logic into his I her system in PALs, ASICs,
implementation of the control logic will be graphically depicted FPGAs, etc.

BUS INTERFACE LOGIC

11

01

Async

10

Address

Q1A = Q1 * Q2 + Q1 * ALE + Q2 * AS

Q2A = Q1 * Q2 + Q1 * ALE + Q2 * AS

OE = Q2A

Data

OE = (DataEn + CS) + (BGACK + DataEn)

Async

InDE * Wr

I I I I
1st case 2nd case

OE1 = DataEn + CS [3=0 OE2 = QA = AS * InDE + AS * Q + Wr * Q + InDE * Q
AS

OE = DataEn + CS + AS * InDE + AS * OE2 + Wr * OE2 + InDE * OE2
I I I I 2BB7drw 11

case 1 case 2

Note:
1. Q1" refers to the first state machine bit and 02" refers to the second state machine bit (10: 01"=1 & 02" = 0)

81

INTERFACING THE R3051™ TO THE SONICTM

SLAVE INTERFACE LOGIC

Q1" = Q2 + Q1 * Q2 * Rd2

Q2" = Q1* Q2 * AdrDec + Q1 * Q2 * Rd2 + Q1* Q2

CS = SAS = Q2"

Q1" = SMACK * Q2

APPLICATION NOTE AN-95

10

00

idle Sync (Falling edge of bus clock)

~

Q2" = Q1 * Q2 * SMACK + Q2 * SMACK

Rd2 = Q2"

Async

Rd2 * SRIW

18 _ ~IRdcEnIO
Rd2

RdCEn = Q" = Rd2 + Q * SRIW

BUS REQUEST INTERFACE LOGIC

Q1" = BGACK + Q1 * Q2

Q2" = BR * Q2 + BGACK * Q1

BusReq = Q1" * Q2"

Q1" = Q1 * Q2 + Q2 * BR

Q2" = ill + Q2 * BusGnt

BG = Q1"

00

10

Async

Rd2 * SRIW

1EJIII _ ~I ACK 1
0

Rd2

ACK = Q" = Rd2 + Q * SRIW
2887 dlW 12

idle Sync (Falling edge of bus clock)

~.....----.

10

BGACK

idre~ Async

11 10

01~00
2887 dlW 13

82

INTERFACING THE R3051™ TO THE SONICTM

MASTER INTERFACE LOGIC

01/\ = 01 * AS + 02 * ClK + 01* 02

02/\ = 01* AS + 01* 02 + 02* ClK

ALE = 01/\·02/\

idle

idle

Sync (rising edge of bus clock)

:tCK2I~ ACK

~I ACK2 11
uct

0/\= 0 * ACK

ACK2=0/\

Async

o

0/\ = InDE + Rd • 0

DataEn = QI\

01/\ = 01 * 02 + 01 * InDE + AS * 02

02 /\ = InDE * 01 + 01 * 02 + 02 * AS

RW=02/\

~~ Async

~ MI~·:i I 1 Rd Rd 0

RW

Rd = 0/\ = RW + 0 * MRIW

Async

00

10 11

Async

11

01

ClK· ACK2

01/\ = 01 * 02 + 01 • 02 * ALE

02/\ = 01 * 02 + 01 * 02 * ClK • ACK2

+ 01 * 02 * ALE

InDE= 02/\

Async

11 10

01 00
L...-_---I

idle Async

~ MI~·:W
1 Wr I Wr 10

Wr

Wr = QI\ = RW + 0 * MRIW

83

APPLICATION NOTE AN·95

2887 dlW 14

IDT79R3051™ APPLICATION t;)®
ADDRESS/DATA BUS NOT:E

AN-97
TURN AROUND BEHAVIOR

Integrated Device Technology, Inc.

by Andrew Ng

INTRODUCTION
This application note describes the behaviorofthe R3051 's

multiplexed Address/Data, "AID" bus and presents the issues
of a particular topic called "Bus Turn Around." Bus Turn
Around will be defined, design issues will be presented, and
design solutions will be given for conventional R3051 sys­
tems, as well as a "DMA BusReq" design solution for very low
speed and very high speed systems.

Definition of the R3051

The IDT79R3051™ RISControlier™ is a highly integrated
MIPSTM R3000™ instruction set compatible microprocessor
that minimizes system cost and power consumption. The
R3051 includes 4kB to 8kB of instruction cache, 2kB of data
cache, an optional on-chip TLB memory management unit, 4-
deep read and write buffers, on-chip DMA arbitration, a simple
external bus interface, as well as the R3000A CPU execution
engine - all in a single compact plastic 84-pin package.

Definition of the AID Bus

One of the key features of the R3051 is its low pin count.
The low pin count is largely a result of its simple control
interface and its use of a multiplexed Address and Data bus,
called AlD(31 :0). As shown in Figures 1 and 2, the multiplexed
AID bus drives its address during the first phase of a read or
write memory cycle. In the 2nd phase of a read memory cycle,
the CPU expects the external memory system to drive the bus

Address Phase

ALE --------
Rd

AlD(31:0) -------+--<
'--~::.::.:.:..=.:...;':..t...J

DataEn

RdCEn

and return the data. In the 2nd phase of a write memory cycle,
the CPU drives the data out to the memory system. Thus in
a typical R3051 system, the address can be latched using a
bank of transparent latches such as with the 54174FCT373T
or 54174FCT841T as shown in Figures 4 and 5 so that the
address is de-multiplexed from the data lines.

In systems using an ASIC, such as for a DRAM or DMA
Controller or as an Integrated I/O Subsystem/Controller with
on-chip programmable registers, the multiplexed AID bus has
an advantage over separate Address and Data busses in that
the ASIC requires substantially fewer pins. The ASIC can
latch the 32 Address bits internally, using the Address Latch
Enable output from the CPU called "ALE", and then use the
same input pins to provide data. In addition, the CPU has less
noise from simultaneous switching of the 32 AID lines than if
it had to switch 64 separate Address and Data lines. Thus
R3051 systems can often save cost and space by using
inexpensive and low pin count ASICs.

Although a multiplexed bus may be thought of as a disad­
vantage in terms of system performance, this is rarely the case
in R3051 systems. An analysis of memory behavior and the
bus shows that in conventional memory systems (those that
do not use exclusively high-speed, single cycle SRAMs forthe
entire memory system), the R3051 bus structure causes no
real performance loss.

Data Phase

Figure 1. R3051 Read Cycle
2531 drwOl

The lOT Logo is a registered trademark and RISControlier and R3051 are trademarks of Integrated Device Technology. Inc.
The MIPS Logo is a registered trademark and R3000 Is a trademark of MIPS Computer Systems. Inc.
SONIC is a trademark of National Semiconductor.

84

IDT79R305pM ADDRESS/DATA BUS TURN AROUND BEHAVIOR APPLICATION NOTE AN-97

Address Phase Data Phase

ALE

Wr

AlD(31 :O)--------f-<

2531 drw 02

Figure 2. R3051 Write Cycle

For example, conventional memory systems use the ad­
dress before the data is generated on read cycles or needed
by write cycles. On read cycles, the address is always needed
before the data array can be accessed. The multiplexed
R3051 bus provides the address as early as a non-multi­
plexed bus would; thus, the read access is not delayed. Since
memory read performance is described as "Address and
Chip-Select valid to Data Available", the multiplexed bus
causes no performance loss on reads.

Similarly, on write cycles, most memories (except for self­
timed memories) require the address before the data in order
to properly coordinate the write strobe with the correct internal
row and column address decode/selects. The R3051 bus
provides the write target address for one-half cycle, and then
immediately presents the write data. That half cycle is
required to perform address decoding, and to provide a Chip­
Select to the memory device. Thus, once the address and
Chip-Select are available to the memory, the data is also
available.

Further, the R3051 decouplesthe system bus performance
from processor performance based on the integration of on­
chip resources. Specifically, the large on-Chip caches mini­
mize the number of main memory reads, thus making system
read performance less criticial. The on-chip 4-deep write
buffer isolates the processor from the memory system write
speed, allowing it to continue execution while store operations
are actually updated into the memory. Thus, R3051 perfor­
mance, while somewhat dependant on memory system per­
formance, is largely isolated from the memory system. Thus,
high-performance systems using relatively slow EPROM and
DRAM devices can be easily realized.

Definition of Bus Turn Around

The other consequence of a multiplexed bus arises from
the fact that during a particular transaction, as well as from one
transaction to the next, transitions between sources of the bus
can occur. For example, a read transaction begins with the
processor driving the address on the bus, and ends with the

85

memory driving the data on the bus. Similarly, at the end of a
read, the next transaction on the bus will begin again with the
CPU driving an address on the bus.

Note that similar concerns are present even for non­
multiplexed busses. For example, a read followed by a write
results in the data bus first being driven by the memory, and
then being driven by the CPU. Thus, bus turn-around is also
a consideration in non-multiplexed bus systems.

Bus Turn Around behavior is the action that the CPU takes
when its address/data bus transitions between the CPU and
the memory, particularly when it changes direction from being
a driver to being a non-driver or vice-versa. The actions that
the CPU can take are:

1. Drive the address.
2. Drive the data.
3. Tri-state.

There are two basic times when the AID bus will transition:
1. Intra-Cycle - Within a memory cycle as the address

phase transitions into the data phase.
2. Inter-Cycle - Between two memory cycles when the

data phase transitions into the address phase of the
next memory cycle.

Intra-Cycle Bus Turn Around

A typical case of an address to data transition happens
during a read cycle. As shown in Figure 1, when the Address
Latch Enable (ALE) is negated, the address is externally
latched and the CPU turns the bus around by tri-stating the AI
o bus, so that the external memory system can begin to drive
the expected data back to the CPU. The second case occurs
during write cycles when the CPU finishes driving the address,
it begins driving the data to the memory system. Since the
CPU drives both the address and data during write cycles, bus
turn around is not a significant issue during write cycles. The
two intra-cycle transition cases are listed in Table 1, which
shows the state of the CPU AID output buffers during the
address and data phases of the transaction.

IDT79R3051™ ADDRESSIDATA BUS TURN AROUND BEHAVIOR

Note that the processor provides an output, DataEn, to
indicate that this transaction has occurred. During the ad­
dressing phase, DataEn is negated, indicating the CPU is
driving the AID bus. During the Data Phase, DataEn is
asserted, indicating that the bus is to be driven by the external
memory system. During write cycles, and during idle cycles,
DataEn is guaranteed to be negated, indicating that the
external memory system should not be driving the AID bus.

READ A,Z

WRITE A,D

Note: A - Address, D - Data, Z - Tri-State

Table 1. R3051 Address to Data Bus Transitional Behavior
Within Memory Cycles

Inter-Cycle Bus Turn Around

A typical case of the transition between two memory cycles
occurs on a read cycle that is immediately followed by a write
cycle as shown in Figure 3. In this case, the memory system
is required to turn the bus around by tri-stating the bus before
the next write cycle begins to drive its address onto the AID
lines. Table 2 lists the R3051 's behavior on each of the cases
of inter-cycle memory transitions. The table lists the state of
the CPU output buffers at the end of the first transaction,
followed by the state of the buffers at the beginning of the next
transaction. Note that if a read or write cycle occurs while the
CPU is executing instructions from its internal cache, the next
external memory cycle might not occur until many clocks later,
in which case the AID bus is tri-stated since it is idle. Also,

Read Cycle

Address Phase Data Phase

SysClk

ALE _____ .1

Wr

APPLICATION NOTE AN-97

many of the cases, such as the transitions after writes have
both the data and address driven by the CPU. Thus bus turn
around is not a significant issue after write cycles. Other
transitions may not actually be possible. For example, it is
impossible to have a read followed by a read. At least one idle
cycle is required, to accomodate the internal fix-up cycle
required by the processor (see the R3051 Hardware User's
Manual for more detail).

From To READ WRITE DMA IDLE

READ Z,A Z,A Z,Z Z,Z

WRITE D,A D,A D,Z D,Z

DMA Z,A Z,A Z,Z Z,Z

IDLE Z,A Z,A Z,Z Z,Z

Note: A - Address, D - Data, Z - Tri-State

Table 2. R3051 Data to Address Bus Transitional Behavior Between
Memory Transactions

TYPICAL SYSTEMS AND BUS TURN AROUND
To handle the timing associated with the bus turn around

within a memory cycle, the Data Enable output, DataEn is
provided by the R3051. As shown in Figure 1, on read cycles,
DataEn gives an indication when the CPU has tri-stated the
AID bus. Thus after DataEn asserts, the memory system can
begin driving data onto the AID bus. The system designer can
also look for the rising clock edge of SysClk after Rd asserts
before allowing the memory system to drive data.

TBTA Write Cycle

Address Phase Data Phase

AlD(31 :0) -----t:s.......:.:~~I~---<"__I=~1...1

DataEn

2531 drw03

Figure 3. R3051 Read Cycle Followed by a Write Cycle

86

ID179R3051™ ADDRESS/DATA BUS TURN AROUND BEHAVIOR

To handle the timing associated with the bus turn around
between two memory transactions, consider the case of a
read cycle immediately followed by a write cycle. The read
cycle output enable control of the memory system must be
such that the output drivers of the memory system turn off
within 1/2 clock before the next address is driven by the write
cycle. If the memory devices have an output disable to tri­
state time (TOEZ) of more than 1/2 clock, then they can be
isolated from the NO bus with a bank of data transceivers
such as the 5417 4FCT245T, 5417 4FCT861 , or 5417 4 FCT623T
or with latched data transceivers such as the 54174FCT543T
or 5417 4 FCT646T as shown in Figure 4. All of these transceiv­
ers have very fast output disable times.

VERY FAST SysClk OR VERY SLOW TOEZ AND
BUS TURN AROUND

The majority of systems will use evenly matched memories
relative to the system clock speed or use transceivers. How­
ever, two exceptions may occur:

1. Very Fast SysClk - Even with the highest speed
transceivers, their output disable times (TOEZ) are
around 5-8 nsec. Thus at 40 MHz, if OataEn is used, it
has a clock to de-assert time of 4 nsec. (Assume that
the transceiver has two internally And'ed output enable
inputs. For example, as shown in Figure 4, the
FCT543T transceiver bank can use OataEn and the
bank select for inputs to the output enables). If 1 nsec is

--
Clk2xln Reset ... Diag(1:0)

AlD(31:0)

ALE

Int(5:3), Slnt(2:0) ...
r

SBrCond(3:2) R3051

BrCond(1 :0)
RISControlier ..

--
DataEn

BusError ..

APPLICATION NOTE AN-97

allowed for clock skew, this just meets the worst case
timing criterion of:

T1/2SysClk (12.5) ~ TDataEn + TOEZ + TClkSkew + TCap
(4+6.5+1+0)

Some choices of transceiver and PLA-based output enable
control combinations may need more time than is allowed by
the above equation. Solutions to this problem will be given in
the section below, "Using OMA BusReq to Match CPU and
Memory Speeds."

2. Very Slow Memories - The second case occurs when
relatively slow TOEZ memories are attached directly to
the NO bus as shown in Figure 5. Such systems require
these memories to turn off within 1/2 clock. A 20 MHz
R3051 has a TOataEn for the de-asserting edge of OataEn
of 7 nsec. Assume that additional output enable control
circuitry adds an additional delay of 10 nsec. 1 nsec is
allowed for clock skew. For an inexpensive, slow 120
nsec EPROM, the output disable time is about 50 nsec,
which seems to limit the clock speed to about 7 MHz:

T1I2SysClk (71.4) ~ TOataEn + TOutputEnableControl + TOEZ +
TClkSkew + TCap (7+10+50+1 +0)

However, as will be explained below in the section called,
"Using OMA BusReq to Match CPU and Memory Speeds," the
overall CPU speed does not have to be slowed down just
because a slow TOEZ memory is attached directly to the NO
bus.

..
.. FCT373T A(31 :4), BE(3:0) ..

LATCH

... >

FCT543T MEMORY

TRANS- SYSTEM
~

D(31:0} • CEIVER

~I ~I ~I ~I
T T WrDataEn

BankSelect

RdCEn, Ack Rd, Wr, BurstlWrNear, DataEn, Addr(3:2), SysClk

BusReq BusGnt ..
r

2531 drw 04

Figure 4. R3051 Memory System Isolated with Transceivers

87

1DT79R30S1™ ADDRESSIDATA BUS TURN AROUND BEHAVIOR

USING DMA BusReq TO MATCH CPU AND
MEMORY SPEEDS

For systems with very fast SysClk or very slow memories,
a solution exists to the bus turn around timing constraints by
using the Direct Memory Access (DMA) interface on the
R3051. The R3051 DMA interface consists of two pins called
BusReq and BusGnt as shown in Figure 6. Normally these
pins are used for giving an external device control of the CPU
bus instead of giving control of the bus to the R3051. In the
R3051 , when BusReq is asserted, DMA always has the
highest priority immediately after the current memory cycle
completes. The BusReq input is always sampled on the rising
edge of SysClk. After the BusGnt is given, all of the CPU
control line outputs, except SysClk and BusGnt are tri-stated.
When the DMA device is finished with the bus, it de-asserts
BusReq which then causes the CPU to de-assert BusGnt. The
BusGnt output is always asserted on the rising edge of SysClk
and de-asserted on the falling edge of SysClk.

Because a BusReq always has the highest priority, in a very
fast SysClk system or a very slow memory system, asserting
BusReq during the read cycle insures that the DMA request
will always be granted at the end of the read cycle. After this
happens, the BusReq pin can be de-asserted afterthe desired
number of inter-cycle wait-states have been inserted. For
example, as shown in Figure 7, by attaching the buffered read

Clk2xln, Reset ---.. Oiag(1:0)

.... AlO(31:0)
....

ALE

int(5:3). Slnt(2:0) _

SBrCond(3:2) R3051 ..
RISControlier

BrCond(1 :0) _ ...

BusError --'0. ... ---

.....

APPLICATION NOTE AN-97

line, Rd to BusReq, the R3051 will grant the BusReq and
immediately release it. Note that Rd needs to be buffered to
meet the hold time of the BusReq input. Examine Figure 3,
where a write cycle normally'can follow a read cycle after 0.5
clocks and then compare itwith Figure 7. In Figure 7, by using
BusReq, it can be seen that a minimum of 1.5 clocks is
guaranteed before the next memory cycle is started by the
CPU.

Note that when using DMA, the system may choose to
resistively pull-up or down its control signals since the DMA
when granted will tri-state the CPU contro~utput signals.
Thus ALE could use a pull-down, while Rd, Wr, DataEn, and
BurstlWrNear could use pull-ups. The resistor value of the
pull-ups and pull-down is not that critical since the R3051
always drives the control signals to their de-asserted states
before tri-stating them. Also, if the BusReq is needed for
conventional DMA, a fixed-priority based arbiter can be used
to allow bus turn around wait-state injection the highest priority
and to allow conventional DMA the next priority.

Various improvements can be made to using the Rd line for
BusReq. For example, instead of using the buffered Rd line,
use the decoded chip select of the particular memory (e.g., the
EPROM) that has the relatively slow TOEZ. Thus the extra
wait-states are only asserted as needed (that is, after the slow
memory is accessed).

...
... FCT373T A(31 :4), BE(3:0)
r LATCH ..

... ~

MEMORY

SYSTEM
0(31:0) ---..

RdCEn. Ack Rd, Wr, BurstlWrNear. OataEn. Addr(3:2), SysClk --'0.
~ --

BusReq BusGnt ~

2531 drw 05

Figure S. R30S1 Memory System Connected Directly to the AID Bus

88

IDT19R3051TM ADDRESS/DATA BUS TURN AROUND BEHAVIOR APPLICATION NOTE AN-97

BusReq __________ ~ __ ~ ________________ +_-----------J

BusGnt

CPUOUTPUTS----------------------------~
(except SysClk and >-----------------------....1.\'--____________ _

BusGnt) ---------------------------------' -
2531 drw06

Figure 6. R3051 DMA BusReq and BusGnt Timing

Address Phase Data Phase

Write Cycle
f-o<Il-__ li:..::B:..:..:TA~ __ ~ Address Phase Data Phase

Read Cycle

ALE

BusGnt

Wr

ND(31:0)

DataEn

RdCEn

Ack

Data
(from CPU)

- - - -----------+--------------------

Figure 7. Using BusReq to Add More Bus Turn Around Time 2531 drw07

SUMMARY
The R3051 allows inexpensive systems to be designed

with the high throughput R3000 RISC instruction set architec­
ture. The small 84-pin count is achieved with a multiplexed
address and data bus, called "AID". The use of the multi­
plexed AID bus allows ASICs and Memory Controllers such as
the R3721 DRAM Controller to have fewer interface pins, with
no real loss of system performance or real added complexity.
However, as for any high-speed bus (either multiplexed or not)
care has to be taken to avoid bus clashes as the bus transi-

89

tions from one device to another. This applications note
describes these considerations.

As shown in the text, the use of the AID bus does not
inherently limit the overall clock speed of the system, since
either transceivers, orthe described method of using the DMA
BusReq input gives a solution for memorylCPU mismatches.
Thus any memory or 1/0 system can use the multiplexed AID
bus and be designed to run at the full CPU clock frequency.

IDT79R3051™ ADDRESSIDATA BUS TURN AROUND BEHAVIOR

FOR FURTHER INFORMATION:
1. IDT79R3051 Family Hardware User's Manual,

Integrated Device Technology, Inc., MAN-RISC-00051,
Santa Clara, CA, 1991. - Describes the HIW features
and functionality of the device as well the bus interface.

2. IDT 1991 RISC Data Book, Integrated Device
Technology, DBK-RISC-00021, Integrated Device
Technology, Inc., Santa Clara, CA, 1991. - Contains
the data sheet with packaging, pinout, ACIDC electrical
and thermal parameters.

3. G. Kane, MIPS RISe Architecture, Prentice Hall,
Englewood Cliffs, NJ, 1988. - Describes the R30001
R3051 instruction set architecture from a systems and
assembly level programming perspective.

4. IDT 1991 Logic Data Book, Integrated Device
Technologylnc., Santa Clara, CA, 1991. - Contains the
data sheets of many different high-speed FCT transceiv­
ers, latches, and buffers.

APPLICATION NOTE AN-97

90

t;)® USING THE R3081 TM IN APPLICATION

R3051 TM ·BASED SYSTEMS NOTE
AN-109

Integrated Device Technology, Inc.

By Peter McDonald

INTRODUCTION
The IDT79R308f

M
RISController™ is the newest member

of IDT's family of high-performance and price-competitive 32-
bit microprocessors. Designed to provide the high-perfor­
mance MIPS® RISC architecture to low-cost and system
integration-sensitive solutions, this processor adds to the
growing family of RISControllers from IDT. The R3081
RISController is superset and pin compatible with the R3051 I
52, and includes 20kB of cache, a Floating-Point Accelerator,
Hardware Cache Coherency support, and a series of system
integration and interface features.

With its larger caches, FPA and interface features, incorpo­
rating the R3081 in an existing R3051 design can dramatically
increase system performance without adding design com­
plexity. Often upgrading to the R3081 is as simple as placing
an R3081 in the R3051 socket. This applications note
describes common considerations when upgrading existing
R3051 systems with the R3081. As an example, this applica­
tion note describes how to upgrade the 7RS385 evaluation
board from an R3051 processor to an R3081 processor.

NEW FEATURES BROUGHT BY THE R3081
The R3081 is superset pin-compatible with the R3051.

That is, in general it is possible to remove an R3051 from a
system and replace it with an R3081. The system should run
without any hardware or software changes. However, the
R3081 adds additional capabilities to the R3051 family; some
systems may wish to take explicit steps to take advantage of
these new capabilities.

Before discussing system changes needed to implement
the superset features of the R3081 , a definition of these
capabilities is needed. As mentioned above, the R3081
includes larger Instruction and Data Caches, a Floating-Point
Accelerator, Hardware Cache Coherency support, and a
series of integrated control options. All the hardware options
are selected by either the mode initialization vectors (values
sampled on the interrupt input lines during reset) or pro­
grammed through the new CPO Configuration register. Below
is a summary of the new R3081 features. A more detailed list
of these features along with a list of the differences between
the R3051 and R3081 are included in the IDT79R3081 13081 E
Integrated RISController Hardware User's Manual.

• Larger Instruction and Data Caches
The R3081 instruction and data caches total 20kB. The
default (reset) configuration is 16kBI and 4kBD, although
they are dynamically programmable to 8kB apiece. Both
instruction and data caches are parity protected over the

data and tag fields. This differs from the R3051 , in that both
caches are larger than the caches supported by the R3051
or R3052, the cache is configurable and the caches are
parity protected.

• Addition of a Floating-Point Accelerator
A full-featured R301 OA-compatible floating-point accelera­
tor is incorporated on the R3081 adding single- and double­
precision add, multiply, and divide instructions to the in­
struction set. Which of the six integer unit Interrupts inputs
is used for the floating-point interrupt signal is program­
mable. Int3 is the default FP interrupt. Thus, one of the six
interrupt inputs of the R3051 is used for the floating-point
interrupt and coprocessor 1 instructions will be directly
executed by the on-Chip floating-point units.

• Cache Coherency Interface
The R3081 has a hardware-based cache coherency inter­
face for multi-master systems. If selected, DMA cycles
between memory and 1/0 can invalidate lines within the
R3081 cache, insuring that there is no stale data and
avoiding software directed cache flushing. This mechanism
can be disabled to achieve full R3051 compatibility; alter­
nately, the system designer can choose to increase the
performance of multi-master systems, by performing hard­
ware cache coherency.

• Power Reduction Mode
The R3081 RISController can be dynamically programmed
to reduce its operation frequency. In this mode the execu­
tion clock, and therefore the output clock, is internally
divided by 16. This function allows the power reduction
benefits of a lower speed clock to be achieved during idle
periods, without requiring external clock shaping logic.

• Programmable Halt Mode
This programmable mode forces the R3081 RISController
to stall until either an interrupt or reset is issued. This mode
has two effects: it further reduces power consumption; and,
it allows software to halt until some external event occurs.

• Half-Frequency Bus Mode
A selectable mode allows the R3081 bus interface to
operate at one-half the frequency of the processor core. For
example, the execution core can run at 33M Hz, and the bus
interface at 16MHz. Given the substantial amount of cache
on-chip, the slow system interface will not dramatically
degrade performance. The end result is a high-perfor­
mance system with very low system cost.

• 1x or 2x Clock Input
The R3081 can operate with either an R3051 compatible
double-frequency clock input (2x clock mode), or can oper­
ate from a clock at the execution rate (1 x clock mode). This
capability both simplifies EMI at high frequency, and also

The lOT logo Is a regislered Irademark and I0T79R3051. I0T79R3081. IOTlc, IOTlsim, IOTlkit and RISControiler are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

91

USING THE R3081 IN R3051-BASED SYSTEMS

allows for "clock doubling" when used in conjunction with
the one-half frequency bus mode.

• Slow Bus Turnaround
A common problem for a high-speed I/O bus is the amount
of time available for mastersh ip changes. The R3081 allows
software to specify a larger minimum time when transitioning
froni the memory driving the bus (Le. read data) and the
processor driving the bus (e.g. writes). This reduces the
speed requirement of data transceivers, with minimal per­
formance impact.

• Dynamically programmed data cache refill
The R3081 allows software to dynamically select between
single word and quad word refill on data cache miss. This
allows for additional performance tuning, by enabling the
kernel to select the best algorithm for a given section of
code. The default refill size is selected at reset time, the
same as for the R3051.

POSSIBLE CHANGES
The R3081 hardware options are either mode selectable at

reset or programmed through an internal register. Hardware
cache coherency support and all clocking modes, half-fre­
quency bus mode and 1 x or 2x clock input mode, are selected
at reset based on the level of the Int[5:3]. In the R3051 ,
Int[5:3] are required to be driven HIGH during reset initializa­
tion.

The interrupt inputs, Slnt[2:0] are already used by both the
R3051 & R3081 to select data cache refill sizes, tri-state test
mode, and big or little end ian system architectures. The
complete table of the R3081 reset mode vectors is listed in
Table 1.

A complete description of these modes is provided in the
IDT79R3081 /3081 E Integrated RISControlier Hardware User's
Manual.

Floating-Point Interrupt
The one area where hardware changes may be necessary

are with respect to the Floating-Point Accelerator. In the MIPS
RISC architecture, the floating-point interrupt is fed into a
general purpose interrupt. Interrupts cause the processor to
jump to the system's exception handler which then decodes
its status to determine the exception cause. One of the six
external R3081 interrupts (by default Int3) is programmed to
be the FPA interrupt. All activity on the external interrupt pin
corresponding to the FPA interrupt is ignored.

Although software can use a different interrupt input other
than the default, it is still the case that only five external
interrupt pins remain available to external peripherals. There­
fore, systems that required six external interrupts will need to
modify their external interrupt structure, perhaps by causing
multiple peripherals to share a single interrupt input. Obvi­
ously, software would then need to decode which device on
that interrupt actually signalled the exception. _

Systems that have defined an interrupt other than Int3 for
the FPA need to modify their startup code so as not to ignore

92

APPLICATION NOTE AN-109

Table 1. R3081 Mode Selectable Features

Interrupt Pin Mode Feature

Int5 CoherentDMAEn

Int4 1xCIockEn

Int3 Half-frequency Bus

SInt2 DBlockRefill

SInt1 Tri-State

SlntO BigEndian

the assertion of Int3.
Some software applications incorporate exception han­

dlers that allow the user to set the FPA interrupt through
software. The IDT/simTM diagnostics uses this method. This
adds system flexibility at the cost of the extra performance
required to decode the interrupt.

The Config Register
Selecting which interrupt is used by the on-Chip FPA, the

cache configuration, power reduction mode, current size of
data cache refill, halt/stall mode, or slow bus turnaround are
all accomplished by writing to the new CPO configuration
register. The Configuration Register data format is shown in
Figure 1.

The reset initialization value of the config register depends
somewhat on the mode vectors selected at reset. Specifically,
the initial values of the Data Block Refill bit, and of the slow bus
turnaround bit, are dependent on the reset vectors. At reset,
the FPlntfield will correspond to Int3, and the Lock, Alt. Cache,
Halt, and RF bits will be cleared.

Reading and writing all CPO registers is accomplished by
issuing coprocessor load and store instructions. The configu­
ration register is CPO register 3. An interactive tool to read and
write the R3081 configuration register, "the R3081 Configura­
tion Tool", is available as a demo tool through your local sales
office, and runs on IDT/sim-based platforms. To insure strict
software compatibility with older applications, the Config
register can be isolated from subsequent writes by writing a '1'
to the configuration register "Lock" field.

Software Compatibility
The R3081 will directly execute applications written for the

R3051. The larger on-chip caches will directly benefit existing
applications, and thus bring an increase in system perfor­
mance. Additional gains are possible, depending on the
application code, by taking advantage of the hardware FPA on
the R3081. Whereas the R3051 must either trap and emulate
floating-point instructions, or perform explicit calls to software
floating-point libraries, the R3081 can directly execute these
operations.

It may be advantageous to generate two distinct binaries
from one source; one, which uses software libraries to emu­
late floating-point operations, and is used with the R3051 or
R3052 and another, which uses the on-chip FPA to perform
floating point. However, if the prospect of two distinct binaries

USING THE R3081IN R3051-BASED SYSTEMS APPLICATION NOTE AN-109

o
Reserved

Lock: 1 -> Ignore subsequent writes to this register
Slow Bus: 1 -> Extra time for bus turnaround
DB Refill: 1-> 4 word refill
FPlnt: Power of two encoding of FPlnt <-> CPU Interrupt
Halt: 1 -> Stall CPU until reset or interrupt
RF: 1 -> Divide frequency by 16
AC: 1 -> 8kB per cache configuration
Reserved: Must be written as 0; returns 0 when read

Figure 1. CPO Configuration Register Data Format

is too onerous for a particular application, the binary could
include FPA instructions; with an R30S1 processor, a trap will
be generated, and software could emulate the operation.
Although a single binary suffices for both processors, the cost
is reduced performance for the R30S1.

Software can dynamically determine whether there is an
FPA available, by performing simple FPA diagnostics. Such
diagnostics is included in IOT/sim, I OT/c™ , and IOT/kit™
startup code. Thus, the boot software could check for the
presence of an FPA, and initialize the Coprocessor One
useable bit according to the results. This allows a single
binary to dynamically determine whether a hardware FPA is
available, and can be used to enable the FPA instruction trap
mechanism of the R30S1 and R30S2.

Manipulating the Cache Characteristics

Another possible performance gain may exist by dynami­
cally manipulating the cache characteristics of the R3081.
The Config register allows the cache configuration to be
dynamically changed from 16kB I-Cache and 4kB O-Cache to
8kB I-Cache and 8kB O-Cache. A kernel may choose to
dynamically change the cache organization, depending on
the nature of the task about to be executed. The only caveat
is that when changing the cache configuration (from 16kB/4kB
to 8kB/8kB or vice versa), both the instruction and data caches
need to be flushed.

In addition, software could dynamically alter the O-Cache
refill size. Changing this bit does not require a cache flush.

Note that to insure compatibility amongst multiple genera­
tions of R30S1 family members, cache flushing routines that
assume a constant cache size are discouraged. The R3081
Hardware User's Manual presents an algorithm where soft­
ware can determine the cache size available.

UPGRADING THE RS385 BOARD WITH THE
R3081

Upgrading the RS38S board with the R3081 RISController
is easy to accomplish. Simply remove the R30S1 and replace
it with the R3081. Both share the same footprint and pinout.
The 1 xClockEn, Half-frequency bus, and Coherent OMA
modes are all disabled in a default 7RS38S, thus no further
hardware modifications are necessary. Int[S:3] are pulled

93

HIGH during reset disabling these three modes.
The IOT/sim included with the 7RS38S automatically sizes

the cache available; thus, the increased cache sizes of the
R3081 pose no problem. IOT/sim will not, however, write to
the Config register. Thus, the FPU interrupt will default to Int3,
unless explicit steps are taken.

Currently on the RS38S, the R30S1 Int3 is used for the
Centronics port interrupt. If using the Centronics port and the
R3081 FPA, the system and/or software must be modified so
thatthe FPA is allowed its own dedicated interrupt. This needs
to be done by either re-writing the boot prom to modify the
config register or using a different Centronics interrupt and
modifying the Centronics driver.

If the 7RS38S has been used as a porting target for another
application, the types of software changes needed will be
application dependent. Applications developed with lOT/kit
and/or I OTIc include startup code that resizse the cache every
time they are executed. IOT/sim startup code does not resize
the cache at each execution. In addition, it may be desirable
to recompile for any floating-point instructions that are imple­
mented with software emulation.

Implementing Additional Reset Modes
When using any of the three reset mode features unique to

the R3081, minor modifications to the RS38S board are
necessary to implement the interrupt input signal multiplexing
during reset. As a general note, the RS38S uses a tri-statable
interrupt bus to implement the multiplexing for the Slnt[2:0].
An asserted MRES# enables the reset mode vector driver. A
modification to the RS38S board was made to enable or
disable any of the six mode selectable features with jumpers,
including the new mode vectors of the R3081. Figure 2 shows
the modified R30S1/R3081 interface to allow enabling and
disabling of the six reset modes. A buffer, U 1 A, was added to
provide the tri-state mux for the three new reset modes.

Other solutions to implement the reset mode selection
abound, depending on one's application. All R30S1 designs
should already pull Int[S:3] HIGH during reset as specified in
the I0T79R30S1 Family Hardware User's Manual. Therefore,
only the new modes being selected need to be added to the
current muxing on the RS38S. If only one additional mode is
needed, jump the one remaining output on the current
74FCT244 reset mode mux (U37 pin 18) to the appropriate

USING THE R3081IN R3051-BASED SYSTEMS

interrupt input. The interrupt PAL, U28, can be reprogrammed
to do some of the muxing. (If the PAL can not be easily
removed from the board, an additional device can be added
to the wire-wrap area.)

An Interesting Upgrade
One of the more interesting upgrades possible is to in­

crease the execution speed while decreasing the bus clock.
To do this, select 1 x clock mode and half-frequency bus from
the new mode reset logic, and replace the R3051 osciallator
with a 40MHz oscillator. The result will be a CPU core
executing at 40MHz rather than 25MHz, although the bus
speed has been reduced to 20MHz.

UPGRADING OTHER R3051 SYSTEMS
Upgrading any R3051-based system with the R3081 RIS­

Controller is very similar to updating the RS385 board. The
one hardware item that may differ has to do with DRAMs and
their refresh.

Specifically, if the refresh period is based on counting
SysClk cycles, then using the reduced frequency mode of the

94

APPLICATION NOTE AN-109

R3081 may violate the reset period (reduced frequency mode
also divides the frequency of the output clock). There are two
solutions to this, depending on the application:
• Reprogram the counter to a smaller number of SysClks.

This is possible with devices such as the R3721 DRAM
controller.

• Use a different reference clock for refresh. Choices include
a UART clock, or the clock used to generate the input clock
to the processor.
The RS385 board refresh request is generated from a clock

independent of SysClk. The clock used is derived from the
UART clock.

CONCLUSION
Incorporating the high-performance R3081 RISController

into existing R3051-based systems is often as simple as
merely swapping processors. Little design complexity is
added, yet system performance increases due to the larger
caches, Floating-Point Accelerator, and other features. Using
more of the R3081 features to increase performance even
more can be accomplished with minimal hardware and soft­
ware modifications.

co
U1

"T1
cC"
c
;;
!'l
~
:II
en w
CD
U1

s::
o
Co
CD

~
n

~
r­
o

CC
0"
c:
"tl
cc
iil
Co
CD
Co

~
:II
w
o
~

174FCT244ll.a INT#3

~P1Al :: ~ ~ I ~ g:: g~~ fHlfHI~I~~:S
I P2A HFBUS .l""1= DAO QA2 12 ~ 4 DA1 QA3 t'3 ,~ I1xCLK~ "6 DA2 QBO rs ~ ~ DMAEN , DA' QB1., IRP"" R11' 4, "'*" - '"TI DBO QB'"

5V R' ~ - r-n DB1 QB'r-'L
R3 ~ ~ 'l3j

DB' U1A , _ ~ A12 BEDOO
RP' R4 ~ DATAEN' t:TItDB' ----' II 13051 BEO# Irru:o-BED~

'1 COH R5 & 'IIDiN P7 1 ""~ - BEli 'All BED~
lORn

R6l,L wRi" I~ I PGA BE2# A9 BED.Q.;3 R7~ RDcENi' P' 1 1,1 74'CT2 .. h, gl~ PLCC BE" B' AD04
R'I!!! A~ l~ 'f,;IOEA' Q

AO
'I6 INTto ~ A/D4 A' -AD~

5V l R'r- P' F DEB' QA1'f4 INT" ~~ A/D5 B7 AD06 ~ - - ~1 ~r ti- DAO QA"12 INT" I:J RES .1 A/D6 'A7 AD07

.L ~ , !-~ WN 'i DA1 QA' '3 MRES "'~~MRES# A/D7 I B6 AD~~ ~1 1 W - R,t, - ZS c;- DA' QBO'5· MRES..! ~ J12 RESET' AID' 'n5 AD~' 7k -'L770SA I, LDBLKR ~ DA' QB1 7 BWH' R4 n<A' M' AID' 4 ADlO
4 - ,7 SENSE vee, 7. RESET ,g DBO QB'" SYSCLKA" ,CLK'xIN _ CLK'XIN AID1 01 ~4 ADll
Sl RESET"5 DB1 QB', ,,<1 1'- AIDll, ADTI

1 ---1..- 2 2 RESIN# ESETH

J
r DRAMWR-,- .ff DB' PlO INT" ~ SINTot A/D12~, Arm

R J I'SYSCLK# ,-- DB3 U37 J ~ ~NT#1 ~ SINTl# A/D13~, ~ ,---1 CT T'F-r I L - 1..u ~ ~ 'X
NT

" ..!:! SINT" A/D14 Al AD15
RESE - .. 1 '" , ... ~ " A/D15 C, AD" C3

1UF
T ANT

1 4~ GND U34 REFJIl R' - ~ , , INT" ~ INT" A/D16 B1 AD17- ,

1 7 , "V10 123 - w:L:JQ 'INT" M7
,NT

" A/D17rcr--AD18 - ~~y ~i 7. HRES .g INll I/O'rn: , .7 """'< INT,t::::!;! INT50 A/D18~
CS F CENTEE# ~ IN10 I108Lll..CIN~O Wr -6 """"' I' A/D19ror AD'9=:

" 1# IN' I/07 20 CINT" 4·5 , BERRO Jll BUS A/D2Orpr--AD21 ' ~ O.lUF!- COUT1 -t. IN' D I/06" , CENTIN~' r - ,--- _ ERRO", A/D21~ ~- r~ !'COUTO ~ IN7 x I/05 I. DINT' ~.. j ~ BRCNDO Mg BRCONDO A/D22 01- AD,]' -~ ~A04 ~ IN6 • I/04 17 TIMCS' '~ND1 L1J! BRCOND1 AID""" AD" ~AO' ~ IN5 I/O,,, ~ A/D24r;rr-- AD25

'TIMERt "- IN4 I/O'~ BRCND' H.g~BRCOND'A/D25 H' AD26

RDJ!. ~ IN' I/01rt.- ~ ~ND' .IW .BRCOND' A/D26, K1 AD'?' SYSCLK# "DUARTINT# 0;- IN2 I100~ FAK R112 J J ~F1Q.# K1 [BUSREQ# A/D27~ AD28

C~ !L
- D.nDR
D

~ rMRES' ~ IN1 U28 5V ," B A/D28 K' AD~ 'C41~1000PF ~qySCT.Us..lf. 1 CLK/IN~ L ~'i4 J RDCEN' r,g RDCEN' A/D29'L' AD~
R5 51<1 I' - RP' R4 5 J,- A/D30, K3 AD3l

- 1 COM RS 6 J ACK#.£2 ACK# A/D31
1

ADD;2

I R6 7 BRC~ r- ADDR'I~l1 ADD~ sv
J.

.-------14
asc vcel

U27

I
fFcT24 0', I R7 ' BRCNDl.' ADDR~ Ell """"11

R'h- BRCND3 AL F12":.~ ~OEAi U29 R'lO -, DATAEN'",-lO B"'!-t.l J '1' DEB ", B Ii'"I Ell '""'-t2 DAO QAO# ~ 10"" RD' Fll WR' t""4 DA1 QAli 4 CLK'XIN WH' ~
-' ~ DA2 QA" 12 'SYSCL .. H12=~ 7 ,~CLKINI : DA3 Q~:~ DE' BUSGNT'~

GND ~ r-;-; DBO QB c: 5 EX DIAGO~l
1 DB1 QB1'Er SYSCLK DIAG1,---- EXOE rr DB' QB"~, • _

~CLl5! 1 '1DB3 QB3 #.f""

r ~ _

c en
Z
Ii)

-i
::t
m
::tI
w
o
~
Z
::tI w o
~
OJ
l>­en
m c
en
-< en
-i
m s:
en

l>­
"tI
"tI r-
(=)

~
o
z
z
~ m
l>­z
.!.
o
co

t;)® UPGRADE STRATEGIES FOR APPLICATION

IDT79R3051 TM -BASED DESIGNS NOTE
AN-113

Integrated Device Technology, Inc.

By Phil Bourekas

INTRODUCTION
The IDT RISControlier™ family includes various highly­

integrated microprocessors providing high levels of perfor­
mance with low system cost. Currently, the R3051™ family
includes three different devices, each providing differing levels
of price performance, yet each pin-compatible with each
other. This allows the system designer to implement a single
base system, yet offer various end products at different
capability levels. The end result to the customer is reduced
time to market for a product family, and the amortization of a
single development effort over a wider variety of end products.
This wide range of pin-compatible performance is not currently
achieved by any other RISC processor family.

This application note describes system design techniques
that insure a high degree of interchangeability with no real
design impact.

THE R3051 FAMILY
Common characteristics of the R3051 family include high

integration at low cost. All current family members are pin­
compatible. All family members include:
• Substantial amounts of separate instruction and data caches

integrated on-chip. Although the amount of caches varies
across different family members, all devices contain enough
cache on-chip to achieve extremely high performance with
low-cost memory systems. The caches on the R3052 and
on the R3081 ™ are actually larger than the cache on the
Intel 80486 high-end processor, enabling these devices to
offer higher performance at lower cost.

• MIPS R3000A compatible integer CPU. The R3051 family
was designed by integrating cache and a low-cost bus
interface around the standard MIPS R3000A CPU. This
RISC core is widely recognized as an extremely high­
performance execution engine, with powerful compiler and
development tools. Some of the features of the core include
a large register file, single cycle ALU, rich set of branch
instructions (including compare operations as part of the
branch), and separate, autonomous integer multiply and
divide. Since the R3051 was designed using the standard
core, 100% software compatibility is guaranteed. Thus,
compiler tools, real-time operating systems, and other
software tools developed around the standard R3000A
work without modification on the R3051 family.

• Optional Translation Look-aside Buffer (TLB). The "E"
(Extended Architecture) versions of the RISControlier fam­
ily feature a 64-entry, fully associative TLB. The TLB allows
virtual addresses to be translated into physical addresses
on a 4kB page basis. The TLB is useful in providing memory
protection and debug utilities in any application; in other

applications, such as those using a real-time operating
system, or in an X-windows server, the TLB allows in­
creased system functionality to be provided.

• Simple,low-pin count bus interface. The R3051 family uses
a time-multiplexed 32-bit address and data bus to commu­
nicate with memory. Internal to the processor are 4-deep
read buffer and write buffer FI FO's to decouple the speed of
the internal execution core from the slower speed memory
system. The multiplexed bus arrangement has many ad­
vantages, such as lower-cost interface chips and ASICs,
without impacting system performance.
Currently, there are three family members. These are:

• The R3051/51 E. This device features 4kB of Instruction
cache and 2kB of Data Cache. There is no hardware
floating-point unit available on this device.

• The R3052152E. This device features 8kB of Instruction
cache and 2kB of Data Cache. As with the R3051 , there is
no hardware floating-point unit available on this device.

• The R3081/81 E. This device introduces a number of new
features to the family. The primary features of interest are
changes to the caches, and inclusion of a hardware floating­
point unit; other features will be described throughout this
application note. The R3081 implements 16kB of Instruc­
tion Cache and 4kB of Data Cache; kernel software can
dynamically reconfigure the on-chip caches as 8kB of
Instruction and 8kB of Data Cache.

POTENTIAL UPGRADE OPPORTUNITIES
A number of possible system upgrades from a single, base

design are possible. Elsewhere in this application note,
design considerations to assure interchangeability are de­
scribed.

Possible upgrade strategies include the following tech­
niques:

Upgrading Cache Size
As all devices are pin compatible; it is possible to increase

performance of an application by upgrading the amount of
cache available on-chip. Thus, holding all other components
the same, an R3051 may be removed and replaced by an
R3052 to double the instruction cache. An R3052 can be
removed and replaced with an R3081 , doubling both the
instruction and data caches.

Add Hardware Floating-Point
One upgrade to higher performance involves upgrading an

R3051 or R3052 to an R3081 and taking advantage of the on­
chip floating-point accelerator. Later in this applications note,
software considerations for such an upgrade are described.

The lOT logo Is a registered trademark and IDT79R3051. IDT79R3081, IOTlc, IDTlklt, IDT/sim and RISControlier are trademarks of Integrated Device Technology, Inc.
All others are trademarks of their respective companies.

96

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

This upgrade will obviously substantially increase the per­
formance of software containing floating-point operations;
while the IDT software floating-point environment is very
efficient, the floating-point unit of the R3081 dramatically
outperforms integer emulation, and may result in a significant
speed-up of some applications.

Increasing Frequency

Obviously, one way to increase performance is to increase
the system frequency. This mayor may not be easy to do,
depending on the exact system design. Obviously, such an
upgrade will typically require the replacement of multiple
devices on the PCB.

Note, however, that R30S1 family packaging insures that
the same footprint and pinout is available across the full
frequency range of the family, and for all of the family mem­
bers. Thus, the same 84-pin PLCC footprint used for a 20MHz
R30S1 accommodates the package for a 40MHz R3081, even
though that device consumes more power. This obviously
simplifies upgrading a design to a higher frequency processor.
Design techniques for increasing frequency may include:
• Using faster memory devices to achieve the same relative

access time.
• Using faster control logic, such as faster PALs or transceiv­

ers, to increase set-up time and reduce propagation delays.
Forexample, a 1SnsPALmaybe replaced with a 10ns PAL,
effectively allowing the clock period to be reduced Sns.

• Re-programming PALs and control logic to increase the
number of wait cycles. While this will reduce the frequency
normalized performance, the absolute performance will be
increased substantially, since the processor will execute
(typically out of its internal cache) at a higher rate.

"Clock Doubler" Operation

The R3081 presents a particularly unique opportunity to
upgrade systems using an R30S1 or R30S2. This is particu­
larly due to the "half-frequency bus" mode of operation of the
R3081.
A dramatic system upgrade can be achieved by:
1.Removing a 20MHz R30S1 or R30S2 and replacing it with

a 40MHz R3081.
2. Selecting the "half-frequency bus" and" 1 x clock" modes via

the reset vectors.
The resulting system bus will continue to operate at 20MHz,

but the CPU will execute out of its internal cache at 40MHz.
The resulting system will typically see its performance more
than double (recall that the upgrade to the R3081 will also
increase the on-chip caches and add hardware floating-point,
relative to the R30S1 or R30S2).

It is also interesting to note that the performance impact of
running a 40MHz processor with a 20MHz bus is not as severe
as one would intuitively guess. This is due to the fact that
memory access time is really in units of time, ratherthan in wait
states. That is, 200ns access memory is 4 clock cycles at
20M Hz and is 8 cycles at 40MHz; the absolute time is not
improved by running the bus faster.

Intel has estimated that for the i486 with clock doubling,
running the bus at one-half the CPU execution rate is approxi­
mately 11 % less efficient than running the bus at the full CPU

97

APPLICATION NOTE AN-113

rate on benchmarks such as the SPEC benchmark suite. The
R3081 contains more than twice the amount of on-chip cache
as does the i486, and thus will be even less dependent on bus
performance; thus, the performance degradation should be
even less.

DESIGN CONSIDERATIONS FOR UPGRADING
The remainder of this applications note details specific

techniques which facilitates the interchange of various mem­
bers of the R30S1 family. In general, all devices are pin and
footprint compatible, so there are no PCB issues to be
concerned about. In general, the only things needed to
upgrade a design are:
• Design it around an R30S1. The R3081 does include some

superset features relative to the R30S1 which simplifies
high-speed systems; however, if a system works for the
R30S1, it will work for an R3081.

• Make the software independent of cache size. The various
devices include varying amounts of cache on-chip. An
algorithm to determine the amount of cache available is
presented in this applications note.

• Have a strategy for software floating-point versus hardware
floating-point. The R3081 adds a high-performance hard­
ware floating-point accelerator, as well as increasing the
cache size. This applications note describes various soft­
ware techniques for dealing with software emulation versus
hardware acceleration of floating-point.
Thus, this application note details specific hardware choices

and software choices which facilitate interchanging CPUs. In
addition, the application note illustrates techniques for de­
termining the presence or absence of the R3081 config
register, the R3081 FPA, and the amount of cache on-chip.

SOFTWARE CONSIDERATIONS FOR
UPGRADING SYSTEMS

Some of the system upgrade considerations should be
accommodated in the application software (especially the
kernel). It is possible to develop a single binary set of code
which performs across all of the family members.

Sensitivity to Cache Size

Obviously, one characteristic difference among the various
family members is the amount of Instruction and Data cache
available. Thus, to insure interchangeability among these
devices, the software should be written to be insensitive to the
cache sizes.

Typically, very little ofthe actual application will be function­
ally sensitive to the amount of on-chip cache; the primary
difference will be in the performance achieved. This is the
primary advantage of caches with respect to memory mapped
zero-wait state RAM; caches are transparent to the software,
and do not affect the memory map.

Typically, the only part of the software that may be sensitive
to the cache size will be the booVinitialization software, which
may perform certain memory (including on-chip cache) diag­
nostics, and which must initialize the on-chip cache by per­
forming a cache flush.

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

Figure 1 shows a listing of a routine to perform cache sizing.
This routine uses bits of the on-chip status register to isolate
the cache (to prevent writes or cache misses from propagating
to memory), and to swap the cache (to perform the algorithm
on the Instruction cache). In orderto determine hit or miss, the
algorithm places a marker in the first word of the cache, and
then looking for the cache size such that a read of the cache
forces a wrap-around to reading location zero. Once this
occurs, the maximum cache size has been exceeded, and
thus the cache size is known. Other algorithms could use the
cache miss bit of the status register, rather than a marker
value. This capability is provided in the IOTlkit™ and IOTlsim™
software packages from lOT.

Once the cache size has been determined, it is used in the
cache flush routines (for example) to completely flush the
caches. Note that if the only time the cache is flushed is at
system start-up, it is acceptable to assume a worst case
(large) cache size and flush that amount of cache; caches
smaller than the size assumed will merely be flushed multiple
times, resulting in wasted execution time but correct function­
ality. On the other hand, applications which perform cache
flushing as part of ongoing operation (e.g. to assure cache
coherency when OMA operations are used) would be sensi­
tive to performance, and thus would desire to flush only the
proper amount of cache.

Floating-Point Presence
Another difference between various family members has to

do with the presence or absence of the floating-point. This
distinction may have two impacts on the software environ­
ment:
• The initial setting of the coprocessor 1 usable bit should

reflect whether or not a hardware floating-point is available.
It is possible to create a software environment which can
dynamically determine the presence or absence of the FPA.

• The actual binary executable of the application may be best
optimized according to the presence or absence of a hard­
ware floating-point. This is discussed below.

How to Determine Floating-Point Presence
There are at least two different methods for determining

whether a floating-point is present. One way is to perform
floating-point operations and determine whether the results
are reasonable; these operations could be as simple as
moving data into and out of the FPA registers to see if they are
present, through performing floating-point calculations and
examining the results (or even possibly seeing if an exception
is reported). If the floating-point is detected as present,
coprocessor 1 should be marked as usable by the kernel.

Another method would be to use the CpCond(1)
(coprocessor 1 condition) flag. The hardware could tie the
CpCond(1) to a known state (e.g. HIGH); software could then
perform a compare operation (or move to the fp cscr register)
to cause CpCond(1) to report the opposite polarity. A simple
branch on coprocessor (1) condition will then determine
whether the CpCond(1) signal is driven by an on-chip FPA, or
by the off-chip pull-up resistor.

98

APPLICATION NOTE AN-113

FPA Impact on the Binary Code
There are two methods for dealing with the software which

mayor may not have a hardware floating-point unit. The
optimal method depends on trade-offs between a single
binary set operating either with or without a hardware FPA,
versus a single source set compiled twice resulting in two
binaries (one targeted to a hardware FPA and one targeted to
an integer only environment).

Using a Single Binary with and Without an FPA
If the system designer chooses to implement a single

binary capable of taking advantage of a hardware FPA when
one is available, all that needs to be done is to tap into the
inherent capabilities of the MIPS coprocessor architecture.
Specifically, if the kernel marks the coprocessor 1 FPA as
unavailable, FPA instructions will cause a trap to occur. The
kernel can then perform an integer interpretation of the FPA
instruction. The application software is then compiled to
assume the availability of a hardware FPA: if one is available
in the system fine; if not, traps will occur when FPA operations
are encountered, and the kernel can perform an emulation of
the function.

Using this technique requires two things in the software:
• Boot software must perform the diagnostics described

above to determine the appropriate setting for the
coprocessor 1 usable bit.

• The kernel must include the capability to emulate the entire
FPA unit, including the FPA operations, the register file, and
the FPA exception mechanisms used by the application.
While this technique has the advantage of resulting in a

single binary which works in either environment, the result is
added complexity and a loss of performance in the environ­
ment in which no FPA is available. Specifically, the kernel
must provide an emulation library of the entire FPA; and,
software FPA operations will include additional overhead from
the CPU exception model and from emulating all aspects of
the FPA, even though a given operation only requires a subset
of the FPA functionality.

Developing Two Binaries from a Single Source
Another technique exists whereby two distinct binaries are

developed from a single source tree. Each of the resulting
binaries is fully optimized for either an integer only environ­
ment, or for an environment in which a hardware floating-point
is available.

This is accomplished by taking advantage of the software
floating-point library capabilities of the IOT/c™ environment.
I OTIc includes acompile time flag which can be used to control
whether hardware FPA instructions (coprocessor 1 instruc­
tions) are generated, or whether direct calls to a software
floating-point library are generated. Thus, software floating­
point is not forced to emulate the register set and data type
conversions of the hardware FPA, and execution is not forced
to go through the CPU exception model. The resulting binary
operates much more efficiently than one which goes through
the trap and emulation model described above.

A separate applications note describes how to determine
the optimal compilation environment for a given application.

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS APPLICATION NOTEAN-113

/**
**
** _size_cache ()
** returns cache size in vO
**
**/

FRAME(_size_cache,sp,O,ra)
.set, noreorder
mfcO to,CO_SR /* save current sr */
and
or
mtcO

to,-SR_PE
vO,tO,SR_ISC
vO,CO_SR

/* do not inadvertently clear PE */
/* isolate cache */

1:

2:

3 :

1*
* First check if there is a cache there at all
*/

move
li
sw
lw
nop
mfcO
nop
.set
and
bne
bne
/*

vO,zero
v1,Oxa5a5a5a5
v1,KOBASE
tl,KOBASE

reorder
t2,SR_CM
t2,zero,3f
v1,t1,3f

/* distinctive pattern */
/* try to write into cache */
/* try to read from cache */

/* cache miss, must be no cache */
/* data not equal -> no cache */

* Clear cache size boundries to known state.
*/
li

sw
sl1
ble

li
sw
ii

lw
bne
sl1
ble
move
.set
mtcO
j

VO,MINCACHE

zero, KOBASE (vO)
vO,l
vO , MAXCACHE, lb

vO,-l
vO,KOBASE(zero)
vO,MINCACHE

v1, KOBASE (vO)
v1,zero,3f
vO,l
vO , MAXCACHE, 2b
vO,zero
noreorder
to,CO_SR
ra

/*
/*

/*
/*
/*
/*
/*

/*

store marker in cache */
MIN cache size */

Look for marker */
found marker */
cache size * 2 */
keep looking */
must be no cache */

restore sr */

nop
ENDFRAME(_size_cache)

.set reorder

Figure 1. Cache Sizing Software

99

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS APPLICATION NOTE AN-113

o
Reserved

Lock: 1 -> Ignore subsequent writes to this register
Slow Bus: 1 -> Extra time for bus tumaround
DB Refill: 1-> 4 word refill
FPlnt: Power of two encoding of FPlnt <-> CPU Interrupt
Halt: 1 -> Stall CPU until reset or interrupt
RF: 1 -> Divide frequency by 16
AC: 1 -> akB per cache configuration
Reserved: Must be written as 0; retums 0 when read

Figure 2. R3081 Config Register

The method of dealing with floating-point operations in an
integer CPU only environment is particularly important in the
evaluation of a compiler platform; techniques such as the "mix
and match" approach supported by IDTlc allows the best
capabilities of the MIPS compiler toolchain to be integrated
with efficient software floating-point emulation.

The obvious advantage of this approach is the optimum
performance achieved for both the integer only system and
the R3081-based (hardware FPA) system. Using distinct
EPROM sets at manufacturing time, or upgrading both the
EPROMs and processor as a field upgrade, are obvious
consequences, but in general are not particularly onerous
(EPROM upgrade can be a replacement of EPROMs, or, for
FLASH EPROM, a re-programming of the EPROMs resident
on the board).

The R3081 Config Register
The R3081 includes, as partofcoprocessorO, an additional

control register called "Config". The R3081 Config Register is
shown in Figure 2.

The Config register controls various aspects of system
functionality. If these features are used in an R3081 system,
software must first determine whether they are available.

To determine whether the current device is an R3081 (and
thus whether the config register is available), software can use
various techniques. One straightforward technique is to
determine whether or not there is an FPA; if so, the device is
an R3081. Similarly, software could determine the cache
sizes available, and see if these correspond to the organiza­
tion the R3081.

Other techniques are also possible; for example, size the
cache, then reconfigure the cache by writing to the config
register; re-size the cache to determine that the change
occurred. Obviously, if the change occurs, the config register
is available.

Note that writes to this register location in the R3051 or
R3052 will have no effect; no side effects occur, and no traps
are signalled. Reads of the config register produce an
undefined data result for the R3051 and R3052.

If the config register is used when an R3051 is in place,
various other considerations exist. These are:
• Floating Point Interrupt. In general, if an R3051 application

intends to also work with an R3081, one of the CPU interrupt
inputs needs to be reserved for the hardware FPA of the

R3081. The default interrupt is Int(3), but the config register
allows a different interrupt assignment to be used. The
corresponding interrupt input pin of the R3081 is then
ignored. Thus, the PCB should contain a pull-up resistor at
the interrupt pin; when an R3051 is used in the application,
no interrupt will be signalled.

• Reduced Frequency. This mode dramatically reduces the
power consumption of the R3081 , by reducing its operation
frequency. This mode is unavailable in the R3051. In
general, the only real functional system change that occurs
is that the SysClk output clock frequency is also reduced;
thus, if DRAM refresh, for example, was derived from this
clock, the counter value should be reprogrammed. If an
R3051 is told to "reduce frequency", nothing will happen.

• Halt. This control bit forces the R3081 to stall until an
interrupt input is asserted, or a reset is encountered. This
mode is unavailable in the R3051 , and no simple software
equivalent exists.

• Data Block Refill. The R3081 allows the block size read on
a data cache miss to be dynamically reconfigured by soft­
ware. The initial value is set by the reset value. In general,
this bit may affect the performance of software, but is
unlikely to impact its functionality.

• Alternate cache. This bit allows the caches to be dynami­
cally reconfigured for the R3081. A cache flush should be
performed after the cache is reconfigured. An earlier
section of this applications note discussed how to make
software independent of the cache organization.

• Lock. This bit allows software to inhibit subsequent writes
to the Config register. Thus, boot software can set up the
operation mode, and then protect it from other software.

• Slow Bus Turnaround. This bit allows systems to enjoy
longer time between AID bus mastership transitions. How­
ever, this software control is not available on the R3051. If
the system designer desires extra time, and also desires to
be able to interchange R3051 sand R3081 s, the hardware
technique described in applications note AN-97 is appropri­
ate. This technique uses the DMA arbiter interface of the
CPU to insure that new transactions are not begun until
ample time for bus turn-off has passed. This hardware
technique works equally well with both the R3051 and
R3081.

100

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

HARDWARE DESIGN ISSUES
There are various hardware design considerations that

may impact the ability to interchange various members of the
CPU family. With proper design, these considerations can be
dealt with no real system impact.

Slow Bus Turn

Bus turn is the amount of time allowed to change master­
ship on the AID bus of the processor. In general, a read
followed by a write can cause a change in bus direction in one­
half bus cycle. At 33M Hz, this is 15ns.

The system designer may implement an architecture which,
by using appropriate transceivers and control signals, can
tolerate a rapid bus turn. Alternatively, the designer may
desire to increase the minimum amount of time.

Although the R3081 includes a bit in the Config register to
slow the bus, this technique does not work with the R3051.
Instead, the hardware technique of using BusReq to insure a
longer tri-state time is recommended. This technique is
described in applications note AN-97.

Coherent DMA
The R3081 includes a hardware interface to insure cache­

coherency in systems using DMA. This interface is unavail­
able in the R3051.

Many MIPS applications perform multi-master cache co­
herency via software techniques, and thus do not require
hardware-based coherency. While hardware-coherency will
improve the performance of some applications, relying on
software (which may, for example, flush the entire data cache
once a DMA operation is completed to insure coherency. This
technique will function equally well with either the R3051 or
R3081.

APPLICATION NOTE AN-113

Floating-Point Interrupt
The R3081 uses one of the interrupt input pins to report

exceptions to the CPU. The hardware should reserve one of
the input pins for this function, and provide logic or pull-up
resistors to insure that this input is held HIGH for an R3051 or
R3052.

CpCond(1)
The R3081 uses this input to report the results of compari­

sons back to the CPU; thus, the external input pin is ignored.
R3051 systems should provide a pull-up resistor for this pin.
Earlier in this applications note, a method to use this pin to
determine the presence or absence of an FPA was described.

Reset Mode Vectors
Both the R3051 and R3081 use the same basic technique

to perform reset mode selection of various options. Figure 3
illustrates the mode vector logic for the R3081. Note that for
the R3051 , Int(5:3) mode vectors are reserved, and must be
held HIGH during reset.

Options include:
• Tri-state. This option is used to perform board testing, and

is available in all devices.
• BigEndian. This option selects the data byte ordering

convention, and is available in all devices.
• Data Block Refill. This option selects single versus four­

word refill on data cache misses. Although this option is
available in all devices, software (via the config register) can
dynamically change the value for the R3081.

• Coherent DMA Enable. This option enables the coherent
DMA interface of the R3081. Forthe R3051 , this input must
be HIGH at reset.

R3081 Mode Vector Logic

Slnt(O)

Slnt(1)

Slnt(2)

Int(3}

Int(4}

Int(5)

Transparent
Latch

En

BigEndian

~

DBlockRefill

Half-frequency Bus

1XCIockEn

CoherentDMAEn

CPU_Resel

Reset
Synchronizer

Figure 3. R3081 Mode Vector Assignment

101

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

• 1x Clock Mode. This option instructs the R3081 that the
input clock provided is at the CPU operation frequency,
rather than at twice the frequency. In the R3051 , only the
"2x" clock is available, and this vector must be held HIGH.

• Half-frequency Bus. This option instructs the R3081 to
operate its bus interface at one-half the execution rate. This
option is unavailable in the R3051 , and must be held HIGH
at reset.
In order to design a system to accommodate either an

R3051 or R3081 , it may be desirable to include jumpers forthe
R3081-onlyoptions. Thus, when an R3081 is included in the
design, various of the hardware options may be changed.
This may open up other upgrade strategies, such as the clock
doubling capability described earlier.

APPLICATION NOTE AN-113

SUMMARY
By following a few simple rules, the system designer can

implement a base R3051 system which can easily upgraded
to higher performance. Upgrade options include more amounts
of cache on-chip, the addition of hardware floating-point, and
increases of frequency. With the R3081 half-frequency bus
mode, the operation frequency of the execution engine can be
substantially increased while maintaining the same (or even
slower) bus interface frequency.

Thus, the lOT RISControlier family effectively reduces the
time to market of new product families, and maximizes engi­
neering return on investment by enabling one design effort to
result in multiple end products.

102

G
INTERRUPT HANDLER APPLICATION
FOR THE IDT79R3051 NOTE
RISCONTROLLER™ FAMILY AN-131

Integrated Device Technology, Inc.

by Dean Smith

INTRODUCTION
The reader is encouraged to refer to Chapter 5 of the

IOT79R3051 RISControlier Hardware User's Manual for a
thorough description of lOT RISControlier exception handling.
In addition, the MIPS Programmers Handbook illustrates two
alternative methods for interrupt prioritizing. This application
note illustrates a third much faster method specific to the lOT
RISControlier Family, as detailed in the Appendix - 'R3051/2
Priority Based Nested Interrupt Handler'. The corresponding
latency cycles forthis example interrupt handler are quantified
in Table 1.

R3051/2 Service Latency Restart Latency

Priority 1 4 9

Priority 2 14 13

Priority 3 16 13

Priority 4 19 13

Priority 5 25 14

Priority 6 25 14

3158 tbl 01

Table 1. IDT79R3051/2 Interrupt Latency (in cycles)

The following assumptions apply to the latencies quantified
in Table 1:
• The corresponding algorithm/code is detailed in the

Appendix.
• Service Latency, Restart Latency are as defined in this

application note.
• The code and stack are resident in the R3051 on-chip

cache.
• The R3051 pipeline is in a 'run' state at the instant the

interrupt is detected.
• A higher priority interrupt is not already in progress.
• Service is not interrupted by a higher priority interrupt.
• Service is not interrupted by any other type of exception.
• Only 1 register is needed by PRIORITY 1,2,3,4 service

routines.
• Only 3 registers are needed by PRIORITY 5,6 service

routines.
The interrupt handler detailed in the Appendix is specific to

the R3051/2. However, much of the content detailed in this
application note equally applies to the other RISControlier
family members with only minor code modifications being
required. Where applicable these differences in the family
members are detailed.

R3051 EXCEPTION MODEL
External interrupts are just one class of R3051 exceptions.

The R3051 implements a 'precise' exception model. By
definition, precise exceptions imply that exact processor con-
The lOT logo Is a registered trademark of Integrated Device Technology, Inc.

text and the cause of the exception are known. In addition, the
current process does not advance state (ie. all subsequent
instructions are aborted) until the corresponding interrupt is
serviced.

The following automatically occurs when the R3051 de­
tects an interrupt:
• The current process is halted.
• The Exception Program Counter is loaded with the return

address for the current process.
• The Cause Register is loaded with exception cause

information.
• The Status Register KUc bit is cleared (ie. enter 'kernel

mode').
• The Status Register IEc bit is cleared (ie. disable subse­

quent interrupts).
• Execution is continued at the General Exception Vector.

These activities preserve the necessary processor context
to implement a preCise exception model. The R3051 proces­
sor makes no assumptions about an external interrupt cause
or servicing techniques. For instance, R3051 registers are not
automatically stacked upon detection of an interrupt since this
often causes unnecessary service latency. Instead, the
software designer is allowed to fine-tune response to the
corresponding service requirements. This technique allows
for extremely fast interrupt handling.

INTERRUPT SERVICE LATENCY
Interrupt Service Latency is defined as the cycle count from

the assertion of an external interrupt to the beginning of the
corresponding service routine. This latency includes three
components;

1) pipeline latency to the General Exception Vector
2) exception type decode
3) preserving context.

PIPELINE LATENCY:
The R3051 pipeline must be in a 'run' state for an interrupt

to be recognized. Thus, pipeline stalls caused by such events
as cache misses and multiply/divide interlock cycles delay
detection of an interrupt. Once an interrupt is detected, the
address of the General Exception Vector will be the next
instruction fetched.

The R3051 has two types of external interrupt pins;
Isynchronous! interrupts, and Idirecti interrupts. The
esynchronousr interrupts are internally synchronized and thus
may be driven by an asynchronous source, with a correspond­
ing pipeline latency to the General Exception Vector of two
cycles. The edirectf interrupts are not internally synchronized
by the processor, and thus must be externally synchronized.
As a result, these interrupts have only a one cycle pipeline

103

INTERRUPT HANDLER
FOR THE IDT79R3051 RISCONTROLLERN FAMILY

latency to the General Exception Vector and are most useful
for interrupting agents which operate off the R3051 SysClk
output.

EXCEPTION TYPE DECODE:
The General Exception Vector is the start address for all

types of R3051 exception handlers (except RESET and UTLB
Miss exceptions) - interrupts being just one classification.
Thus, the exact exception type must first be decoded before
servicing can begin. This is typically accomplished by soft­
ware interrogation of the R3051 Cause Register. The follow­
ing example code details this procedure:

mfcO kO,CO_CAUSE; # kO = CR(Cause Register)

sw t1,t1_0FF*4(sp) # use delay slot to stack gpr t1

and k1,kO,EXC_MASK; # isolate ExcCode field of CR

Iw vO,cause_table(k1); # fetch cause start address

and k1,kO,IP _MASK; # isolate IP field of Cause Register

vO;

sra k1,k1,8;

go to Exception handler start address

(vO = INT _EXTERN, if an interrupt)

shift IP field 8 bits for word address

Iw vO,lP _table(k1); # fetch service routine start address

sw v1,v1_0FF*4(sp); # use delay slot to stack gpr v1

sw

vO;

to,tO_OFF*4(sp);

jump to corrresponding int(n) service

use delay slot to stack gpr to

Even faster exception type decode can be achieved by
using the R3051 's BrCond(n) input pins. The MIPS ISA
contains conditional branch instructions based upon the value
of BrCond(n}. These pins can be physically connected to
interrupt pins for extremely fast decode. The following ex­
ample code details this procedure:

bcot PRIORITY _1 ; # int(O)?

sw kO,EPC_OFF*4(sp); # stack EPC (use branch delay slot).

bc1t PRIORITY _2; # int(1)?

sw k1,SR_OFF*4(sp); # stack SR (use branch delay slot)

bc2t PRIORITY _3; # int(2)?

sw vO,vO_OFF*4(sp);

bc3t PRIORITY _4;

stack vO (use branch delay slot)

int(3)?

sw to,tD_OFF*4(sp); # stack to (use branch delay slot)

The interrupt handler detailed in the Appendix is specific to
the R3051/2 by making use of the four available BrCond(n}
pins. Minor code modifications are required for the other
RISControlier family members due to the different number of
available BrCond(n} pins for each.

APPLICATION NOTE AN-131

RISControfler Number of
Family Member 8rCond(n) pins

R3051/2 four

R3071/81 three

R3041 two

3156 Ibl 02

PRESERVING CONTEXT:
Detection of an exception causes the R3051 to automati­

cally disable subsequent interrupts. This makes it possible for
immediate servicing of the interrupt without preserving Cause
Register, Status Register, or Exception Program Counter
context. Note that care must be taken by the software
designer to ensure that execution of the interrupt handler and
service routine do not generate any other type of exception. If
'nested' interrupts are allowed, then the Status Register and
Exception Program Counter must be stacked. Otherwise the
handling of the original interrupt can not be resumed. The
IntMASK field of the Status Register can then be modified to
re-enable higher priority interrupts. The following example
code details this procedure:

bcot PRIORITY _1; # int(O)?

sw vO,vO_OFF*4(sp); # use delay slot to stack gpr vO.

PRIORITY 2,3,4,5,6 - must stack context for servicing of higher
priority interrupts.

subu sp,sp,exc_stack_sz; # Initialize Stack.

mfcO kO,CO_EPC; # kO reserved for kernel processes

mfcO k1,CO_SR; # k1 reserved for kernel processes

sw kO,EPC_OFF*4(sp); # stack EPC.

mfcO kO,CO_CAUSE; # kO = CR(Cause Register).

sw k1,SR_OFF*4(sp); # stack SA.

bc1t PRIORITY _2; # int(1)?

PRIORITY _2:

Stack additional General Purpose Registers needed for servicing.

re-enable int(O) - higher priority.

Ii vO,x0000401 ;

mtcO vO,CO_SR;

PRIORITY 2 service here:

Note that registers kO and k1 are immediately available for
interrupt handling. These registers need not be stacked since
MIPS compiler and assembler conventions reserve kO and k1
for kernel processes, and since subsequent interrupts are
disabled during any interrupt handlerfs use of these registers.
However, the interrupt handler must stack any General Pur­
pose Registers to be used for interrupt servicing. The number
of registers required is of course interrupt service specific.
The delay slots immediately following branch and load instruc­
tions are convenient locations to stack context without ad­
versely affecting service latency.

Other features ofthe R3051 also help to minimize interrupt
service latency. For instance, the on-chip cache is 'physically'

104

INTERRUPT HANDLER
FOR THE IDT79R3051 RISCONTROLLER'" FAMILY

indexed. This means that virtual-to-physical address transla­
tion is performed priorto cache addressing. As a result, cache
flushing is not required on a context switch (ie. jump to
interrupt service routine). Other processors implement virtu­
ally indexed caches thereby dramatically slowing context
switch performance. Also of importance is the R3051 PIO
(Process 10) field associated with each entry of the TLB
(Translation Lookaside Buffer). The 'Extended' memory
management .option uses an on-chip TLB as a hardware
cache for software managed page tables. The PIO is com­
pared to the contents of each TLB entry at the time of address
translation, thereby providing a mechanism for multiple pro­
cesses to share the TLB even if identical virtual page numbers
are encountered. As a result, TLB flushing is not required on
a context switch.

INTERRUPT RESTART LATENCY
Interrupt Restart Latency is defined as the cycle count from

the end of the interrupt service routine to the restart of the
parent process. This latency includes two components;

1) context restore
2) pipeline refill.

Context Restore:

Any processor context stacked prior to interrupt servicing
must be restored after servicing is complete. Then the stack
pointer must be restored to its previous value. Finally,
execution can then return to the parent process. The following
example code details this procedure:

IF RD ALU D

IF RD ALU

IF RD

IF

APPLICATION NOTE AN-131

Ii kO,xOOOxxxO; # disable int's prior to context restore.
mtcO kO,CO_SR;

Iw k1,SR_OFF*4(sp);

Iw vO,vO_OFF*4(sp); # restore gpr vO
Iw kO,EPC_OFF*4(sp); # acquire parent process return address

addu sp,sp,exc_stack_sz; # restore stack.

mtcO k1,CO_SR; # restore SR(Status Register).

j kO; # return to parent process
rie;

Note that interrupts must be disabled prior to context
restore. This is because kO and k1 are not preserved prior to
use by the interrupt handler. Otherwise, the context of these
registers would be lost if another interrupt occurs during
context restore for the current interrupt. .

Pipeline Refill:

Figure 1 illustrates R3051 pipeline refill following an inter­
rupt. Upon detection of an external interrupt, the three instruc­
tions less advanced than the ALU stage are aborted. These
instructions must be restarted upon return to the parent
process. This three cycle penalty must be considered when
calculating the Interrupt Restart Latency.

WB

- - - - -
D WB Must

restart

ALU D WB upon
return to
parent

RD ALU D WB process

~ Current processor cycle 3156 drw 01

Figure 1. IDT79R3051 instruction pipeline.

APPENDIX-R3051/2 PRIORTY-BASED
NESTED INTERRUPT HANDLER
This is an example R3051/2 priority-based nested

interrupt handler.
Other RISController Family members require minor code

changes due to the different number
of available BrCond(n) inputs
- prioritize up to four R3051/2 interrupts
- prioritize up to three R3081 interrupts
- prioritize up to two R3041 interrupts

105

BrCond(n) is tied to corresponding int(n). This allows for
fast interrupt decode:

The following interrupt priority is assumed:
PRIORITY 1 = Int(5) = BrCond(O)
PRIORITY 2 = Int(4) = BrCond(1)
PRIORITY 3 = Int(3) = BrCond(2)
PRIORITY 4 = Slint(2) = BrCond(3)
PRIORITY 5 = Slnt(1)
PRIORITY 6 = Slnt(O)

INTERRUPT HANDLER
FOR THE IDT79R3051 RISCONTROLLERN FAMILY

Exception causes execution to jump here:
General Exception Vector.

.set noreorder

bcOt PRIORITY _1;

assembler directive-disable
pipeline scheduling.

PRIORITY 1?

subu sp,sp,exc_stack_sz; # use delay slot to Initialize
Stack.

PRIORITY 2,3,4,5,6: Must stack CPO context
to allow for nested servicing.

sw vO,vO_OFF*4(sp); # stack gpr vO.

mfcO kO,CO_EPC; # kO reserved for kernel processes
- no need to stack.

mfcO k1,CO_SR; # k1 reserved for kernel processes
- no need to stack.

sw kO,EPC_OFF*4(sp); # stack EPC.

mfcO kO,CO_CAUSE; # kO = CR(Cause Register).

sw k1,SR_OFF*4(sp); # stack SR.

bclt PRIORITY _2; # PRIORITY 2?

and k1,kO,EXC_MASK; # isolate ExcCode field of CR.

bc2t PRIORITY _3; # PRIORITY 3?

Iw vO,cause_table(k1); # fetch exception cause start address.

bc3t PRIORITY _4; # PRIORITY 4?

and k1 ,kO,IP _MASK; # isolate IP field of Cause Register.

PRIORITY 5,6: Evaluate Cause Register, jump to
Exception cause start address.

(process already started by using Branch Delay Slots
above)

vO;

sra k1 ,k1 ,8;

jump to Exception cause start
address.

shift right 8 bits to create word
address.

Exception cause start address = INT _EXTERN If an
Interrupt.

APPLICATION NOTE AN-131

Restore any gpr's used.

Iw vO,vO_OFF*4(sp); # restore gpr vO.

Restore Stack and return to parent process.

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mfcO kO,CO_EPC;

nop;

j kO; # return from int svc.

rie;

PRIORITY _2:

Stack gpr's needed for PRIORITY 2 Interrupt servicing.

vO already stacked.

Re·enable PRIORITY 1 (higher prlorty Interrupt).

vO,x0008001; # re-enable PRIORITY 1-lnt(5). 2cycle
inst'n.

mtcO vO,CO_SR;

PRIORITY 2 service here.

Restore SR, gpr's used, Stack, and return to parent
process.

Ii kO,OxOOOOOOOO;

mtcO kO,CO_SR;

Iw k1,SR_OFF*4(sp);

Iw vO,vO_OFF*4(sp);

nop

Iw kO,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz;

mtcO k1,CO_SR;

kO;

rie;

disable interrupts prior to context
restore. 1 cycle inst'n.

restore gpr vO.

restore sp(Stack Pointer).

restore SR(Status Register).

return from int svc.

INT _EXTERN: PRIORITY _3:

Iw vO,IP _table(k1); # fetch Interrupt routine start address
from IP _table.

sw v1,v1_0FF*4(sp); # use delay slot to stack gpr v1.

yO; # jump to PRIORITY _5 or 6, per IP
field of Cause Register.

sw to,tO_OFF*4(sp); # use delay slot to stack gpr to.

PRIORITY _1 :

sw vO,vO_OFF*4(sp); # stack gpr vO.

Stack any additional gpr's needed for PRIORITY 1
Interrupt servicing.

kO & k1 are also available for PRIORITY 1 servicing.

PRIORITY 1 service here.

Stack gpr's needed for PRIORITY 3 Interrupt servicing.

vO ::Irc::dy stackGd.

Re·enable PRIORITY 1,2 (higher priorty Interrupts).

vO,xOOOC001; # re-enable PRIORITY 1,2 - Int(5,4).
2cycle inst'n.

PRIORITY 3 service here.

Restore SR, gpr's used, Stack, and return to parent
process.

Ii kO,OxOOOOOOOO;

106

disable interrupts prior to context
restore. 1 cycle inst'n.

INTERRUPT HANDLER
FOR THE IDT79R3051 RISCONTROLLERN FAMILY

mtcO kO,CO_SR;

Iw k1,SR_OFF*4(sp);

Iw vO,vO_OFF*4(sp);

nop

Iw kO,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz;

mtcO k1,CO_SR;

kO;

rfe;

PRIORITY _4:

restore gpr vO.

restore sp(Stack Pointer).

restore SR(Status Register).

return from int svc.

Stack gpr's needed for PRIORITY 4 Interrupt servicing.

vO already stacked.

Re-enable PRIORITY 1,2,3 (higher priorty Interrupts).

vO,xOOOE001; # re-enable PRIORITY 1,2,3 - Int(5,4,3).
2cycle inst'n.

mtcO vO,CO_SR;

PRIORITY 4 service hero.

Restore SR, gpr's used, Stack, and retum to parent
process.

Ii kO,OxOOOOOOOO; # disable interrupts prior to context
restore. 1 cycle inst'n.

mtcO kO,CO_SR;

Iw k1,SR_OFF*4(sp);

Iw vO,vO_OFF*4(sp); # restore gpr vO.

nop

Iw kO,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mtcO k1,CO_SR; # restore SR(Status Register).

kO; # return from int svc.

rfe;

APPLICATION NOTE AN-131

kO,OxOOOOOOOO; # disable interrupts-1 cycle inst'n.

mtcO kO,CO_SR;

Iw k1,SR_OFF*4(sp);

Iw vO,vO_OFF*4(sp); # restore gpr vO.

Iw v1,v1_0FF*4(sp); # restore gpr v1.

Iw to,tO_OFF*4(sp); # restore gpr to.

Iw kO,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mtcO k1,CO_SR; # restore SR(Status Register).

kO; # return from int svc.

rfe;

PRIORITY _6:

Stack gpr's needed for PRIORITY 6 Interrupt servicing.

vO,vi,tO already stacked.

Re·enable PRIORITY 1,2,3,4,5 (higher prlorty
Interrupts).

vO,x0007F801; # re-enable PRIORITY 1,2,3,4,5
- Int(5,4,3,2,1). 2cycle inst'n.

mtcO vO,CO_SR;

PRIORITY 6 sorvlce hero.

1# Restore SR, gpr's used, Stack, and retum to parent
process.

Ii kO,OxOOOOOOOO; # disable interrupts - 1 cycle inst'n.

mtcO kO,CO_SR;

Iw k1,SR_OFF*4(sp);

Iw vO,vO_OFF*4(sp); # restore gpr vO.

Iw v1,v1_0FF*4(sp); # restore gprv1.

Iw to,tO_OFF*4(sp); # restore gpr to.

Iw kO,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mtcO k1,CO_SR; # restore SR(Status Register).

Stack gpr's needed for PRIORITY 5 Interrupt servicing. kO; # return from int svc.

vO,vi,tO already stacked. rfe;

Re·enable PRIORITY 1 ,2,3,4 (higher priorty Interrupts).

vO,xOOOF001; # re-enable PRIORITY 1,2,3,4 .set reorder
- Int(5,4,3,2). 2cycle inst'n.

mtcO vO,CO_SR;

PRIORITY 5 service here.

Restore SR, gpr's used, Stack, and retum to parent
process.

107

1# assembler directive - enable pipeline
scheduling.

t;J LOW POWER R3041 FOR WLAN APPLICATION
APPLICATIONS NOTE

AN-138

Integrated Device Technology. Inc.

By Robert Napaa

INTRODUCTION
In the past 10 years, the use of computer networks has

increased many fold. Users at home and in the office need
constant access to on-line corporate information such as data
bases, files and email, etc. During the same time frame
advances in low power microprocessors and battery technol­
ogy gave rise to a new class of computing machines. These
Laptop Computers, Notebooks and Personal Digital Assis­
tants (PDAs) need to access a company's wired backbone
infrastructure LANs to give users complete mObility. Mobile
users can access the company LAN infrastructure through
Wireless LAN access or Digital Cellular access. The Wireless
LAN (WLAN) is used locally within the company office build­
ings or the parking lot. It is a high speed connection (1 - 20
Mbits/sec) with a limited radius of about 50 meters or so.
Cellular access is used when the user is on the road. Cellular
access is at much lower speeds (10 - 50 Kbits/sec) and is
usually provided through cellular carriers, exactly like cellular
phones and pagers. This paper describes the Wireless LAN
implementation.

WIRELESS LANS
Wireless LANs (WLANs) provide the mobile users access

to the company wired LAN infrastructure. They offer great
flexibility because connection can be established immedi­
ately. There is no need for a wire or a wall connector. Users are
not constrained to a particular work area. They can roam freely
from one location to the other while maintaining full access to
the wired LAN backbone. Furthermore, active sessions don't
get interrupted as users roam around.

WLANs usually consist of two elements: the Access Point
and the Mobile Unit. The Access Point provides connections
to the wired LAN infrastructure. The Mobile Unit is the portable
computer with an adapter to the wireless world. Figure 1
illustrates the topology for a WLAN network connected to the
existing LAN backbone.

If connection to the wired LAN is not needed, Ad-Hoc
WLAN networks can be created and dismantled among the
Mobile Units as needed without having to change the existing
wiring network. The WLAN standards are in the final definition
stages in the IEEE 802.11 proposals.

Moblle Unit

LAN Wireless
Access
Point

Figure 1. Wireless LAN Topology
802.11 Proposed Standards

The lOT logo Is a registered trademark 01 Integrated ~evice Technology. Inc.

108

LOW POWER R3041 FOR WLAN APPLICATIONS

The IEEE 802.11 proposed standards to be finalized in the
middle of 1995 specify the lower two layers of the Open
System Interconnects (OS I) seven layer model.

The physical layer interface is specified for 1 - 2 Mbits/sec
rates using spread-spectrum techniques. Either direct se­
quence or frequency hopping methods can be used. The
transmission can be carried by any of the ISM (Industrial,
Scientific and Medical) frequency bands. The proposals call
for even higher bit rates in the future (up to 20 Mbits/sec) as
the technology becomes more mature.

There is also another proposal for an infrared physical
layer.

In the wireless world it is difficult to deal with collision detect
on the hardware level like wired protocols such as Ethernet.
The main reason for this is that the transmitting station can't
detect a collision, because its own transmitted signal over­
comes signals from any other stations. Therefore, the collision
detect for WLANs is implemented in the MAC layer interface,
using a simple handshaking mechanism between the sending
and the receiving stations. The sending station issues a
Request_ To_Send signal and waits for the Cleac To_Send
signal from the receiving station. These two signals carry
other embedded information to inform other potential stations
to wait until the transmission is done. The transmitting station
sends the data and waits for the Acknowledge signal from the
receiving end to complete the transmission.

Finally, the proposed standards specify that the WLANs
should function well in both a distributed control or a pOint
control environment. In a distributed control environment, the
WLAN network control is distributed among all the units
(Access Points and Mobile Units). This allows ad-hoc net­
works among several Mobile Units to be formed without the
need for any additional control or management. In the point
control environment, a centralized node takes control of the
WLAN management and allows only one unit to ''talk'' at a
time.

THE MOBILE UNIT
The Mobile Unit consists of a host computer (usually a

portable one) and a WLAN adapter. The WLAN adapter
implements several tasks. It negotiates for the access to the
airwaves and implements the MAC layer protocol. It also
shares in the WLAN network control and management in a
distributed environment. The WLAN adapter also plays a
major role in roaming support. Roaming support for the
WLANs is completely differentfrom thatforthe cellular phones.
In the cellular world, the base station determines when to
hand-off an active session to the following base station. This
is usually determined according to the quality of the signals
received. In the WLAN world, the Mobile Unit determines
when to switch to another Access Point that it can "hear"
better. Again, this decision is based on the quality of the
signals received. This transition from one Access Point to the
other shouldn't interrupt any active sessions. All these tasks
suggest that the intelligence must be built on the WLAN
Adapter.

There are several implementations for the WLAN Adapt­
ers. Some vendors implement them as add-on cards to host

APPLICATION NOTE AN-138

computers while others implement them as PCMCIA cards for
portable platforms. This paper concentrates mostly on the
PCMCIA implementation. It is important to note that all the
relevant concepts and requirements still apply to the add-on
cards.

The PCMCIA is usually implemented using an "intelligent"
PCMCIA card with an antenna attachment. The "intelligence"
is in a microprocessor or microcontroller on the card. This
implementation relieves the host CPU from the real-time
requirements of servicing the radio. Furthermore, the host
CPU is usually of limited compute power that is used for other
system functionality. The antenna attachment cou Id be part of
the card itself or an external component.

REQUIREMENTS FOR PCMCIA CARDS
The PCMCIA standards place stringent requirements on

the selection of the components. The devices selected must
have low EMI emission and fit inside a Type I, II or III card.
They must also consume a minimum amount of power and
have power management capabilities. There is usually a very
limited power budget available from the host computer to the
PCMCIA slot. The power allocated to the PCMCIA slots varies
from vendor to vendor and usually ranges from 1 - 1.25 Watt.
These reqUirements point toward a reduction in the number of
components used. This favors a software solution where
much of the functionality that was implemented in dedicated
hardware is now implemented in software. This software
approach requires the use of a powerful microprocessor to
implement all the different tasks. It offers the advantage of
greatflexibility and adaptability since only the software changes
to adapt to new standards. Similarly, the use of a high
performance microprocessor allows the software to add more
functionality without incurring the cost of dedicated hardware.

THE lOT R3041
The lOT R3041 is a 32-bit RISC microprocessor designed

for embedded applications. It is based on the MIPS R3000A
microprocessor and is highly integrated, with large on-chip
caches. There are 2 KBytes of Instruction cache and 512
Bytes of Data Cache. At 10 MHz it has a compute engine of
about 8 MIPS. It is also available at higher speeds, up to 33
MHz. The R3041 features a flexible bus interface that con­
nects directly to 8, 16, or 32-bit devices as well as memory.
Most of the system control signals are also implemented on
chip to reduce the external logic needed. It is available in a
1 OO-pin TQFP package to fit the form factor of Type II PCMCIA
cards.

109

LOW POWER R3041 FORWLAN APPLICATIONS

PCMCIA
Connector

SimrlePLD
Contro & Decode

Int

APPLICATION NOTE AN-138

R3041

Figure 2. PCMCIA WLAN Adapter Based on the R3041
PCMCIA WLAN with the R3041

The design of a WLAN Adapter PCMCIA card based on the
R3041 is illustrated in Figure 2. The components require­
ments forthis design are minimal. The R3041 and the memory
system are at the center of the design. The EPROMs store the
execution code, while the system memory is implemented
using SRAMs. The PCMCIA interface is accomplished using
a simple PLD combined with a "soft" solution. To the host
computer, the software emulates the 110 space of the PCMCIA
cards. The system control logic is also part of the PLD. The
wireless interface is implemented in a separate ASIC that
handles the physical layer interface.

R3041 POWER CONSUMPTION
The R3041 is designed for power-sensitive applications. At

10 MHz, it only consumes about 0.25 Watts, which makes it
ideal for portable applications. Furthermore, the R3041 can
operate in 3 "reduced frequency" mode that is under the
control of the software. In this mode, the internal and external
clocks are divided by a power of two factor. By reducing the
frequency to 1 - 2 MHz, the power consumption is almost
halved to about 0.13 Watt, as is illustrated in Figure 3.

Power (Watts)

0.50

0.40

0.30

0.25
0.20

0.10

2 4 6 8 10 12 14 16

Frequency (MHz)

Figure 3. R3041 Power Consumption

This combination of low power consumption and power
management fits extremely well with the WLAN data traffic,
which is bursty in nature. Empirical data shows that, over a
period of time, 25% of the time is spent servicing data (receive
and transmit), while the remaining 75% is idle time. During this
idle time, the WLAN Adapters only listen to passing traffic.

Software maximizes the advantage of this situation by
putting the R3041 in the "reduced frequency" mode when
there is no data to service. This reduces the average power
consumption to even less than its already low levels. On the

110

LOW POWER R3041 FOR ,WLAN APPLICATIONS

average, the R3041 will consume about 0.16 Watts. This is
obtained by taking 75% of 0.13 Watts plus 25% of .25 Watts.
This average power consumption is well below the 1 - 1.25
Watts available from the host.

REAL-TIME INTERRUPT RESPONSE
The real-time interrupt response of the R3041 is a major

part of this design. Both the "soft" PCMCIA and the MAC layer
implementations are interrupt-driven and rely on the speed at
which the R3041 responds to interrupts. An interrupt-driven
architecture is much more dynamic than a polled architecture,

r Automatic ha~are

APPLICATION NOTE AN-138

since the system responds only to the port that needs service.
It is a much more efficient use of the system resources.

The R3041 at 1 0 MHz can respond to interrupts in less than
3 llSec. This includes recog!1izing the exception, preserving
the state, decoding the exception and restoring the state at the
end of the exception. Figure 4 illustrates a sample code that
accomplishes these steps. This fast response time, combined
with the interrupt service routine executing from the caches,
removes the need for dedicated hardware to implement the
PCMCIA or the MAC layer interfaces.

r'jijMiiz''':~

R3041

600ns

r'f~"'''''''''''''i~:~~~f~i;''''''''''''':~:iid~;;'cl';~';;'~;;;Y''''"''''''''''''''1
, sw vO,R_VO'4(kOr #Save reg yO

I sw vl.R_V1·4(kO) 'save regv1 I
mlcO. vO.CO_EPC, /Hetch EPC .

1\. m/cO \I1.CO~SR /Het~h status register I
sw· vO.R_EPC*4(kO) . 'save EPC

l.mlcO. .. vO.CO_CAUSE . !Hetet> cause register
$W vl,R-SR*4(1<O) 'save $tatu$ register I

' ' lInow; dispatch service routine
I sw eO.fLAT"4(1<O) liseve aO

and, vl,VO.EXCMASK llsolata mask

I
I Iw.. aO,cause-table(vl). 1ge1 address oIlnl£jrrUpt routine •.. ,

".r:""",,,,,,,,;~;:~:,~;::.,, .. ,,,,,,,,.:r=~~=;~~!~!~.~~.~ """,,1

1500ns

~ Dothe..I~al W...9~

r
-.. Iw --kO,CO_SR'4(AT) I letch status reg. contents
!w vO.R_VO·4(AT) /I restore reg. va

II mlcO kO.CO_SR II restore the Slaws reg. contents.

I
• Iw kO,R...EPC·4(AT) 1/ Get the return address

I ~ AT.R..,AT"4{AT) I restoreATIn load delay
U!~!!!. .. II !e1um to normal execution

600ns

(:i·o~~;
\. _____ iFigure 4. Sample Code for Interrupts

MAC Layer Implementation

The IEEE 802.11 standards specify a unique 48-bit IEEE
device code for WLANs. A password might also be associated
with a given ad-hoc network. The MAC layer must checks the
hashing table for the address and the password to determine
the validity of the incoming data. Similarly, it must issue the
new address and password when transmitting messages. In
the WLANs, the collision detect mechanism is also imple­
mented in the MAC layer. A software solution can be much
more flexible than a hardware one. Software can adapt to the
emerging standards, while not becoming locked into dedi­
cated hardware modules.

The "soft" MAC layer implementation takes advantage of
the fast interrupt response time of the R3041. The internal
caches playa major role in speeding up the software execu­
tion. The data cache stores the hashing tables, while the
instruction cache stores the interrupt service routines. In this
case, the external bus is accessed only to bring data into the
R3041 and to write data to the external devices. The data
manipulation is done on the fly while reading and writing to the
external devices.

111

Receiving the Data
The WLAN Adapter receives the data from the external

world when in the receiving mode. At 1 MbiVsec interface a
byte will be available every 7.8 J.lsec. The physical layer ASIC
combines the bits into bytes and gathers four bytes before
interrupting the R3041. As a result the R3041 is interrupted
every 31.2IlSec. It takes the R3041 about 3 llSec to respond
to the interrupt. The remaining 28.21lSec are used to read the
incoming bytes, manipulate the header and store the data in
memory. It takes about 10 clock cycles to read the four bytes
from the physical layer interface and a similar 10 clock cycles
to write the data into memory. These two operations take
about 2llSec. This interface (excluding the header manipula­
tion) consumes about 16% of the R3041 compute power. The
remaining 261lSec are used to manipulate the incoming data
on the fly. Other functionality such as network management
and roaming support can be serviced during this time.

LOW POWER R3041 FORWLAN APPLICATIONS

Transmitting the Data
The transmission operation is the reverse of the receiving

operation. The same analysis applies. WLAN protocols are
full duplex, but since the transmission and reception are
usually asymmetrical, the analysis for either should be used
only.

PCMCIA INTERFACE
Similar to the software implementation of the MAC layer

protocol, the PCMCIA interface is emulated in software. The
basic approach is to emulate the 110 space of the PCMCIA
cards using interrupts to the R3041. When the host requests
a service, an interrupt is generated to the R3041. The R3041
determines whether it is a read or a write operation and acts
accordingly.

THE SOFT ADVANTAGE
Implementing most of the functionality in software offers

greater flexibility and adaptability. It becomes much easier
and less costly to adapt to new standards without the need for
an entire hardware redesign. Similarly, using a high level
language offers the freedom to port the code developed to
other platforms with minimal modifications. It is also much
easier to maintain.

The "soft" approach allows to add more functionality for
product enhancement and differentiation. For example, soft­
ware compression and decompression can be used to in­
crease the effective bandwidth by requiring less time for
transmission and reception. Software provides the support for
time-bound data such as voice and video for multimedia
applications. Furthermore, encryption/decryption or other al­
gorithms can be added in software to provide for secure
systems for example transmission and receptions with little
impact on the hardware design.

APPLICATION NOTE AN-138

THE ACCESS POINT
The Access Point implements the same WLAN protocols

as the Mobile Unit with the addition of a wired access to the
company backbone. To preserve the investment in the design
of the WLAN Adapter, most of the Mobile Unit modules should
be reused in the Access Point. The physical layer ASIC is a
good example of this. It saves time if the entire Mobile Unit
code base can be reused for the Access Point. This assumes
the use of the same architecture and/or the same micropro­
cessor. The R3041 offers both of these choices. It can be used
as is in the Access Point design while executing at higher
frequencies. In that case there would be very little modifica­
tions to the software module written. The hardware would be
modified to include the wired interface. Figure 5 illustrates the
design of the Access Point around the R3041.

A second possibility is to use a more powerful microproces­
sor from the same family. The R3041 is 100% software
compatible with the lOT RISControllers™ family. This family
offers a wide selection of price/performance microcontrollers
that fit most of the embedded applications. The family offers
several options including on-chip instruction and data caches,
hardware floating-point unit and a flexible bus interface. The
Access Point can then be redesigned for use with another
member of the family. However, the investment in the soft­
ware will be maintained because the software can be reused
without modifications.

CONCLUSION
The R3041 offers all the advantages of a software imple­

mentation.lt can be used for both the Access Point design and
the PCMCIA WLAN Adapter with minimum modifications to
the hardware and/or the software. The "soft" approach re­
duces the need for dedicated hardware modules. It offers the
capability to adapt to new standards. Additional functionality
can be added without a major impact on the hardware.

112

LOW POWER R3041 FORWLAN APPLICATIONS

· - Reset
R3041

· · '" · · · . "

· . ~ .

: . : : . : : : : : ~': . : : : :,: : : · · ·

Figure 5. Access Point based on the R3041

Finally, the RISControllers™ family offers a wide spectrum
of price/performance choices for the embedded applications.
The software investment is preserved 1 00% across the entire
family.

113

APPLICATION NOTE AN-138

W1releuLan-flg8

t;)® DESIGNING MEMORY CONFERENCE

SUBSYSTEMS FOR THE PAPER
CP-05

R3051 TM FAMILY
Integrated DevIce Technology, Inc.

By Bob Napaa

INTRODUCTION
The IDT79R3051™ RISController™ family utilizes a high­

performance computing core to achieve high performance
across a variety of applications. Further, the amount of cache
incorporated in the R3051 family allow these CPUs to achieve
very high performance even with simple, low-speed low-cost
memory subsystems.

The R3051 and the R3081™ RISController CPU families
include a full R3000A core RISC processor, and thus are fully
compatible with the standard MIPS processors. In order to
provide high band-width to the CPU core, the families also
incorporate relatively large instruction and data caches. The
external memory interface from the R3051 family is very
flexible and allows a wide variety of implementations depend­
ing on the price/performance goal of the application. The
R3081 is upward compatible to the R3051 family with the
same footprint and bus interface and the benefit of larger
caches and a hardware floating-point coprocessor.

This paper will discuss the cost and performance impact of
various trade-ofts, and provide a concrete design of a DRAM
memory subsystem around the R3051 and the R3081. This
paper will specifically address the trade-ofts between high­
performance and low-cost memory systems, the impact of a

high-frequency system on the memory interface and the
impact of systems which are intended to be field upgradeable.

DIFFERENT TYPES OF MEMORY
SRAM, DRAM and EPROM are today's industry standard

for memory subsystems. EPROMs usually provide boot code
in most systems and are much slower and more expensive
than SRAMs or DRAMs. SRAMs are typically less dense and
more expensive than DRAMs; however, they provide faster
memory access time with a simpler interface and can be used
in systems where performance (ratherthan cost) is the primary
criterion. DRAMs are the most popular choice for main
memory because of their position on the cost/performance
curve and the densities in which they are available.

MEMORY SYSTEMS
Most of today's systems use one of two memory architec­

tures: Non-Interleaved or Interleaved architectures. In this
paper, a memory array is defined as the group of memory
devices that produce a full width CPU data bus. For example
a 16-bit data bus CPU requires 4 "x4" DRAMs to compose a
memory array while a 32-bit data bus CPU requires 8 "x4"
DRAMs to compose a memory array.

Figure 1a. Single-Bank Non-Interleaved System

The lOT logo Is a registered trademark and RISControiler. I0T79R3051 and I0T79R3081 are trademarks 01 Integrated DevIce Technology. Inc.
All others are trademarks 01 their respective companies.

114

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

INPUT CONTROL
LINES

ADDRESS CONTROL LINES

32-BIT
MEMORY

DATA BUS

CONFERENCE PAPER CP-05

Figure 1 b. Two-Bank Non-Interleaved System

In non-interleaved architectures, a memory bank consists
of a single memory array with sequential addresses. Any read
or write to a memory bank accesses a single location. Figure
1 a illustrates the architecture of a single non-interleaved
memory bank. Non-interleaved memory architectures are
usually composed of multiple memory banks to satisfy the
memory requirements of the system. In these topologies, the
high order address lines select among the multiple memory
banks and only one memory bank can be selected at a time.
Figure 1 b illustrates the architecture of a non-interleaved two
banks memory system.

There are various types of interleaved architectures. The
most popular one is the address interleaved. There are
numerous variations of the address interleaved architectures.
Mainly, 2-way address interleaved, 4-way address interleaved
and so on. In a 2-way address interleaved architecture two

memory arrays are grouped together in parallel to form a
Super memory bank. This Super memory bank thus has
double the data bus width and double the memory density of
a single non-interleaved bank, and consists then of an even
array and an odd array. A memory controller must be able to
select both arrays together or independently based on the
type of access. The memory controller uses the low order
address bit to select between the two arrays. It must be able
to direct the data path from every memory array independently
to the CPU through some data buffers. Figure 2 illustrates the
architecture of a 2-way interleaved single Super memory bank
system. In a 4-way address interleaved architectures four
memory arrays are grouped together in parallel to form a
Super memory bank. This Super memory bank consists thus
of four quarters. The memory controller must be able to select
these four arrays together or independently using the two low

r---l MEMORY
BANKO

EVENARRA"

32-BIT
DATA

MEMORY
f---' BANKO

ODD ARRAY

32-BIT
INPUT CONTROL DATA

LINES

ADDRESS CONTROL LINES

MEMORY
DATA

BUFFERS

32-BI T
RY

BUS
MEMO
DATA
~

Figure 2. 2-Way Interleaved Single Super Memory Bank

115

DESIGNING MEMORY SUBSYSTEMS FOR THE R30S1 FAMILY

order address bits. It must be able to direct the data bus of
every quarter independently to the CPU through some data
buffers.

Address interleaved memory systems are thus inherently
more expensive than non-interleaved architecture since they
require a much more complex memory controller and wider
data paths. The basic amount of memory banks in address
interleaved architectures is a multiple of the basic memory
bank in non-interleaved architectures; however, for systems
with large amount of memory, the same memory banks could
be configured as interleaved or non-interleaved. The major
advantage of interleaved systems lie in block of data elements
accesses from/to the CPU. Interleaved systems can double or
quadruple the memory band-width and thus dramatically
improve the performance when the CPU reads or writes 4, 8,
16,32 ... data elements at a time. Interleaved systems do not
offer any advantage for single independent read or write
accesses. Interleaved architectures are usually used in sys­
tems where performance (rather than cost) is of importance.
For embedded cost sensitive applications, non-interleaved is
usually the architecture of choice.

CONFERENCE PAPER CP-oS

GENERAL DESCRIPTION OF THE DRAM
SYSTEM AROUND THE R3051

The R3051 is designed around the R3000A MIPS RISC
core and features a high level of integration with large on-chip
instruction and data cache. It incorporates up to 8kB of
instruction cache and 2kB of data cache. These relatively
large caches achieve hit rates in excess of 90% and sub­
stantially contribute to the performance inherent in the R3051
family. The R3051 has also implemented on-chip a four-deep
read and a four-deep write buffers that isolate the high
frequency CPU core from the much slower external memory
and modules. This high level of integration simplifies the
interface between the R3051 and the external memory mod­
ules as is illustrated in Figure 3 and allows the use of low cost
memory subsystems without penalizing the performance.

The R3051 family uses a double frequency input clock for
its internal operation and provides a nominal frequency output
clock for the external system. This output clock, Sysclk,
synchronizes the external memory subsystems to the CPU.
Memory transactions from the R3051 use a single, time
multiplexed 32-bit address and data bus and a simple set of

IDT R3051/52
RISController™

SysClk

ALE CONTROL LINES

Figure 3. R3051 RISController Family-Based System

116

DESIGNING MEMORY SUBSYSTEMS FOR THE R30S1 FAMILY

control signals. External logic then performs address demul­
tiplexing and decoding, memory control, interface timing and
data path control.

The system shown in Figure 3 is a 25MHz system with a
50MHz input clock. The R3051 interfaces to a DRAM system
as the main memory, to an EPROM system and to various
I/O devices and controllers. Address latches decouple the
address bus from the data bus. Address decoders select
among the various external modules. The output clock from
the R3051 (Sysclk) is usually buffered to reduce the loading
effect and to provide clock drive capability with minimum clock
skew for the system.

The main DRAM memory system is based on 1 to 4 banks
of non-interleaved DRAMs with 80ns of access time (trac = 80ns).
The DRAMs used are 256k x 4 to provide a maximum memory
space of 4MB. The DRAM memory space occupies the lower
4MB of the physical memory space. Figure 4 illustrates the
architecture of the main DRAM memory system. The DRAM
memory space resides between addresses 0000_0000 and
3FFF _FFFF. Address bits A(21 :20) select among the four
banks while the Rd and Wr outputs from the R3051 differentiate
between read and write accesses.

Each memory bank (32-bit array) of DRAM, which corre­
sponds to 1 MB when using 256k x 4 DRAMs, is individually
controlled by a separate RAS signal. RASa controls DRAM
bank a, RAS1 controls DRAM bank 1, ... Each bank of DRAM
is also controlled by an individual Write Enable signal.
WriteEnableO controls DRAM bank a, WriteEnable1 controls

R3051 ADDRESS
ADDRESS MUX

BUS

FBT
2827B

CONFERENCE PAPER CP-OS

DRAM bank 1, ... This architecture enables only a single
DRAM bank for any DRAM read or a write access. The DRAM
banks are arranged so that each bank represents a single,
contiguous range of 1 MB.

In an R3051 system, it is possible to perform a 32-bit read
even when smaller data elements are requested. However on
writes, it is important to enable only those bytes which are
actually being written by the CPU. The R3051 bus interface
provides four individual byte-enable signals to indicate which
byte lanes are involved in a particular transfer. The DRAM
subsystem encodes the byte-enable information from the
R3051 into the CAS control signals of the DRAMs. In this
encoding, CASO corresponds to byte lane a, CAS1 corre­
sponds to byte lane 1, etc. Each CAS signal is connected to
the DRAM devices that correspond to the byte lane under its
control in all four banks of the DRAM subsystem. That is to say
that CASO is connected to the two DRAM devices that com­
pose byte a in every DRAM bank.

Data buffers isolate the DRAM banks from the R3051 data
bus to reduce the loading effect and to prevent contentions
between the R3051 and the DRAMs. Note that this also
alleviates concerns about the relatively slow tri-state times
associated with DRAM devices. The data buffers selected are
industry standard bidirectional transceivers (74FCT245). These
data buffers actually isolate the data bus of the R3051 from all
the external modules.

DRAM addresses are provided by multiplexing the latched
R3051 address bus using the IDT FBT2827B memory drivers.

32
MEMORY

SUB-SYSTEM
DATA BUS

DATA
BUFFERS
74FCT245

32
CONTROL R3051

DATA
~=I==:::!J BUS

DRAM
CONTROL

LOGIC ~-;=~~~:EL __ ..J
REFRESH

TIMER

Figure 4. DRAM Memory Subsystem Architecture

117

DESIGNING MEMORY SUBSYSTEMS FOR THE R30S1 FAMILY

This device type was selected based on its ability to drive large
capacitive loading, such as found when driving 32 DRAM
devices. A single FBT output has a series resistance incor­
porated in the output driver and is capable of driving all four
banks of the DRAM subsystem. To minimize the signal skew
among the DRAM devices, the address lines and the control
lines to the DRAMs must use the "star" or the "fork" topology
on the PCB board. In this method, all the loads on a given
signal are lumped at the far end of the PCB trace. Series
termination is also well suited to drive lumped (or forked)
CMOS loads (like DRAMs) at the end of a PCB trace. The
series termination minimizes overshoots and undershoots at
the receiving end and does not add any power dissipation to
the system.

Every DRAM cell consists of a MOS cell and a capacitor
which encodes logic 1 and 0 in its charge. The capacitors in
the DRAM cells tend to loose their charges with time through
leakage. This is why DRAMs require to be refreshed at a
regular time interval. The refresh mechanism is internal to the
DRAMs where bits (cells) are rewritten with the same value to
keep the capacitors charged. This refresh mechanism is
enabled by the input control signals to the DRAM devices
through the RAS and the CAS signals. In this design a refresh
timer requests the refreshing of the DRAMs every 9.6I1S. This
refresh timer can be driven by the Sysclk from the R3051 or
from an independent oscillator. The 9.611S refresh interval
chosen is more frequent than is actually required by the
DRAMs. The use of this value simplified the control logic
associated with page mode write. DRAMs require that RAS be
maintained low no longer than 10l1s; by choosing a refresh
value smaller than this maximum time, the system is assured
that maximum RAS low time will not be violated.

WR=O&

WRNEAR=1 &

DRAM-CS=O

CONFERENCE PAPER CP-OS

DRAM STATE MACHINE DESIGN
For the system described in this paper, a simple state

machine performs the major aspects of DRAM control. The
state machine uses a simple four-bit counter (C(3:0)) to
dictate the timing for the DRAM control and CPU response,
and is sequenced using SysClk. There are nine major states
to the state machine as is illustrated in Figure 5. These states
are dictated by the type of transfer requested and the state the
DRAM control logic was left in by the prior transfer.

The DRAM control logic uses the Reset pulse to reset its
internal states and to synchronize its operation to the R3051.
During the RESET state, it also performs one refresh cycle
before entering the IDLE state. In the IDLE state, the DRAM
control logic arbitrates between a refresh cycle and a bus
access. A DRAM bus access is started whenever the DRAM­
Chip-Select and the Rd or the Wr signals are asserted. A
refresh request is detected using the REF _REQ
(Refresh_Request) pulse from the refresh timer. The DRAM
controller supports 4 types of CPU bus accesses: "quad-word
read", "Single-word read", "Single-word write" and "Page­
word write". After a "Single-word write" or a "Page-word write"
access, the DRAM control logic enters the IDLE RAS AS­
SERTED state which is an IDLE state with the RAS signals
kept asserted. The RAS signals need to be precharged upon
exiting this state.

Reset Cycle

A reset cycle is initiated by the assertion of the Reset signal.
This is a hardware reset which initializes the control logic to
the correct IDLE state. After the Reset signal is de-asserted,
one DRAM refresh cycle is initiated. Most DRAMs require at
least 8 refresh cycles for proper initialization. This DRAM

REF _REQ= 1 OR

DRAM-CS= 1 OR

WRNEAR=O & DRAM-CS=O

Figure 5. DRAM Control State Machine

118

DESIGNING MEMORY SUBSYSTEMS FOR THE R30S1 FAMILY

ALE

AID 31:0

DAddr10:0 I
ROW ADDRESS I

DRAM-CS

(n = 0, 1, 2 or 3)

CONFERENCE PAPER CP-OS

R3051
samples data

COLUMN ADDRESS

Figure 6. Single-Word Read Access Timing

control logic provides only one refresh cycle at reset time. It is
the responsibility of the software to ensure that no DRAM
access is made prior to the elapsing of 8 refresh periods. This
can be insured by normal operation of the boot PROM;
however, software could "spin-lock" for a predetermined num­
ber of loops to insure that sufficient time has elapsed.

Refresh Cycle
A refresh cycle is initiated every time a REF_REO pulse

from the refresh timer is detected. The refresh timer issues a
REF_REO pulse every 9.6I1S. The DRAM control logic re­
sponds with a refresh acknowledge (REF-ACK) signal which
locks the refresh timer until the refresh is serviced. The refresh
interval has been set to 9.611S which is shorter than the
maximum 15.51-ls refresh period that most DRAM require.The
9.611S refresh period ensures that for an IDLE RAS AS­
SERTED state, where the RAS signals can be left asserted for
long time periods, the maximum RAS pulse width of 1 OilS is
not violated.

119

In the DRAM control logic, a refresh request has the highest
priority over any other CPU requests. However, if a CPU bus
requested is being serviced at the time the refresh is re­
quested, the refresh cycle will be delayed until the end of the
current bus cycle. The inverse is also true when bus requested
are being delayed until the end of a refresh cycle. In this
design, only the RAS-before-CAS refresh method is imple-
mented. <

Idle State
The Idle state is when the state machine is not performing

any bus access or a refresh access but is constantly monitor­
ing the bus for any access request. All the signals are
deasserted and the operation of the 4-bit counter is halted.

Single-Word Read Cycle
There are two types of read transactions from the R3051:

quad-word reads and single-word reads. A single-word read
access is initiated by the R3051 by asserting the Rd signal.

DESIGNING MEMORY SUBSYSTEMS FOR THE R30S1 FAMILY

The DRAM control logic responds by providing the R3051 with
a single data element (32-bit word). Both the Ack and the
RdCEn signals are used to terminate the single-word read
access. In the system described in this paper, the Ack and the
RdCEn signals are returned to the R3051 after 4 clock cycles,
as illustrated in Figure 6.

Quad-Word Read Cycle

Quad-word reads from the R3051 occur only in response to
internal cache misses. All instruction cache misses are pro­
cessed as quad-word reads while data cache misses may be
processed as either quad-word reads or single-word reads.
The R3051 indicates quad-word read accesses by asserting
both the Rd and the Burst signals. In the quad-word read
access, address lines Addr(3:2) from the R3051 act as a two­
bit counter to provide the address of 4 consecutive words,
always starting on a word boundary.

The DRAM control logic handles quad-word read accesses
using the Throttled Block Refill mode of the R3051. In a
throttled read, RdCEn controls the data rate of the memory
back to the CPU (latches the data into the on-chip read buffer).
The Ack input is not provided back to the processor until the
read transfer has sufficiently progressed such that the last
word of the transfer is clocked into the on-chip read buffer
(using RdCEn) one clock cycle before the processor core
requires it.

In this non-interleaved system, the first word read of a
quad-word read access takes the same time as a single read
while the 3 subsequent words are read into the on-chip read
buffer at the rate of 1 word every two clock cycles. The RdCEn
is asserted for every word being read to latch the data into the
R3051 read buffer. The Ack is asserted between the second

SYSCLK

ALE

RD

BURST

NO 31:0

DAddr10:0

RASn

CAS(3:0)

RDCEN

ACR

DRAM-CS

(n = 0, 1, 2 or 3)

R3051
samples data

WORD 0

INITIAL LATENCY

CONFERENCE PAPER CP-oS

and the third-word read. This ensures that for 4 subsequent
falling edges of Sysclk the on-chip read buffer can provide
data to the R3000A core at the rate of a word every clock cycle.
Figure 7 illustrates the timing involved in quad-word read
accesses.

Quad-word read accesses use the page-mode character­
istics of the DRAM to obtain subsequent data word at a higher
data rate. In this access, the RAS signal is kept asserted while
the CAS signals are toggled 4 times to produce 4 data words.

Single-Word Write cycle

Unlike instruction fetches and data loads, which are usually
satisfied by the on-chip caches, all write activity to the caches
is seen at the bus interface of the R3051 as single write
transactions. The R3051 indicates a single-word write access
by asserting the Wr signal. The DRAM control logic enables
the writing of the CPU word or partial word into the DRAMs and
returns the Ack signal to terminate the write access. The Ack
signal is returned to the R3051 after 3 clock cycles, as
illustrated in Figure 8.

The DRAM memory system takes advantage ofthe WrNear
signal from the R3051 by defaulting to the case that any single
write to the DRAM subsystem will be followed by another write
with the same upper 22 address bits. Based on this informa­
tion the RAS signal must be kept asserted after every write
access to enter the page mode of the DRAMs. The end of a
single-word access is then different from a single read access
in that the RAS signal is kept asserted.

Idle RAS Asserted State
At the end of a write access the DRAM control logic enters

this idle state where a RAS signal is kept asserted while the

R3051
samples data

R3051
samples data

R3051
samples data

WORD 1 WORD 2 WORD 3

ONE WORD EVERY TWO CLOCK CYCLES

Figure 7. Quad-Word Read Access Timing

120

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

state machine awaits a subsequent transaction. If the next
access is a local write (WrNear from the R3051 is asserted)
the DRAM control logic enters the page write mode. If a
different access type occurs, the state machine exits this
state.

Page Write Cycle
A page write cycle is a single write access from the R3051

following a previous single write access with the same upper
22 address bits. The R3051 indicates a page write access by
asserting the Wr and the WrNear signals.

The timing for a page write access is very similarto a single­
write access but shorter since the RAS signal has been kept
asserted from the previous write cycle. The Ack is returned
back to the R3051 after 2 clock cycles. Figure 8 illustrates the
timing for a page write access.

Precharge RAS
Any access, except a page write access, following an Idle

RAS Asserted state needs to have the RAS signal precharged
(driven to a level HIGH) before the access is responded to.

PERFORMANCE
The performance of the different types of R3051 bus

accesses to the DRAM memory subsystem is usually mea­
sured by the number of clock cycles it takes to send the Ack

Single Word Write Access

ALE

AID 31:0 I DATA 0

DAddr10:0 ROW ADDRESS

DRAM-CS

(n = 0, 1, 2 or 3)

CONFERENCE PAPER CP-05

back to the R3051. This time is computed from the beginning
of the external access. The performance of the DRAM system
can be summarized as follows:

• single read: 4 clock cycles
• block refill: 7 clock cycles
• first write: 3 clock cycles
• page write: 2 clock cycles.
This is a relatively high performance for a low-cost and

easy-to-implement DRAM memory subsystem. The perfor­
mance of the system can be improved by using more elabo­
rate DRAM memory controller and/or more complex memory
architectures such as address interleaving. Such systems
should be able to achieve optimum performance.

FIELD UPGRADEABILITY
Many of today's systems are designed to allow for future

fields upgrades of the base memory system to more memory
banks and/or deeper DRAM devices. The ability to offer a
base configuration (at a lower selling price) with upgrade
capabilities is often a selling feature of the end product.

The system software should then run diagnostics at boot
time to determine the maximum size of the available memory.
Typical strategies for such diagnostics include writing distinct
values into a given location within each bank, and then reading
the data back to see if any of the writes did not occur properly

Page Write Access

DATA 1

I I

: COLUMN AqDRESS 1

Figure 8. Single-Word Write Access Timing and Page Write Access Timing

121

DESIGNING MEMORY SUBSYSTEMS FOR THE R3051 FAMILY

or altered data previously written. Non-interleaved or inter­
leaved memory architectures should be transparent to the
system software.

The system hardware should make provision for extra
memory banks or deeper memory devices by routing all the
necessary signals to unused pins or sockets of future upgrade
memory. The system hardware should try to minimize the use
of jumpers to make the system much more user friendly.

In the system described in this paper, the user can upgrade
to deeper memory by replacing the 256k x 4 DRAMs with
deeper 1 MB x 4 DRAMs to obtain a maximum memory space
of 16MB. It is also possible to replace the R3051 with the
R3081 to increase the performance of the system since they
both have the same footprint. The R3081 with its on-chip FPA
will have a great impact on the performance of floating-point
intensive applications; a further benefit is the larger on-chip
caches of the R3081.

CONFERENCE PAPER CP-05

CONCLUSION
The R3051 and the R3081 RISControlier families bus

interface was designed to allow memory systems of differing
complexity and performance to be implemented. Even a
relatively simple DRAM system, as the one described here,
offers very high performance. With simple modifications, this
approach is applicable to higher frequencies (33 and 40MHz)
and to interleaved memory systems yielding even higher
performance. The R3081 can also be used for existing R3051
designs to improve the floating-point performance and the
overall system throughput with no modifications of the exter­
nal hardware.

REFERENCES
• AN-50: "Series Termination" Application Note, by Suren

Kodical, 1990/91 IDT Logic Data Book.

122

(;)® DESIGNING READ AND WRITE APPLICATION

BUFFERS FOR THE R4000™ NOTE
AN-114 SYSTEM INTERFACE

Integrated Device Technology, Inc.

By Andrew Ng

INTRODUCTION
This article describes the basic concepts behind designing

with the IDT79R4000 System Interface. The System Interface
connects the R4000 CPU to external memory and peripher­
als. Topics include: (1) what the basic read and write memory
transactions look like, (2) the basic architecture for designing
buffers and transceivers into the address and data bus paths,
and (3) explains the convention of using single level read
buffers and mUlti-level write buffers. The read and write
buffers can obviously be implemented with custom FPGAs or
ASICs. However, read and write buffers can also be easily
implemented using off-the-shelf discrete logic FIFOs and
pipelined registers. Thus to more clearly illustrate a read and
write buffer implementation, brief discrete logic examples are
given using the 18-bit lOT Double-Density FCT16823T regis­
terwith clock enable, the 16-bit lOT 73200 multi-level pipeline
register, and the 8-bit IDT73210 2-leveI/1-level pipe lined
registered transceiver.

THE R4000 MICROPROCESSOR
The IDT79R4000 MIPS CPU brings high performance 641

32-bit computing to a single chip microprocessor and thus
extends the family of R3000™ compatible parts from the lower
cost 32-bit R30S1™ CPU and R3081™ CPU/FPA. Bench­
marks for R4000 systems show their performance to be from
3S-S4VUPS (VAX Units of Performance) and from 44-72
SPECmarks. Initial R4000 parts are being produced to run
with an externalSOMHz clock frequency and future parts with
the same external bus interface are planned with larger
primary caches and for frequencies over 7SMHz. As shown in
the block diagram in Figure 1, the R4000 has high perfor­
mance in large part because of its superpipelined architecture
which allows a 1 OOMHz internal clock speed which is double
the external clock speed. The R4000 also has an on-chip
floating-point accelerator, on-chip write-back primary instruc­
tion and data caches, an optional write back secondary cache
interface, and on-chip memory management. The Reduced

Clock/Control
Interface

Initialization
Interface

JTAG
Interface

t t
8KByte 8KByte

96-entry Instruction Data
Cache Cache TLB

Cache

General Registers
Control

ALu/Multiply/Divide

Pipeline/Control
MMU

Integer Execution Unit Cache/MMU

t t
System Secondary Cache
Interface Interface

Figure 1. Block Diagram of the R4000

R3081. R3051. R3052 and CEMOS are trademarks of Integrated Device Technology. Inc.
R3000 and R4000 are trademar1<s of MIPS Computer Systems. Inc.

123

t
FPU ALU

MultiDivide/
Square Root

FP Registers

Pipeline/Ctrl

Floating Point

t
Interrupt
Interface drwOl

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

Instruction Set Architecture (RISC) and its development envi­
ronment of optimized operating systems, compilers, and
rescheduling assemblers place their emphasis on high perfor­
mance and speed. The R4000 has 3 variants: (1) the 179-pin
R4000PC which comes without a secondary cache interface,
(2) the 447-pin R4000SC which comes with a secondary
cache interface, and (3) the 447-pin R4000MC which comes
with a secondary cache interface and also supports multi­
processing coherency.

R4000 Clock Interface
One outstanding characteristic of the R4000 bus, in con­

trast to most microprocessors, is that it uses fully synchronous
timing. Thus, every output is generated relative to a clock
edge, and has the same propagation delay relative to the
clock. Also, every input has the same setup and hold time
relative to the clock.

This allows the simplification of worst case timing analysis,
so that hardware designers can concentrate on functional
issues. In conjunction with the fully synchronous timing, the
R4000 has a PLL, which allows it to match the input clock,
Masterln to the master (MasterOut), processor (PClock),
system(SClock), and transmit clock (TClock). MasterOut is ~n
output clock which the PLL matches up to Masterln. PClock IS
an internal clock which runs at twice the frequency of the
Masterln clock. SClock is also an internal clock which is
essentially equivalent to TClock and runs at the same fre­
quency as the Masterln clock. The PLL also allows the
alteration of the slew rate of the outputs relative to the clock
and provides an extra receive clock that leads the system
clock by 25%, called RClock as can be seen in Figure 2. The
Syncln and SyncOut pins shown in the Clock/Control Inter­
face of Figure 3 automatically compensate the clocks for
external buffer delays. Finally, options exist which allow the
system, transmit, and receive clocks to be slowed down
relative to the processor clock, such that the bus interface can
run at 1/2, 1/3, or 1/4 of the normal speed. These options
provide flexibility in producing setup, hold, and access times
appropriate for various interfaces.

Masterln,
MasterOut

PClock (internal) I
SClock (internal), I
TClock

RClock I
output lines I

APPLICATION NOTE AN-114

R4000SYSTEMINTERFACE
As shown in Figure 3, the R4000 System Interface consists

of the signals that connect the CPU to the outside world of
peripherals and memory. The System Interface has three
major elements:
1. The 64-bit SysAD bus which carries the address and data.
2. The 9-bit SysCmd bus which encodes the type of memory

cycle.
3. The control lines to condition the SysCmd bus and control

the issue rates of the commands.
This article will discuss each of the System Interface

elements in detail.

R4000 SysAD Bus
The SysAD(63:0) Bus is 64-bits wide and has 8 additional

optional ECC/parity bits called SysADC(7:0). The multiplexed
SysAD bus is shared between address and data phases. T~e
addresses will be present during the clock cycles where a valid
interface command is present on the SysCmd bus. Data will
be present for the clock cycles where a valid data identifier is
present on the SysCmd bus. During the address phase, only
the least significant 36-bits, SysAD(3S:0) are used for a 64 GB
physical address space. By convention, the upper 28 physical
address bits, SysAD(63:36) are driven to 0 with appropriate
ECC/parity by the CPU.

R4000 SysCmd Bus
The SysCmd(8:0) bus is 9-bits wide and has 1 additional

optional even parity bit called SysCmdP. The command bus
encodes the type of transaction that is present on the system
interface. For instance, block reads, block writes, single word
reads, single byte writes, etc. are identified by the Sys?m?
encoding. The MSB (Most Significant Bit), SysCmd(8), Indi­
cates whether the cycle is a system interface command or
data identifier. Thus SysCmd(8) breaks the encodings into
two main cases, as listed in Tables 1, 2, and 3. Only the more
common encodings are listed here, although a complete list is
available in the User's Manual. Finally, some examples of the
more typical 9-bit commands and data identifiers are given in
Table 4.

TDO drw02

Figure 2. R4000 Clock Interface Timing (PClock to SClock divisor of 2)

124

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE APPLICATION NOTE AN-114

~8 6~ • SCData(127:0) SysAD(63:0) • 78
.. 7jP ..

SysADC(7:0) • /' .. • .. SCDChk(15:0)
79 '~ e::. .. SCTag(24:0) SysCmd(8:0) .. 7 ... 7 ..

1:.
~Q)

SCTChk(6:0) 0 SysCmdP • .. • .. ell 7 g 't
Q)

Q) SCAddr(17:1) E 0 Validln
74 ell

Q) 't e::. SCAddrO(w,x,y,z)
..c: Q)

ValidOut .. 0 E 7 ell

) ()
E ExtRqst SCAPar(2:0) ~ Q) 7 ell Ui

SCOE
"C >- Release t: U)
0

J 0
RdRdy .. Q)

7 .. SCWr(w,x,y,z) U)

WrRdy SCDCS
IvdAek 3

R4000 SCTCS
IvdErr 3 .. Logic

~
Symbol

Q)
0 TCloek(1 :0) ..

72

]
ell

Trit(5:1)2 't • Q)
RCloek(1 :0) 4 e::. E 7

• IntO a. MasterCloek ... 2
NMI Cii

MasterOut E
SyneOut ..

Q) .. ModeCloek 0
ell Syneln 't

Modeln
Q)

E Q) IOOut ..
t: 0

VeeOk 0 ell
lOin ~

't
Q) .. Cold Reset N E ~ e GrpRun ..

~ .. Reset "E
GrpStall 0

~
Fault •

JI
0

JTDI
0 .. C3

VeeP
... JTDO

VssP
8e::. JTMS

Status(7:0)1 .. 7 .. JTCK
VeeSense1 •

1 = R4000SC and R4000MC only
VssSense1 .. 2 = R4000PC only

3 = R4000MC only drw03

Figure 3. The R4000 Interfaces

R4000 System Interface Control Signals

The System Interface Control Signals communicate when
the System Interface busses are valid, and if the external
agent, (Le., the memory), is ready to accept the command.
Theirdescriptions are given in Table 5. Two signals, the output
ValidOut and the input Valid In are used by the CPU and the
memory to indicate when they are driving valid signals onto
the SysCmd and SysAD busses. Forexample, when the CPU
is driving a valid command/address or write data on the
SysCmd bus, it will assert Valid Out, and when the memory

125

system is returning a data identifier on the SysCmd bus and
read data on the SysAD bus, it will assert Valid In. Two input
signals, RdRdy and WrRdy, are used by the memory system
to communicate whether or not it is ready to handle the next
read and write. The output signal Release is used by the CPU
or bus master to indicate to the memory system that the
master is tri-stating the bus on the next clock. After Release
asserts, the memory system can drive the SysAD read data
and SysCmd data identifier back to the CPU. The input signal
ExtRqst is used by a DMA controller or interrupt controller to

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE APPLICATION NOTE AN-114

gain control of the bus from the CPU. Finally, the inputs InvAck
and InvErr are used only on the R4000MC version to help
manage cache coherency.

To illustrate the use of the System Interface, the following
sections will give an example for a read memory cycle and a
write memory cycle. The sections follow the custom used in

R3000/R4000 terminology, to use the term "buffer" in the
software sense, meaning, a register location to store data
rather than the hardware interpretation of amplifying or isolat­
ing a signal without storing it. In the following sections,
hardware buffers such as the a-bit IOT7 4FCT244Twill always
be referred to as a "hardware buffer".

Encoding of SysCmd(8) Command or Data Identifier
o System Interface Command
1 S stem Interface Data

Table 1. SysCmd Encoding for SysCmd(8)

Encoding of SysCmd(7:5) Command
o Read Request
1 Read Request, Write Request Forthcoming (on the MC/SC only)
2 Write Request

Encoding of SysCmd(4:3) for Read and Write Requests attributes
2 Noncoherent block read or write.
3 Double word, single word, or partial word read or write.

Encoding of SysCmd(1 :0) for Noncoherent Block Read Requests
or for Block Write Requests Block size
o Four words.
1 Eight words.
2 Sixteen words.
3 Thirty-two words.

Encoding of SysCmd(2:0) for Double Word, Word, or Partial Word
Read Requests or Write Requests data size
o One byte valid (Byte).
1 Two bytes valid (Halfword).
2 Three bytes valid (Tri-byte).
3 Four bytes valid (Word).
4 Five bytes valid (Quinti-byte).
5 Six bytes valid (Sexti-byte).
6 Seven bytes valid (Septi-byte).
7 Eight bytes validlDouble Word).

Table 2. SysCmd Encodings for System Commands

SysCmd(7) Last data element indication
o Last data element
1 Not the last data element.
SysCmd(6) Response Data indication
o Data is response data, e.g., read data
1 Data is not response data, e.g., write data
SysCmd(5) Good data indication
o Data is error free.
1 Data is erroneous, e.g., a bus error
SysCmd(4) Data checking enable (on external agent data only)
o Check the data and check bits.
1 Don't check the data and check bits.
SysCmd(3) Reserved
SysCmd(2:0) Cache state (on R4000MC only).
o Invalid
4 Clean Exclusive.
5 Dirty Exclusive.
6 Shared.
7 Dirty Shared.

Table 3. SysCmd Encodings for Data Identifiers

126

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE APPLICATION NOTE AN-114

SysCmd(8:0) Description of Command
876543210

000010001
000011011
001010001
001011011

110000100
100000100
100100100
111000101
101000101

Read request, Noncoherent block, eight words
Read request, Double word or smaller, four bytes valid
Write request, Block, eight words
Write request, Double word or smaller, four bytes valid

Read response data not end of block
Read response last data
Read response last data ignore ECC/parity
Write data not end of block
Write data, last data

Table 4. Examples of Typical SysCmd Commands and Data Identifiers

READ INTERFACE TRANSACTIONS cycles later as shown in the example in Figure 4. The CPU
asserts Release to indicate that the CPU is ready to tri-state
the SysAD and SysCmd bus on the next clock cycle. The
R4000 protocol allows Release to be either a variable number
of clocks after ValidOut or possibly concurrent with ValidOut.
Thus, the memory system must dedicate an extra state to
allow for variable timed Releases. Along with Release, the
memory system must also wait for any writes that are in
progress to finish, since writes in R4000 systems are FIFOed
(use First-In-First-Out buffering). After sampling Release and
checking for on-going writes, the memory system can drive
the bus and return data. In addition to the data, the memory
system must drive a data identifier on the SysCmd bus and
drive Validln to tell the CPU what it is returning. The memory
system has direct control over the data return rate when it
issues data identifiers. Some of the memory system return
commands include data, end-of-data, and bus error (from
Table 3, binary 110000100, 100000100, and 100100100,
respectively).

~ure 3, the read interface state machine looks for
ValidOut to assert along with one of the read commands as
e~coded by SysCmd(8:S). The SysCmd bus in the example is
bmary 00001 0001, which is an eight-word block read. Trans­
actions ~nvolving a single double-word read are similar. By
convention, the block size will either be the primary instruction
cache or the primary data cache line size, or if present, the
secondary cache line size. The SysAD bus contains the
address for the transaction on the same clock as the read
request command. The state machine should latch or register
the address since the SysAD bus is multiplexed. Thus, each
read transaction will only issue one start address even if it is
a block read. If the state machine is not ready to handle the
command, it should keep Rd Rdy de-asserted. Rd Rdywill delay
the beginning of the read transaction by keeping the address
on the bus. A caveat on RdRdy is that because it is synchro­
nized to a clock edge, the CPU will not respond to it until 2 clock

Pin Name Type Description

~ Output Valid Output
Sign~ls that the processor is now driving a valid address or data on the SysAD bus and
a valid command or data identifier on the SvsCmd bus.

Ya!l.d..In Input Valid Input
Signals t~at an external agent is now driving a valid address or data on the SysAD bus
and a valid command or data identifier on the SvsCmd bus .

.B.d..B.d¥ Input Read Ready
Signals ~hat an external agent can now accept a processor read, invalidate, or update
request In both non-overlap (non-secondary cache) and overlap (secondary cache)
mode or can accept a read followed by a potential invalidate or update request in MC
secondary cache overlap mode.

Wr.B..dl Input Write Ready
Signals that an external agent can now accept a processor write request in both non-
overlap (non-secondarv cache) and secondary cache overlap mode.

~ Output Release interface
Sianals that the mocessor is releasina the svstem interface to slave state .

.Ex1.B.Q.s1 Input External Request
Siqnals that the system interface needs to submit an external reauest.

1YQ&k, Inputs Invalidate Acknowledge and Invalidate Error

.IYd.E.rr Signals on. the ~4000MC which indicate successful or unsuccessful completion of a
processor invalidate or update request for cache coherency. Must be pulled high on
other packaaes (SC).

Figure 5. R4000 System Interface Control Lines

127

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

SCycle

SClock

2 3

SysAD Bus 00005008

SysCmd BU~

4

Valid Out 1\ I

APPLICATION NOTE AN-114

5 6 7 8 9 1 10 1 11 1 12 1 13 1 14 1 15 1

MemABus I~~--------""

MemDBus I----------------------------~ DW1

Valid In I
RdRdy 1\

-----~==========~~========================~
Release 1 '-----J drw04

Figure 4. R4000 Block Read Cycle

On a block read, the state machine must increment the
double word (8 bytes) LSB (Least Significant Bit) address bits
of .the block and keep returning more double words until the
block is finished. These double-word LSB address bits are
changed either in a sub-block order [hex (00,08,10,18, ...),
(08,00,18,10, ...), (10,18,00,10, ...), or (18,08,10,00, ...)] or in a
sequential wrap-around order [hex (00,08,10,18, ...), (08, 10,
18, 00), (10, 18, 00, 08), or (18, 00, 08, 18)] depending on the
package type and boot-strap configuration. SUb-block order­
ing requires the original double-word start address to be XOR­
ed with the block counter. Sub-block ordering is used to
simplify the internal controls, since the word that is needed
within a block, (e.g., the instruction), can always be returned
in the same place. Sub-block ordering is required on the
R4000PG and is optional on the R4000SC/MC.

Note that bus errors on block reads still require the memory
system to return an end-of-data command to signal the end of
the block, thus allowing the memory system to finish the rest
of the block if it desires. Also, uncached memory, and espe­
cially 110 interfaces, can ignore ECC/parity generation/check­
ing by using SysCmd(4) to indicate to the CPU that it doesn't
want EGG/parity checked.

The Sieve Search Algorithm
Because the address is generated on the same clock as the

command and the Valid Out signal, the address register state
machine usually has to implement a "door-to-door search
algorithm". In the sieve algorithm, the address registers are
enabled and constantly register new addresses on each
clock. This means the registers are normally clocking in invalid
addresses until the right one comes along. When ValidOut is
detected, the address register should stop clocking and will
hold the address until the end of the read or write. Thus, the
address register is constantly searching for a valid address
and incidentally latching in many of incorrect addresses until
the correct one comes along.

R4000 Read Buffer Size
To implementthe read buffer, enough buffer locations must

be present to store the incoming memory. For the R4000PG,
which puts incoming main memory data directly into the
primary cache, the maximum incoming memory read rate of 2
words per clock is matched by the CPU's capability to put
these words into the primary cache. If a secondary cache is

Secondary Cache Write Time Memory Speed Max. Buffer Levels Needed

1-2 SCycles,1-4 PCycles D 1

3 SCycles, 5-6 PCycles DDx 1

4 SCycles, 7-8 PCycles DDxx 1

Table 6. Examples of the Maximum Processor Read Data Rates for the MCISC

128

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

present, then enough time is needed to put the data/instruc­
tion into the secondary cache. For the R4000MC/SC, the
secondary cache write rates may band limit the main memory
read buffer if they are slower than main memory. However,
this often is not a realistic case, since one of the purposes of
the secondary cache is to provide a faster access time than
main memory, in addition to isolating microprocessing sys­
tems from one another. In Table 6, the number of SCycies
(assuming a PClock divide by 2 divisor for SClock) is shown
along with the equivalent number of processor PCycles, since
the on-chip secondary cache interface uses PCycles to time
the secondary cache. The memory speed of the external
system is indicated with a D, which means one double word
per clock, and possibly followed by one or more x's, which
indicate idle clocks. Thus a DDxx pattern indicates 2 double
words can be returned every four clocks. A case in which more
than one level of read buffering may be desired is shown in the
next section.

Secondary Cache Overlap Mode
Some complexity is added to the state machine and the

interface. The R4000MC/SC (but not the PC) uses a second­
ary cache overlap mode along with regular reads and writes
that can issue a read command, which, in turn, issues a write
command between itself and the expected data. For example,
when the read command is issued, the write address and the
write data are issued, which must be handled or buffered by
the memory system. Only then can the memory system return
the data for the read. The purpose of the secondary cache
overlap mode is to allow the memory interface to better utilize

APPLICATION NOTE AN-114

the read access time, if it chooses to do so. Therefore, a
DRAM memory system could begin a RAS precharge for the
read while buffering the write data, as an example.

Figure 5 displays an example of a secondary cache over­
lapped read and write. This example uses a 4-word block size.
For the secondary cache overlap mode, the state machine
should latch/register the read address and then buffer the
write. It must also use a signal to indicate that the write has to
be delayed until the memory system is done with the read. In
these cases, the read buffer needs a set of address registers
separate from the write address registers. Note that since
secondary cache overlapped writes are caused by write back
misses, the MSBs corresponding to the Secondary Cache
address (minus the block size LSB bits) will be the same for a
secondary cache overlapped read and write. Even though
most address bits must have separate read and write regis­
ters, the Secondary Cache block address bits only need one
set of registers.

Additional complexity exists for the multiprocessing
R4000MC version, such that a potential invalidate or update
might come between the read and write portions of the cluster.
Therefore, R4000MC interfaces may require an additional
address latch/register for the LSB portion of the potential
invalidate/update double word address.

In addition, since the Release is definitely delayed by the
secondary cache overlapped write data, it is possible for very
fast memory systems to want to begin to return data before the
CPU can possibly accept it. In these cases, a cost/perfor­
mance trade-off having more than 1 level of read buffering can
be made.

SCycie 2 3 4 5 6 7 8 9 I 10 I 11 I 12 I 13 I 14 I 15 I
SClock

SysAD Bus

SysCmd Bus I __ IL-_-' \J~~\...!.J'-1.l.1.!;;l..I'-...J...!..Qlln...I''--./,;;.l.!..I.U
ValidOut

MemA Bus 00005008

MemD Bus Rd DW1 X Rd DWO X Wr DWO X Wr DW1 }-

-----------------~

/
LJ

_____ ---.J/
drw05

Figure 5. Secondary Cache Overlap Timing

129

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

ADDRESS PATH

FCT16823

APPLICATION NOTE AN-114

SysAD(35:0)
18x2 18)2

MemAddress(35:N+ 1,2:0) / D a
AddressRegDisable /

En
/

IN:3 TClock or RClock I> Clk_
sub-block MemAddress(N:3)

incrementer
OE - logic

~

DATA PATH FCT16244 or
FCT16827

16x4 or 20x4 16x4 or 20x4 MemData(63:0),
SysAD(63:0), SysADC(7:0) / D 0 / MemDataCheck(7:0)

/ /

OE
1-1-

I-
ReadBufferEnable I drw06

Figure 6. R4000 Single Level Read Buffer

EXAMPLE OF AN R4000 READ BUFFER
The address latch/register for an R4000 memory interface

can be built from parts such as the 18-bit FCT16823T register
with clock enable. The critical parameter in the latch/register
portion of the read interface is the latch's data hold time for the
R4000 SysAD bus as shown in Figure 2. This can be solved
two ways.

In the first method, the worst case hold time for a typical
latch/register such as 16-bit FCT-T logic is 1.5ns which is
added to the worst case clock skew from the R4000 is O.Sns.
The 2.0ns total of worst case factors is just met by the 3.Sns
minimum data propagation delay (TDO) of the R4000. If
additional margin is needed - for instance if external clock
buffering has additional clock skew - then the following can
be done: The characteristic hold time for high-speed CE­
MOSTM 16-bit FCT-T logic is typically Ons or less, especially
at low temperature. Also, the 3.Sns minimum data propaga­
tion timing of the high-speed CEMOS R4000 outputs, which
only occurs at low temperature, can be guaranteed to be
indirectly delayed upto an additional 2.Sns by changing the
slew rate of the outputs. The rise and fall slew rates can be
adjusted by programming the serial boot initialization register
interface at reset time. By using slower slew rates, which
change the rise and fall times and, therefore slightly delay the
outputs of the R4000, enough data hold time can be provided
to memory interface latches/registers, even when consider­
able clock skew is taken into consideration.

A second method for providing additional hold time, espe­
ciallyfor interfaces made from ASICs and FPGAs, is to use the
RClock, as previously shown in Figure 2. The RClock leads
the TClock by 2S% of the TClock and therefore, at SOMHz
provides Sns of additional hold time. The disadvantage of
using the RClock is either the latches/registers must be
immediately staged with a set of TClock latches/registers and/
or very fast control logic for the clock enable (which typically
is TClock based) must be used.

Since the memory system access time is usually equal or
greater than the secondary cache access time forthe MC/SC
systems and the PC systems can handle data as fast as the
main memory system can return it, a simple hardware buffer
is all that is needed for the data path, such as the 16-bit lOT
FCT16244T or 8-bit FCT244T as shown in Figures 6 and 7.
Alternatively, a pipeline register with clock enable, such as the
18-bit FCT16823T, could be used for the data path.

In systems with interrupt or external invalidate controllers,
if the controller is isolated from the SysAD bus and on the
memory side of the system interface, then the address regis­
ters may need to be bi-directional. An example of bi-direc­
tional registered transceivers with data clock enables is the
16-bit FCT169S2T and the 8-bit 74FCTS2T.

R4000 WRITE INTERFACE TRANSACTIONS
A typical write sequence is shown in Figure 8. The write

interface state machine looks for ValidOut to assert along with
one of the write commands, as encoded by SysCmd(8:S) in
Tables 1-3. The SysCmd bus in the example is binary
001010001, which is an eight-word block write. Single double­
word transactions are similar. If the state machine is not ready
to handle the command, it should keep WrRdy de-asserted.
The caveat on using WrRdy is that because it is synchronized
to a clock edge, the CPU will not respond to it until 2 clock
cycles later. Thus, when WrRdy asserts, the address and
ValidOut will remain on the bus for 2 more clocks. The SysAD
bus contains the base address for that transaction on the
same clock as the write request command. Block writes
always increment the address sequentially, i.e., hex
(00,08,10,18, ...). The state machine should latch or register
the address, since the SysAD bus is multiplexed. Each write
transaction will only issue one start address, whether it is a
single write or a block write, thus, external logic is needed to
increment the base address for the memory system.

After the address is generated, Valid Out will be asserted

130

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE APPLICATION NOTE AN-114

!RdRdy (Write in Progress)

Idle,
Disable RAM/ROM,

Start Latching Addr Register
Wait for Write Buffer to Empty

ValidOut and
(SysCmd==Read)

and Release
Stop Latching Addr Register

Stop Latching Addr Register,
Enable RAM/ROM,

Count DW (in Block),
Count Out Wait States

Release

Done With W.S. Count
and !Last DW (in Block)

!Last DW (in Block) ~ ____________________ -L ____________________ ~ ~ ___ ~

Assert Validln,
Drive SysCmd with Data

Identifier,
Enable Data Buffer

Done With W.S. Count and Last
DW (in Block)

Assert Validln,
Drive SysCmd with End of

Data Identifier,
Enable Data Buffer

Last DW (in Block)

Increment Subblock
Address,

Count DW in Block,
Count Out Wait States

Done With W.S. Count
and Last DW (in Block)

!Done With W.S. Count

drw07

Figure 7. R4000 Read Interface State Machine

along with the first data of the write immediately, or a variable
number of clocks later. The state machine must add a condi­
tion for the variable number of clocks between the address
and the first data. If the data is a block write, the remaining data
will be generated in a pattern selected by the initialization boot
prom as shown in Table 7. In Table 7, Dxx means that a Data
clock is followed by two idle clocks between each of the data
items. However, no idle cycles are guaranteed after the last
Data clock. Because the data rate pattern on writes is

131

preselected at reset time using the serial boot initialization the
register interface, the memory system cannot dynamically
slow down any further and still control the data rate. Unless
data can be written to memory at this preselected rate, the
data must be buffered until the memory system can handle it.

Thus, data is written at a rate that further requires external
buffering via a FIFO. The major reason for this arrangement
is to allow memory writes from the buffer/FIFO to occur at the
same time as cached reads. This allows the CPU to execute

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

cached instructions in parallel with the retiring of write data. In
addition, the data caches use a writeback protocol, where
data stores are always written to cache, but main memory is
only updated when necessary (Le., when another cache
access needs to replace the cache location that is holding the
freshly written data). Thus cached load and store fetches can
also occur in parallel with the retiring of external system
interface writes.

In contrastto reads, writes must indicate bus errors through
an interrupt or some other external hardware mechanism. The
CPU has an internal write buffer and also expects the memory
system to have an additional external write buffer. Therefore,
the CPU cannot match a bus error indication to a precise
address and data pair, because it is decoupled from when the
memory system actually tries the write. The system can
choose to save address and data information with external
hardware if it needs to match the error to the precise address
and data within the write buffer. Uncached writes which are
less than a double word wide, (e.g., 1 byte), still produce data
on the other bytes and the appropriate ECC/parity. However,
the data for the unused bytes is pseudo-random, in that the
CPU drives out what was last contained in an internal data
buffer.

R4000 Write Buffer Depth

In general, to implement the write buffer, enough buffer
locations are needed to store all of the double words in the
block write. However, as write data is being written into the
buffer at the preselected data pattern rate, it is possible that
the first few double words in the block write have been retired
to main memory, much like a FIFO. Thus, theoretically, those
buffer locations could be reused for the last few double words
of the block write, as long as the buffer does not overflow. For

SCycle

SClock

SysAD Bus

SysCmd Busl

2 3

001010001b
Block Write

4 5 6 7

APPLICATION NOTE AN-114

memory which has predictable and consistent access time for
each word (Static RAM) see Table 8. Not all data rate patterns
and buffer sizes are shown, but the other cases can be derived
using queuing theory producer/consumer model. Similar to
block reads, the maximum block size is the largest primary or
secondary cache-line size. For most systems, the control
portion of the write buffer is simplified if the number of buffers
matches the maximum block size.

DRAM systems complicate the optimal cases due to the
first word possibly taking longer than the others because of
RAS precharge, RAS address hold time, or because of the
delay from a CAS-before-RAS Refresh. In such cases, de­
asserting WrRdy until the precharge or refresh is done and
then choosing a slow enough data pattern rate to handle burst
DRAM column page accesses prevents having to select a
very deep buffer.

Byte Enables
On the memory system logic, the 8-byte enables must be

generated from the SysCmd and address for writes that are
less than a double-word wide (from 1 to 7 bytes wide). Note
that in contrast to most microprocessors, the R4000 will never
generate an unaligned write. Thus, the 1 to 8 bytes written will
always be contained within a double-word boundary. In addi­
tion, if only 1 to 4 bytes are written, they will always be
contained within a word boundary. In other words, whenever
5 to 8 bytes are read or written little endianl big endian, either
the LSB/MSB must be at address offset 0 or the MSB/LSB
must be at address offset 7, and whenever 1 to 4 bytes are
read or written little endianlbig endian, either the LSB/MSB
must be at address offset 0 or the MSB/LSB must be at
address offset 3.

8 9 I 10 I 11 I 12 I 13 I 14 I 15 I

ValidOut I~~--------;===~~--~============~==~~--~r--------\r------~
MemABus I L-__ JL ______ o~0~0~05=0=00======!~======~~======~:========~
MemD Bus I------------;{ DWO X DW1 X DW2 X DW3 }--

Valid In I
WrRdy I~,--___ / L
~Rdy I~ /---,L
Release I drw08

Figure 8. R4000 Write Block Cycle

132

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

Seriallnit Bits 14:11 Data Rate Pattern

0 D

1 DDx

2 DDxx

3 DxDx

4 DDxxx

5 DDxxxx

6 DxxDxx

7 DDxxxxxx

8 DxxxDxxx

9-15 Reserved

APPLICATION NOTE AN-114

EXAMPLE OF AN R4000 WRITE BUFFER
The address buffer for writes is similar to the address buffer

for reads and can use the 18-bit FCT16823T. On the R4000PC
which does not have secondary cache overlapped com­
mands, the read address buffer can also be used for the write
address buffer. The caveat is that Rd Rdy needs to be asserted
during the write so that any potential reads will wait until the
write is done with the address buffer before continuing. On the
R4000MC/SC, separate registers are needed, as previously
discussed, for the read address and the write address so that
read, followed by write secondary cache overlap clusters, can
be handled. The write address buffer needs to use the same
door-to-door search algorithm to hold the address as the read

Table 7. Possible Data Rate Patterns for Block Write address buffer. The primary difference between the two is that

Cache Line CPU Rate
Size

4 DD

DxD

DxxD

DxxxD

8 DDDD

DxDxDxD

DxxDxxDxxD

DxxxDxxxDxxxD

16 DDDDDDDD

32 DDD ... DDD

Memory Speed

1 clock

~2

::;; 2 clocks

~3

::;;3

~4

::;;4

~5

1 clock

~3

::;; 2 clocks

2

~3

::;;3

4-5

6-11

~12

:::;4

5-7

8-15

~16

Max. Case

Max. Case

Max. Buffer
Levels

1

2

1

2

1

2

1

2

1

4

1

3

4

1

2

3

4

1

2

3

4

8

16

after latching/registering the address, the write buffer needs to
increment the addresses for block writes sequentially instead
of sub-block ordering. Similar to read, a write address register
looks for a write SysCmd along with ValidOut before disabling
the clock enable.

The write data buffer could consist of an ASIC or FPGA,
however, the write buffer can also be easily implemented
using discrete logic FIFOs or pipeline registers. An example is
the 1DT73200 pipeline register, 16-bits wide and 8 levels
deep. It can either load a specific register slot through its
instruction pins or automatically ripple data through, similar to
a FIFO. Either method is acceptable with the R4000, because
the block size is known at the beginning of the transaction. The
block size will either be the primary cache line size or, if
present, the secondary cache line size. If 16 or 32 locations
are needed, then the IDT73200 can be expanded by using two
or four in series in the ripple-through mode. Two separate
state machines are needed, one for controlling the CPU-to­
buffer interface and the other to control the buffer-to-memory
interface. On the CPU side-state machine, block writes require
the IDT73200 to start latching/registering in new data by
incrementing the write pointer so a new register is selected to
be written. On the last double-word of a block, the IDT73200
needs to be told when to stop latching new data, since re­
pointing to the first location could possibly destroy that data
too early. This can either be controlled with a special hold
command on its instruction pins, 1[3:0] = hex F, or by de­
asserting the ClkEn pin after latching the last double word.
The memory side needs to implement a state machine which
checks to see if a read is in progress from a secondary cache

Table 8. Maximum Write Buffer Depth Needed overlapped read. Once ready, the state machine can initiate
For Various Cache Sizes the write to the memory and selectthe registerto output via the

select pins. The logic to select the output register can also be
For example, for a little end ian system, a five-byte write or used to generate the sequentially ordered least-significant

read, with bytes 0 through 4 enabled, could happen, but a five- double-word address bits. WrRdy can be de-asserted during
byte write or read, with bytes 1 through 5 enabled, could never a write to indicate that the buffer is full and to keep any
happen.Anon-reducedPLAequationforoneoftheeightbyte subsequent writes from occurring until the IDT73200 (or a
enables is shown in Table 8. The otherseven byte enables are FIFO) can accept more data. A key control issue is to de­
similar, and the equation can be simplified if the endianess is assert RdRdy while data is being written to memory, so that
predetermined, or if it is known that the 64-bit mode won't be subsequent reads will waitforthe memory bus to become free.
used. The re-alignment load/store-Ieftlwrite instructions Iwl, Because RdRdy takes two clocks to react, the de-assertion
Iwr, Idl, Idr, swl, swr, sdr, and sdw are used to develop the byte must take place during the write command.
enable equations.

133

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

Other options include using a 4-deep pipe lined register
such as the 74FCT520, or a 2-deep pipelined register such as
the IDT7321 o. An example using the IDT7321 0 will be given
in the next section.

EXAMPLE OF AN R4000 INTEGRATED READ
AND WRITE BUFFER

Some systems, as shown in Table 7, can retire their writes
at a fast enough rate to only require a 2-deep write buffer.
These cases are especially prevalent when the cache line size
is 4 words. In these cases, the IDT73210 can be used. The
part was originally designed for embedded R3000 read and
write buffering, and also works we" for integrated R4000 read
and write buffering. It is an a-bit transceiver with an extra data
input which can generate parity. In one direction it is registered

APPLICATION NOTE AN-114

once, while in the other direction, it is registered twice. Thus,
by setting it up so that the write buffer uses the 2-deep path,
and the read buffer uses the 1-deep path, the part can be used
in R4000 systems. The BEN and SEL pins can be used to
control register ripple-through. The most straightforward way
to use the controls requires V-register loading by the first
double-word, fa "owed by ripple-through enabling, so the first
double word is put into register Z as the second double word
is loaded into register V. Thus, the second double word must
come on the clock cycle immediately following the first double
word. This data rate pattern can be achieved by selecting a 0
or DDx pattern from Table 7 with the serial boot interface reset
initialization. Other methods which use features of the I DT7321 a
not detailed here can be implemented to handle other kinds of
data patterns. However, the controls will be more complicated
than the above case.

!BE_B/ {BYTE ENABLE FOR THE LANE FOR DATABITS 55:48}
:= «RESET/ AND !VALIDOUT/ AND SYSCMD[8:5]==b'lX1X) AND

!BIGEND AND (MEMADDR[2:0]==b'l10) AND (SYSCMD[2:0]==b'OOO) OR {LIT BYTE }

!BIGEND AND (MEMADDR[2:0]==b'l10) AND (SYSCMD[2:0]==b'OOl) OR {LIT 1/2 WD}
!BIGEND AND (MEMADDR[2:0]==b'100) AND (SYSCMD[2:0]==b'010) OR {LIT 3BYTE }

!BIGEND AND (MEMADDR[2:0]==b'101) AND (SYSCMD[2:0]==b'010) OR {LIT 3BYTE }

!BIGEND AND (MEMADDR[2:0]==b'100) AND (SYSCMD[2:0]==b'Oll) OR {LIT WORD }

!BIGEND AND (MEMADDR[2:0]==b'Oll) AND (SYSCMD[2:0]==b'100) OR {LIT 5BYTE }

!BIGEND AND (MEMADDR[2:0]==b'010) AND (SYSCMD[2:0]==b'101) OR {LIT 6BYTE }

!BIGEND AND (MEMADDR[2:01==b'OOO) AND (SYSCMD[2:01==b'l10) OR {LIT 7BYTE }

!BIGEND AND (MEMADDR[2:0]==b'OOl) AND (SYSCMD[2:0]==b'l10) OR {LIT 7BYTE }

BIGEND AND (MEMADDR[2:0]==b'OOl) AND (SYSCMD[2:0]==b'OOO) OR {BIG BYTE }

BIGEND AND (MEMADDR[2:0]==b'OOO) AND (SYSCMD[2:0]==b'OOl) OR {BIG 1/2 WD}
BIGEND AND (MEMADDR[2:0]==b'OOO) AND (SYSCMD[2:0]==b'010) OR {BIG 3BYTE }

BIGEND AND (MEMADDR[2:0]==b'OOl) AND (SYSCMD[2:0]==b'010) OR {BIG 3BYTE }

BIGEND AND (MEMADDR[2:0]==b'OOO) AND (SYSCMD[2:0]==b'Oll) OR {BIG WORD }

BIGEND AND (MEMADDR[2:0]==b'OOO) AND (SYSCMD[2:0]==b'100) OR {BIG 5BYTE }

BIGEND AND (MEMADDR[2:01==b'OOO) AND (SYSCMD[2:0]==b'101) OR {BIG 6BYTE }

BIGEND AND (MEMADDR[2:0]==b'OOO) AND (SYSCMD[2:0]==b'l10) OR {BIG 7BYTE }

BIGEND AND (MEMADDR[2:0]==b'OOl) AND (SYSCMD[2:0]==b'l10) OR {BIG 7BYTE }

(MEMADDR[2:01==b'OOO) AND (SYSCMD[2:01==b'lll) OR {DOUBLE WD
(SYSCMD[4:3]==b'lX) OR {BLOCK

(!BE_B/ AND !MEM_ACKNOWLEDGE/)
) ;

Table 9. Byte Enable PLA Equation

134

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

ADDRESS PATH
I

FCT16823

18x2

SysAD(35:0) / D

/
AddressRegDisable

En
TClock or RClock [> Clk

OE

DATA PATH
~

16x4 or 16x5

SysAD(63:0), SysADC(7:0) /
/

I
I

I

FIFO WritePointer(2:0) / 1(2:0)
Hold 1(3)

~ ~
isarlp. ClkEn \

TClock ~ Clk

Q

APPLICATION NOTE AN-114

18x2

/ MemAddress(35:N+ 1,2:0)

/

,N:3 Sequential MemAddress(N:3)
Incrementer

Logic
I-

D(15:0) IOTI3200
8-deep Pipeline

\
Register

DeMux

a a a ~
Mux 7 r FIFO ReadPointer(2:0) *f

SEL(2:0)

~ OE WriteBufferOutputEnable

r--
Y(15:0) l-

f-

/ MemData(63:0), MemDataCheck(7:0)

/..
16x4 or 16x5 drw09

Figure 9. R4000 a-Level, 64-bit Wide Write Buffer

135

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

Processor Side

Idle,
Start Latching Addr

Register,
Reset Write Pointer

ValidOut and (~sCmd == Writ
and rRdy

e)

Stop Latching Addr
Register,

(Start Latching Data Reg),
De-assert WrRdy If FIFO

Full,
De-assert RdRdy

ValidOut and (SysCmd == Writ e Data)

Valid
Increment FIFO Write (!Write

Pointer, Last La
If Non-Overlap Command Last
Then Send Signal to stau
Memory Side Write State

Machine

Out and
Buffer at
cation or
Data)

ValidOut and (write buffer at las
location or last data)

Overlap
C

Change Write Pointer to
Hold Command, S

(Stop Latching Data Reu

ommand and
ValidOut and
ysCmd!= Rd
ndOfData ID

Non-Overlap I
Command

Overlap Command and VaiidO
SysCmd == Rd EndOfData

Send Signal to Start
Memory Side Write State

Machine

utand
ID

Memory Side

Idle,
Assert WrRdy,
Assert RdRdy,

Reset Read Select Pointer

APPLICATION NOTE AN-114

Wait for Signal from the Processor
Side State Machine

Count DW (In Block),
Count Out Wait States

!Done Counting
..... ---- W.S.

-
Done Counting W.S.

Enable Write Buffer Output

Last DW (in I
Block) !Done Counting W.S.

!Last DW (in Block)

Increment FIFO Read
Select Pointer,

Count Out Wait States

!Done
Counting

W.S.

drw 10

Figure 10. R4000 Write Buffer State Machine

136

DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE

BOE
BPar

1

~ r-- 9/
1

~xD/
1 Parity ::D

SysAO(63:0),
1
9X4 Gen m B(8:0) SysAOC(7:0) --./

'l
'----

9 - r-

APPLICATION NOTE AN-114

Read BufferOut~utEnab Ie

1DT7321 0
Registered
Transceiver
with Parity

AClKEN Read BufferClkEnab Ie

/ MemData(63:0), MemParity(7:01
A(8:0) /9x4 T

1

APar _I -~D -0 '"
~ ~§ lfi<)

WriteBufferClkEnable BClKEN ~ ~ Parity
>- - N Gen

TClock ClK
l~-~
- AOE

WriteBufferOutputEnable drw 11

Figure 11. R4000 Integrated Read and Write Buffer

SUMMARY
The R4000 uses three groups of signals for its System

Interface between the CPU and main memory, consisting of
the SysAO bus, the SysCmd bus, and a small group of control
signals. Even though the R4000 uses a high-speed SOMHz
bus, worst case timing issues with the R4000 System Inter­
face are greatly simplified because of the completely synchro­
nized bus and control signals. The read and write system
interface on the R4000 uses a concept of multi-level buffering/

registering to maintain high throughput, by preventing unnec­
essary stalls and by allowing operations such as writes to
happen in parallel with cached instructions and data. By using
mUlti-level buffering on writes, the CPU can continue to run
from cache while the main memory system retires writes at its
own speed. Examples using off-the-shelf interface parts such
as the FCT16823T 18-bit register with data enable, the 16-bit
10T73200 pipe lined register, and the 10T73210 8-bit 2-levell
1-level registered transceiver show how to easily implement
read and write buffers for the R4000.

137

(~5
HARDWARE AND SOFTWARE APPLICATION

BOOT INITALIZATION OF THE NOTE
AN-119

IDT79R4000
Integrated Device Technology, Inc.

By Andrew Ng

INTRODUCTION
This application note is aimed at engineers that are bringing

up or debugging an R4000 system prototype for the first time.
Various debug techniques, pitfalls, and diagnostics are dis­
cussed that are based on similar experiences of other engi­
neers here at lOT. The discussions will be a mixture of both
hardware and assembly code software, since both hardware
and software skills and techniques are required to initialize the
part. In places, the R4000 User's Manual [2] will need to be
referred to for more detail. The topics will proceed in a
chronological order that begins with power on, continuing
through the Reset sequence and finishing with some simple
diagnostics - similar to the order that one might take when
actually debugging a prototype board.

The first section details the hardware Reset sequencing,
which includes managing the various Reset control lines and
loading the R4000s serial configuration register. After the
Reset sequence, the R4000 issues its initial instruction fetch.
Logic analyzer connections are discussed so that the instruc­
tion fetch and other System Interface reads and writes can be
verified. Then, the first few lines of boot assembly code, which
determine some of the software programmable configuration
options that the R4000 can do, are discussed. Some example
assembly code for the initial testing of uncached read and
write cycles to memory and I/O is given. Finally, in the last
section, initialization of the caches is discussed so that block
reads and writes can be executed and debugged. After
reaching this stage of the debug, the chances of an operating
system kernel booting up with a prompt are fairly good.

HARDWARE RESET SEQUENCE
In Figure 1, the R4000 Reset Interface requires the genera­

tion of several control signals, including VCCOk, Cold Reset, and
Reset. Primarily, these signals distinguish between power-on
Resets, power-an-cold resets and power-on-warm resets,
and to allow sufficient time for the PLL (Phase Locked Loop)
circuitry to stabilize. Only the power-on reset is discussed in
detail, since the cold and warm resets controls are a subset of
the power-on case.

The first requirement is that Vccok, which indicates that the
supply voltage has reached at least 4.75V for 1 OOms or more,
be de-asserted. The 100 ms de-assertion time is typically
accomplished by using a power management chip which
delays a power-up signal until a fixed time period or RC
(Resistor/Capacitor) constant has elapsed. The power-up
signal can be double-registered so that it is synchronized for
the assertion of vccok. Cold Reset and Reset must be de­
asserted sometime before Vccok is asserted. De-asserting
Vccok holds both the ModeClock and the output clocks, such
as MasterOut, HIGH. (Although the ModeClock is guaranteed

The lOT logo Is a registered trademark 01 Integrated Device Technology. Inc.

to be HIGH, the value of MasterOut is not guaranteed,
technically, until after the PLL synchronizes). If MasterOut is
used to clock the reset circuitry state machine, Cold Reset and
Reset must be de-asserted asynchronously from the output
clocks. Technically, ColdReset and Reset are sampled syn­
chronously when asserting and de-asserting. Therefore, while
using the input clock, Masterln to clock the reset circuitry state
machine may make more sense than using MasterOut.

In Figure 2, 128 Master Clocks (either Masterln or
MasterOut) after VCCOk is asserted, the ModeClock will
begin toggling by first going LOW and then 128 Master Clocks
after that going HIGH for the first time. Thus the ModeClock
period is 256 Master Clocks. On the first rising edge of the
ModeClock, the R4000 starts accepting serial data on the
Modeln pin. Many systems use an Nx1 bit serial PROM forthis
function. Because the setting of the mode bits can be somewhat
experimental when first bringing up a system, one might
choose a reprogram mabie serial bit EEPROM, or, perhaps,
use a signal generator. Most serial bit PROMs have a built-in
address incrementor/counter which requires a Clock input pin
and a Reset input pin, in addition to the Data output pin. Thus,
the serial PROM has an internal counter to generate the
address for the mode bit data. When using a signal generator,
one should consider designing in an inverter to invert the
ModeClock, so the pattern generator can synchronize on the
first falling edge of ModeClock, and, thus drive valid data in
time for the first ModeClock rising edge. Using the inverted the
ModeClock also provides ample hold time.

Sometime after the mode bits have been read, the R4000
will begin driving the output clocks. From the point where
VCCOk is asserted, the R4000 needs to see a minimum of
64K Master Clocks (either Masterln or MasterOut, which is
just enough to read all the mode bits). A time of at least 100ms
is more realistic before Cold Reset can be de-asserted, so
internal syncing of the PLL can be completed and fully
stabilized throughout the system. Several ways exist to count
out this period (a 50MHz Masterln clock is assumed). One is
to use a 24-bit counter based off the Masterln clock. Another
is to use a RC circuit to generate a 100 ms delay from VCCOk
and then synchronize the resulting Cold Reset signal by
double-registering it. Another is to use a 16-bit counter based
off the ModeClock, which, although not specified, continues to
toggle, even after the mode bits have been read in. A fourth
method can use some serial PROMs, which have a count!
done pin that asserts LOW after all the bits have been read.
If the number of bits is greater than 32K, then an adequate
delay can be generated.

After Cold Reset is de-asserted, then Reset must be de­
asserted after a minimum of 64 Master Clocks have occurred.
This requires a 6-bit counter, since Reset must be de-asserted
synchronously.

138

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE 1DT79R4000 APPLICATION NOTE AN-119

The sequence for cold Resets is the same as power-up
Resets, except that VCCOk needs only to be de-asserted for
64 Master Clocks, instead of 1 OOms. The sequence for warm
Resets requires only that the Reset has asserted for 64 Master
Clocks.

After the reset sequence, the R4000 will assert ValidOut
along with an uncached read of the first instruction. The first
instruction fetch will be discussed in more detail after the
following section, which continues to specify the boot Reset
configuration serial bits.

VCC ~~

Masterln JL JL JL

SERIAL BOOT MODE PROM - SPECIFIC
CASES

The R4000 requires that 256 bits be serially loaded into its
initialization logic on its Modeln input pin for the first 256
ModeClocks. Of the 256 bits, only the first 64 are defined.
Although specific systems will have specific values, an ex­
ample of some "workable" values that can be used as a start
for debugging are listed in Table 1 in binary. The rest are
reserved to O. Most of the bits are described by the R4000

JL J\J\J\JV
~ 100 ms ModeClock period is 256 MasterClocks VCCOk Modeln data is read in for the 1 st 256 ModeClocks

~ \ ModeClock

Cold Reset

Reset

\
~ l00msec _v I > 64 MasterCIOC~s

\ J

MasterOut VL J\J\J\JV
TClock (div by 4)

RClock (div by 4) 1

~M~a-st-er~Ou-t.~T~CI-oc~k.-a-nd~R~C~loc~k-ar-e-un~de~fi-ne~d--------------'
until after the Mode bits have been read -.I \ /

\L-__ \ r
2913 drw 01

Figure 1. R4000 Reset Timing

VCCOk, SeriaIPROMResetl _____________ ~/
Modeln. 1 ,----------,X ~
SerialPROMDataOut (Mode Bit 0 Mode Bit 1 "--

ModeClock, I \ / \ r--
SerialPROMClock I

Masterlnl tv7/\-J7"~~

SerialPROMDataOut 1
128 cycles 1 128 cycles 1 128 cycles 1 128 cycles 1

.... ... II ... II ... CI ...

(if inverted ModeClock I---------------i{ Mode Bit 0 X Mode Bit 1
used) '----~=I ..;;.,;.;.,,"'"'----1 '--------'..;..;....-;;,1 ~"----

Modeln Sample Point Modeln Sample Point
2913 drw 02

Figure 2. R4000 Serial Initialization Timing

Users Manual [2]. However, the values to choose for some bits
can be confusing during initial debug. An example is the
PLLOn configuration bit. This bit is intended only for chip
testing and should be left asserted. The symptom is that the
MasterOut and other clock outputs will not toggle. The impli­
cation is that the lowest Masterln clock speed that can be used
is 25MHz (for a 50MHz part). However, the SClock divisor
configuration bits called SysCkRatio can be programmed to
divide by 2, 3, or 4 which can reduce the System Interface
frequency to 6.25MHz. One of the most common and perplex-

139

ing hindrances in finding problems, at 50MHz, is having a
noisy clock line to one of the state machines. This noise can
clock a signal twice, or perhaps not at all. Therefore, reducing
the System Interface frequency during the initial stages of
testing is highly recommended.

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

TABLE 1. EXAMPLE OF SERIAL BOOT PROM VALUES.
Mode Setting Value Comments

BlkOrder 1 1 for sub-block ordering if PC, 0 for sequential ordering if SC/MC

EIBParMode 0 ECC

EndBlt 0 Little Endian ordering

DShMdid 0 dirty shared mode enabled

NoSCMode 0 present (depends on package type)

SysPort 00 64 bits

SC64BitMd 0 128 bits

EISpltMd 0 Secondary cache unified

SCBlkSz 11 Secondary block size of 32 words (depends on system)

XmitDatPat 0000 Xmit Data Pattern DO (depends on system)

SysClkRatio 010 system interface bus divided by 4 (see text)

reserved 0

TimlntDis 0 timer interrupt connection enabled

PotUpdDis 0 potential updates disabled

TWrSUp 0011 (SC write de-assertion delay, depends on SC timing, minimum shown)

TWr2Dly 01 (SC write assertion delay 2, depends on SC timing, minimum shown)

TWr1Dly 01 (SC write assertion delay 1, depends on SC timing, minimum shown)

TWrRc 0 (SC write recovery time, depends on SC timing, minimum shown)

TDis 010 (SC disable time, depends on SC timing, minimum shown)

• TRd2Cyc 0011 (SC read cycle time 2, depends on SC timing, minimum shown)

TRd1Cyc 0100 (SC read cycle time 1, depends on SC timing, minimum shown)

reserved 0000

Pkg179 0 Large Package (depends on package type)

CycDivisor 0011 power down clock divisor

Drv 100 1 clock Drive delay

InitP 0001 pull down di/dt (msb is opposite most fields)

InitN 1000 pull up di/dt

EnblDPLLR 0 disable di/dt mechanism during cold Reset

EnblDPLL 0 disable di/dt mechanism

DsblPLL 0 Enable PLLs (see text)

SRTristate 1 tri-state when Reset or Cold Reset is asserted

Bits65:255 0 rest of the bits are reserved

2913 tbl 01

During debug, other serial boot configuration bits that may
be of use are the SCBlkSize, which configure the secondary
cache line size, if present, to 4, 8, 16, or 32 words. This will
control the maximum size of block reads and writes for
secondary cache systems. Also, the XmitDatPat bits config­
ure the system interface data rate with various patterns such
as D, DDx, DDxx, etc. Another design consideration is if the
secondary cache is not used, then SUb-block ordering, as
programmed with the BlkOrder bit, is mandatory.

Two items should be considered when attaching the SysAD
bus to a logic analyzer. The first is the latching control circuitry
of the SysAD bus as shown in Figure 3. To demultiplex it into
separate MemAddr(3S:0) and MemData(63:0) busses is usu­
ally straightforward, but the mUlti-level write buffering of SysAD
into the MemAddr and MemData is not. Thus, if there are
enough pod connections, one should hook up MemData,
MemAddr, and SysAD. However, the second consideration is
that there usually are not enough pods or probes to do this.
Therefore, in a compromise, attaching SysAD is probably
more useful than attaching MemAddr, since MemAddr is
usually a single level deep register, latch, or buffer. However,
it is essential to look at the least significant MemAddr lines to
verify that the address can be incremented within a block
correctly, especially if SUb-block ordering is used. Also, using
MemAddr instead of SysAD only requires 36 probes, and
possibly less, if not all the physical address lines are used. A

BASIC LOGIC ANALYZER CONNECTIONS
After the serial configuration register is read, the majority of

the debug effort centers around memory bus cycles on the
System Interface. For this reason it is recommended that
most of the System Interface be accessible from a Logic
Analyzer. This includes the information on the SysAD(63:0)
bus.

140

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

SCAddr(17:0),
SCTag(24:0)

SysAD(63:0),
SysCmd(8:0i

MemAddr(35:0)

MemData(63:0)

SCData(127:0) Read! Main Secondary
R4000 Valid Out, Release Write Cache Buffer Memory

SCOE SCWR Valid In, Rd Rdy, WrRdy
MemOE, MemWr, MemCS SCDCS,SCTCS TClock, RClock

Secondary Cache Interface System Interface Memory Interface 2913 drw 03

Figure 3. Typical R4000 System

make-shift solution is to hookup only 32 data lines at a time,
either MemData(63:32) or MemData(31 :0). The upper/lower
halves can be swapped as needed, since, during the initial
debug, the function of the lines is more important than exam­
ining the sequential flow of instructions and data.

It is also essential to bring out the entire SysCmd(8:0) bus.
This bus acts as the control and status lines, and determines
whether the transaction is a read or write, etc. Along with
SysCmd bus, ValidOut, Validln, and Release are essential,
since they indicate when the SysAD and SysCmd busses are
valid, and when they can be driven by the memory system.
RdRdy and WrRdy and read/write buffer control lines such as
MemOE and MemWr are also sometimes needed.

If a state analyzer is being used, one should consider
attaching the RClock output, which leads the TClock, that is
usually used by 25% (of the TClock period), as the state clock
to trigger the logic analyzer, so sufficient hold time is provided
(at the expense of having less setup time). Otherwise one of
the other output clocks, either the TClock or the MasterOut,
should be attached.

Thus, the minimum number of logic analyzer probes needed
is 64+9+3+1 =77. A typical number would be
64+32+9+3+1 =1 09 and could be as many as
64+36+64+9+3+ 1 =177. Additional pods will be needed to test
for specific cases, such as the control lines during Reset, the
ECC bits during fault checking, etc.

If the secondary cache is present, one should be prepared
to examine its interface. However, because of the enormous
number of lines (128 data, up to 36 address and tag, and 4
control lines) and the relative straightforwardness of the
functional design, the secondary cache will probably only
need to be on the logic analyzer temporarily. The secondary
cache lines may require oscilloscope probing to verify the
electrical signal transmission line design. To help follow the
processor flow, leaving the control lines SCOE and one of the
SCWr lines connected to the logic analyzer at all times can be
helpful.

MINIMAL SOFTWARE BOOT CODE
After Reset, the R4000 will be executing instructions out of

uncached memory kernel segment 1 space at virtual address
'h bfcO 0000, which is hard mapped to physical address 'h
OHcO 0000. ValidOut will assert LOW, and the SysCmd(8:0)
bus will indicate an uncached read of 1 word, 'b 10011011,
and, on a little endian machine, will expect data on SysAD(31 :0)
atthe same time Validln is asserted. Big endian machines will
expect data on SysAD(63:32). During uncached reads of
addresses divisible by 8, (number of bytes per double word),
SysAD(63:32) will be ignored on little endian machines. Big
endian machines will ignore SysAD(31 :0). The second in­
struction fetch will be similar, except it will be at physical
address 'h OHcO 0004, and a little endian machine will expect
the data to be put on SysAD(63:32), with Validln asserted, while
SysAD(31 :0) is ignored. Likewise, big end ian machines will
expectthe data to be put on SysAD(31 :0), while SysAD(63:32)
is ignored. The minimal boot code discussed here will get the
part initialized and allow various types of memory accesses to
take place. This includes initializing the caches so that block
reads and writes can be tested.

One common cause of no system commands being gener­
ated (Valid Out never asserts), is the GroupStall input pin (if
present for the particular R4000 version/type) has to be de­
asserted.

The next section will discuss the very first operation soft­
ware should do, namely, initializing the software configuration
registers. After initializing the registers, the software can
execute various kinds of reads and writes to uncached memory
space in orderto testthe ROM, 1/0 and RAM chip selects, byte
enables, and wait-state timing.

Configuration Registers $14 and $16
The first operation that the boot code software needs to

perform is to initialize the software configurable registers. This
includes the Status Register and Configuration Register. Most
of the registers do not have default values on Reset, and must
be programmed before being used. The Status Register,
Configuration Register, and the WatchLo Register have ef­
fects on loads, stores, and processor operations that must
immediately be programmed into a known state. An example
of programming Status Register $14 and Configuration Reg­
ister $16 settings is shown in Listing 1. The other general
purpose and coprocessor registers, including the Timer and
Compare registers must be initialized before they are used.

141

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

set noreorder
Ii

mtcO vO,$14

vO,Ox3041 0000 # load constant with CP1, CPO usable,
BEV, DE set, IE (interrupts) disabled

move it to the Status Reg
mtcO zero,$18 # clear Rand W trap enable masks in the WatchLo Reg
nop
mfcO v1,$16

an operation is needed between a mtcO and mfcO instruction
get Configuration Reg

nop
Ii

delay two operations before v1 can be used
aO,Oxa0000160 # load address constant

sw v1,O(aO) # dump Configuration Reg to external memory
Ii vO,Ox00000033 # load constant with IB, DB set to 32 byte p-cache line widths

and KsegO to be non-coherent cachable
mtcO vO,$16 # move it back to the Configuration Reg (only bits 5:0 writable)

Listing 1. Software for Reading and Writing the Configuration Registers

Figure 4 shows the register fields. Refer to the User's Manual [2] for more detail.

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8765432

1M

Figure 4. Status Register $14

Two suggestions on programming these fields during initial aO,OxaOOOOOOO # load address constant
debugging are to set the BEV bit and the DE bit. Setting BEV,
bit 22, the Diagnostic Status Field of the Status Register $14 mfcO
will send any exceptions to the uncached kernel segment 1 nop
bootstrap exception vector base virtual address 'h bfcO 0200, nop
instead of to the cachable mapped user segment 'h 8000 sw
0000, which requires that the cache and TLB be initialized first.
An exception handler for initial diagnostics, such as the mfcO
(unoptimized) one in Listing 2, can put code at physical nop
address 'h 01 fcO 0200 and offsets 'h 0000, 'h 0080, 'h 0080, nop
'h 0100, and 'h 0180, i.e., physical addresses, 'h OHcO 0200, sw
'h 01 fcO 0280, 'h 01 fcO 0300, 'h 01 fcO 0380. The exception
handler should at least dump out the cause register $13, the mfcO
exception vector, $14, and the cache error register $27, and nop
the errorexception program counter, $30. Ifthe registers can't nop
be displayed with a UART, they should at least be written out sw
to uncached memory so they can be observed on a logic
analyzer. In contrast to the R3000 RFE instruction, the R4000 mfcO
uses an ERET instruction to return back to the code. nop

142

nop
sw

mfcO
nap
nop
sw

eret

v1,$13 # get Cause Reg
two non-v1 operations needed

v1,Ox130(aO) # dump to memory

v1,$14 # get EPC
two non-v1 operations needed

v1,Ox140(aO) # dump to memory

v1,$27 # get Cache Err Reg
two non-v1 operations needed

v1,Ox270(nO) # dump to memory

v1,$30 # get ErrorEPC Reg
two non-v1 operations needed

v1,Ox300(aO) # dump to memory

v1,$12 # get Status Reg
two non-v1 operations needed

v1,Ox120(aO) # dump to memory

return from exception

Listing 2. Software for the Exception Handler

o

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

The DE bit is bit 16 in the Diagnostic Status Field of the
Status Register $14, when set specifies that cache parity and
ECC errors don't cause exceptions. This is somewhat neces­
sary when initializing the cache, otherwise a lot of unneces­
sarily confusing jumps to the exception handler will probably
occur as the cache locations are first initialized, since the tag
and data parity haven't been initialized yet.

The WatchLo Register must have its trap on a read/load
mask (bit 1) and trap on a write/store mask (bit 0) disabled
before loads or stores are attempted, so an inadvertent trap
from an address match is not taken. Thus, similar to the
example in Listing 1, the WatchLo register can be cleared.

Reading the Configuration Register and dumping its con­
tents out to uncached space allows one to see if various bits

in the boot serial PROM were programmed correctly. Figure
4 shows the Configuration Register fields. For instance, the
System clock ratio and the transmit data pattern can be
checked. The only writable bits are the lower 6, which are also
un initialized on Reset, and, therefore, should be written to by
software as soon as possible. Of the writable bits, IB and DB
are used to program the primary Instruction Cache line size
and the primary Data cache line size to either 4 words or 8
words. The primary cache line sizes must be smaller than or
equal to the secondary cache line size. Note that if there is no
secondary cache, it is possible to program the data and
instruction caches to different line sizes, which is the one case
where different block sizes will be presented to the system
interface.

31 30 28 27 24 23 22 21 20 19 18 17 16 15 14 13 12 11 9 8 6 5 4 3 2 o

Figure 4. Configuration Register $16

PRIMARY DATA CACHE INITIALIZATION
In general, it is much simpler to test the data cache than it

is the instruction cache. Several reasons exist for this. First, if
the data cache read fails, the program can still continue, where
as an instruction cache failure mayor may not continue and
could cause the program to get lost. Second, it is simpler to
initialize the data cache since it can be written directly with
stores. Finally, forcing cache miss writebacks is more
straightforward, since it just requires writing to different ad­
dresses as opposed to jumping back and forth in code. As
shown in Listing 3, when initializing the caches, the Cache
opcode is used heavily. The algorithm in Listing 3 is not the
most efficient. However, from a debugging point of view, it

143

does not do any unnecessary System Interface block reads or
writes. The idea is to, first, invalidate the tags, and then fill the
data slots with any data so that ECC/parity can be set
correctly. The base virtual address, 'h 8000 0000, is used
because it is in the unmapped cachable kernel segment 0,
which does not require the TLB. Note that if an R3000
compiler is being used, which can't generate the R4000
Cache opcode, then a data statement using the ".word"
directive can be inserted into the program with the data for the
hand assembled hex machine instruction.

In a similar manner, by substituting the appropriate cache
instructions, and by adjusting for the cache line size, the
secondary data cache can be initialized.

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

set noreorder
Ii
Ii
mtcO zero,$28

#ifndef R3000asm
1: cache

cache
#else
1: .word

#endif
.word

nop
nop
sw
sw
sw
sw
sw
sw
sw
sw
nop
nop

#ifndef R3000asm
cache

#else

aO,Ox80000000
a1,Ox80002000-0x20

2*4+1,OxOO(aO)
3*4+1,OxOO(aO)

Oxbc890000
Oxbc8dOOOO

zero,OxOO(aO)
zero,Ox04(aO)
zero,Ox08(aO)
zero,OxOc(aO)
zero,Ox10(aO)
zero,Ox14(aO)
zero,Ox18(aO)
zero,Ox1 c(aO)

2*4+ 1 ,0xOO(aO)

. word Oxbc890000
#endif

bit aO,a1,1b

addu aO,Ox20

1* turn off assembly rescheduler (no reordering optimization) */
1* primary data cache start pointer */
1* 8K last location - 32 */
1* set Taglo GPO Reg to 0 */

1* Index Store Tag, invalidate cache line (prevent write backs) */
1* Greate Dirty Exclusive (prevent block reads) */

1* use if using R3000 assembler */

1* fill data slots with good EGG/parity (8 word cache lin e) */

1* Index Store Tag, invalidate cache line */

1* if count is less than last */
1* then jump Back to last label called "1". */
1* branch delay slot, increment addr pointer */

Listing 3. Primary Data Cache Initialization Software

PRIMARY INSTRUCTION CACHE
INITIALIZATION

As shown in Listing 4, the instruction cache is initialized a
little differently than the data cache. First, their data slots need
to be filled from main memory, using the Fill Gache operation,
so the EGG/parity for the data can be set correctly. Then, their
tags are invalidated and tag EGG/parity set. As with the data
cache, the base virtual address 'h 80000000 is used because
it automatically maps to a physical address without requiring
the use of the TlB.

The secondary instruction cache can be initialized in a
similar manner to the primary cache. The initialization can be
accomplished by using the cache fill instruction overthe entire
secondary cache address space, adjusting for the cache line
size, and by substituting the appropriate cache instructions.
Note, that if the secondary cache has a unified instruction and
data memory, then the cache only needs to initialized once.

144

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

.set noreorder /* turn off assembly rescheduler */
/* (no reordering optimization) */

aO,Ox80000000 /* primary data cache start pointer */
a1,Ox80002000-0x20 /* 8K last location - 32 */

mtcO zero,$28 /* set Taglo CPO Reg to a */

1 :
#ifndef block_reads_are_being_tested_later

cache 5*4+0,OxOO(aO) /* fill i-word data slots (8 word cache line size) */
/* Oxbc940000 */

#endif

/* note that the fill operation requires that block */
/* reads are working. Thus during initial debug */
/* one may want to delete the fill operation */

cache
bit

2*4+0,OxOO(aO)
aO,a1,1b

/* index store tag */ /* Oxbc880000 */
/* if count is less than last */
/* then jump Back to last label called "1". */

addu aO,Ox20 /* branch delay slot, increment addr pointer */

Listing 4. Primary Instruction Cache Initialization Software

MINIMAL TEST CODE (BLOCK READS AND
WRITES)

Cachable data loads will read from the internal primary
cache or the secondary cache, unless the cache line location
is invalid or has a non-matching tag. Such cache misses will
generate block reads to the external system interface.

The block reads are tested by doing a cached read, which
misses in the cache. It is easier to look at cache locations that
are initialized as invalid, so write backs do not occur.

The data cache uses a write back protocol. So, when
writing to a cached location, the data is stored only to the
cache, and a dirty bit is set. Main memory is updated later,
when the cache line, where the data was stored, is replaced
for a cache miss. Because the cache is direct mapped, a
cache miss can be created by writing or reading to locations
that are modulo cache block size apart, i.e., every 8K apart.

Code in Listing 5 shows a method that may be needed
early-on, which is to test writebacks without doing a block read
first.

After block reads and writes are tested individually, data
writes to cache block offsets of SK, as in Listing 6, will force a
write back. On the R4000PC without secondary cache, this
will be two separate System Interface transactions. However,
on R4000s with secondary cache, the write address and data
will be issued immediately following the read address, such
that the write address and data will come between the read
address and when data is returned by the system. In a typical
system, the write address and data is FIFO buffered such that
after the read is handled, the system issues the write to main
memory.

145

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE 1DT79R4000 APPLICATION NOTE AN-119

/* assume that cache has just been flushed (invalidated) */

aO,Ox80000000 /* start addr pointer */
cache 3*4+1,OxOO(aO) /* Create Dirty Exclusive, otherwise a block read

will occur on the first store so that the entire cache
line is filled */ /* Oxbc8dOOOO */

nop
addiu
sw

a1,aO,OxOO
a1,OxOO(aO)

/* store incrementing pattern, i.e., OxO, Ox4, Ox8, OxC */
/* into cache */

addiu a1,aO,Ox04
sw a1,Ox04(aO)
addiu a1,aO,Ox04
sw a1,Ox08(aO)
addiu a1,aO,Ox04
sw a1,OxOc(aO)
addiu a1,aO,Ox04
sw a1,Ox10(aO)
addi a1,aO,Ox04
sw a1,Ox14(aO)
addiu a1,aO,Ox04
sw a 1 ,Ox18(aO)
addiu a1,aO,Ox04
sw a1,Ox1c(aO)
nop /* 2 operations required between store and cache */
nop
cache 0*0+1,OxOO(aO) /* index write back invalidate */ /* Oxbc81 0000 */

Listing 5. Block Write Code with No Block Read

aO,Ox80000000
a1, zero
a1,OxOOOO(aO)
a1,Ox2000
a1,Ox2000(aO)

/* load start addr pointer */
/* load data */

sw
Ii
sw

/* read from 0000 and possible writeback to xxxx */
/* load data * /
/* read from 2000 and definite writeback to 0000 */

Listing 6. Block Read with Writeback

TESTING ALL THE PHYSICAL ADDRESS
LINES

The R4000 has 36 of the physical address lines imple­
mented. Although unspecified, one can customarily expect
SysAD(63:36) to be 0 during any address phase. Only the
bottom 30 out of 36 physical address bits can be tested within
the unmapped fixed kernel space provided with 32-bit virtual
addressing. One way to test address bits 35:32 is to go into
64-bit virtual addressing by setting the KX (bit 7) in the Status
Register $14 and then using the 64-bit kernel space called
xkphys. Virtual addresses 'h 9000 0000 0000 0000 to 'h 97ff
ffff ffff ffff are uncached and automatically mapped such that
physical address bits 35:0 are the same as virtual address bits
35:0.

A second, but more tedious way to test address bits 35:30,
is to use the mapped space via the Translation Lookaside
Buffer (TLB) which converts the software program's virtual

address into the hardware's physical address. Although
initialization of the TLB is beyond the scope of this application
note, one tip includes initializing all 48 entries, not just the ones
going to be used. This is because the unused entries may
happen to power up with a matching virtual address. Should
two or more TLB entries match, a TLB shutdown may occur
and the CPU does not know which one to choose. In addition,
initialize the TLB virtual pages to an unmappable unmapped
virtual address space such as 'h Ox8000 0000 as well as
setting the entry's Valid bit to invalid. This is because the TLB
shutdown logic, when two or more entries match, does not
take into account the valid bit. Since 'h 80000000 is automati­
cally mapped to a physical address space, and does not go
through the TLB, those entries cannot accidently cause a
shutdown.

146

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000

SUMMARY
Bringing up the hardware requires a mixture of hardware

and software. The part must be Reset, serial configuration
registers loaded and software configuration registers written.
A mixture of single doubleword reads, writes, block reads, and
block writes can be checked. Reaching this stage is usually
sufficient to continue with more intensive diagnostics and
operating syst~ms. Continued diagnostics may include inter­
rupt line checks, memory checks, and 1/0 initialization.

FOR FURTHER INFORMATION
[1] MIPS R4000 Microprocessor Introduction, Integrated

Device Technology, Inc., MAN-RISC-10091, Santa Clara,
CA, 1991. - Gives a brief general overview of the architec­
ture and features.

[2] MIPS R4000 User's Manual, Integrated Device Tech­
nology, Inc., MAN-RISC-00091, Santa Clara, CA, 1991. -
Describes the H/W features and functionality of the device as
we" the bus interface. Also describes the R4000 instruction
set architecture from a systems and assembly level program­
ming perspective.

[3] IDT79R4000 Family Data Sheet, Integrated Device
Technology, Inc., Oct. 1991. -Contains the Data Sheet with
packaging, pinout, AC/DC electrical specifications and ther­
mal parameters.

147

APPLICATION NOTE AN-119

G TIMERS USING SONIC™ AND APPLICATION

COUNT REGISTER IN ORION™ NOTE
AN-127

Integrated Device Technology, Inc.

By Sugan Subramanian

INTRODUCTION
This is an Application Note on two timer modules, one

based on SONIC'''' running at 20MHz and another based on
COUNT register present in R4600™ running at 50MHz. The
timer-modules are broken up into two groups offunctions. The
first group of functions is specific to a particular timer. These
functions are always written in assembly language and do low
level timer specific initialization for starting and stopping the
timer. The second set offunctions have generic functionalities.
These functions are written in C and they are used to keep
track of the number of ticks in the timer in microseonds
between the period at which the timer is started and stopped,
to display time, and to set a constant value based on the
current speed at which the processor is set to run. First, we are
going to discuss how to measure time using SONIC. Sec­
ondly, we going to look at how to keep track of time using
R4600's count register. Finally, we will discuss how to use the
timers.

SONIC TIMER

SONIC is used to measure time in various boards, including
lOT's 79S460-board (an R4xOO evaluation board) and
79S381 ThO-board (a R30xx evaluation board). The SONIC has
a 32-bit downcounter that is controlled by SONIC's 16-bit
registers, watchdog register1 and watchdog register2. In the
SONIC running at 20MHz, each timer-tick represents 200-ns.
In general,

t = (1 000/f)*4
where t is the time for each timer-cycle in ns and f is the

frequency of SONIC in MHz. Moreover, (1000/f) represents
time period per cycle. Sonic decrements the counter registers
once every four cycles. Mechanisms involved in starting the
timer, stopping the timer, and displaying time using SONIC
are discussed in the following sections. The following figure
describes the header file "sonic_globals.h" used by SONIC­
timer's high level functions.

1* sonic~lObals.h *1

1* speed based on user specified
frequency of SONl:C * I
unsigned int current_speed;
1* speed based on default frequency of
SONIC *1
unsigned int def_speed;
1* counter keeps track of the time count
*1
unsigned int counter;

Figure 1
sonic_globals.h

Starting SONIC Timer
Starting the timer involves enabling the ST bit in SONIC's

control register, and initializing 16-bit watchdog registers 1
and 2 with all their bits set to 1 (Oxffff). "TimerStart", a low level
function, does the initialization required for starting a timer.
"timer_start", a high level function, calls "TimerStart" and
keeps track of the number of timer ticks. Figures 2 and 3
describe "TimerStart" and "timer_start" routines for SONIC.

I*for 79s460-board *1
#include <r4ksonic.h>
I*for 79s38I-board
#include <r3ksonic.h>
But, don't include both headers *1
LOW LEVEL FUNCTION TimerStart

.alobl TimerStart

.ent TimerStart

.set
TimerStart:

11
11
nop
nop

noreorder

vO, SONIC_COMMAND_REG_ST_BIT
tI, SONIC_COMMAlID_REG

sw vO,O(tI)
nop
nop
li vO, oxffffffff
sw vO, SONIC_WATCHDOGI(tI)
nop
nop
sw vO, SONIC_WATCHDOG2(tI)
nop
nop
j ra
nop
nop

• end TimerStart

Figure 2
SONIC TimerStart routine

#include <sonic_alobals.h>

1* HIGH LEVEL FUUCTIOU timer_start *1
unsigned int timer_start()
{

1* set cur_speed of the SONIC based on the user
specified frequency *1

def_speed = cur_speed;

counter = TimerStart();

return counter;

Figure 3
SONIC timer_start routine

The lOT logo Is a registered trademark and R4600, 79S381, 79S460, Orion and IDTIC are trademarks 01 Integrated Device Technology, Inc.
SONIC Is a trademark of National Semiconductor Corporation.

148

TIMERS USING SONIC'" AND COUNT REGISTER IS ORION'"

Stopping SONIC Timer
The SONIC-timer is stopped by enabling the STP bit in

SONIC's control register. By enabling STP bit, the SONIC
preserves the previous values of WATCHDOG registers 1 and
2. "TimerStop" returns a 32-bit value that is a concatenation of
16-bit count in watchdog registers 1 and 2. "timer_stop"
function calls the low level "TimerStop" to retrieve the current
timer value. "timer_stop" returns an unsigned integer value
representing the time period between the previous timer
initiation and the current instance of execution (in microsec­
onds). Figures 4 and 5 describe "TimerStop" and "timer_stop"
routines for SONIC.

I*for 79s460-board *1
#include <r4ksonic.h>
I*for 79s381-board
#include <r3ksonic.h>
But, don't include both headers *1

• globl TimerStop
• ent TimerStop
• set noreorder

TimerStop:
li vO, SONIC_COMMAND_REG_STP_BIT
li t1, SONIC_COMMAND_REG
nop
nop
sw
nop
nop
lw
nop
nop
lw
sll
addu
addu
j
nop

.end

vO,0(t1)

v1, SONIC_WATCHDOG1(t1)

vO, SONIC_WATCHDOG2(t1)
v1,16
v1,v1,vO
vO,v1,v1
ra

TimerStop

Figure 4
SONIC TimerStop routine

1* HIGH LEVEL FUNCTION timer_stop *1
extern unsigned int counter;
unsigned int timer_stop()
(

1*

*1

counter -~ TimerStop();

when counter == i,
i*100 == time in nanosecs
(i/1000) *100 == time in microsecs

return counter/10;

Figure 5
SONIC TimerStop routine

Displaying Time (SONIC)
"disp_time" function displays the time. It is always called

after a call to "timer_stop". It takes a parameter which is
usually zero, otherwise represents current time-count in mi­
croseconds. It displays the timer period in the following format:

" %dS %dmS %duS" where %d represents the number of

APPLICATION NOTE AN-127

seconds in the time count; mS - represents the number of
milliseconds in the time count; and uS - represents the number
of microseconds in the time count. Only the non-zero units are
displayed. Figure 6 describes the fuction "disp_time" for
SONIC.

oxtern unsigned int counter, def_speed,
cur_speed;

void diap_time(unaigned int i)
(

unsigned int tamp_counter-counter;

if (i)
tamp_counter • i;

printf ("elaspod time • ");
if (tamp_counter >

1000000)

printf ("%dS ",
tamp_counter
11000000);
temp_counter %-1000000;

if (tamp_counter> 1000)
(

printf ("%elmS",
tamp_counter
1(1000»;
tamp_counter %-1000;

if (temp_counter)
(

printf ("%duS ",
tamp_countor);

printf(n\n");

Figure 6
SONIC disp_time routine

Setting Up SONIC timer speed
"set_timer_speed" takes an integer that represents the

clock frequency of SONIC in MHz as its parameter and sets a
constant that represents the speed of SONIC in ns for the
given frequency. This constant is used by the "disp_time" to
display the time correctly. The following figure has the C­
source for "set_timer_speed".

extern unsigned int cur_speod;
void set_timer_speed(int speed)
(

cur_speed • 1000/speed*2;

Figure 7
SONIC seCtimecspeed routine

149

TIMERS USING SONIC"" AND COUNT REGISTER IS ORION'"

Difference between SONIC timer on 79s460-board and
79s381-board

It's recommended to include the header file, "timer_sonic.h"
before encorporating the timer routines in his/her code. Only
difference between the SONIC timer routine for lOT's 79s460-
board (R4xxx evaluation board) and 79s381-board (R30xx
evaluation board) is the SONIC chip's base address. The
header file "r4ksonic.h" has R4xxx board specific SONIC base
address and "r3ksonic.h" has R30xx board specific SONIC
base address. The following figures describe these header
files.

1* include file r4ksonic.h *1

#define SONXC_BASE
Oxbf600000

#define SONXC_COMMAND_REG
Oxbf600000

#define
Oxa4

#define
OxaB

#define
Ox20

#define

Ox10

Figure 8
r4ksonic.h

/* include file r3ksonic.h *1

#define SONXC_BASE
OxbfbOOOOO

#define

OxbfbOOOOO
#define

Oxa4
#define

OxaB
#define

Ox20
#define

Ox10

Figure 9
r3ksonic.h

Constraints on SONIC timer
The SONIC timer module on a SONIC running at 20mHz is

capable of counting upto 7 minutes. If the SONIC is running at
a different frequency, function "set_timecspeed" should be
called before calling "timecstart".

R4600 TIMER
R4600 microprocessor has a COUNT register in

CoProcessor 0 (CPO). This COUNT register in CPO incre­
ments its count by one on every timer tick of the R4600
processor. In the R4600 processor running at 50MHz, each
timer-tick represents 20-ns. In general,

APPLICATION NOTE AN-127

t = (1000/f)
where t is the time for each timer-tick in nano-seconds, f is

the frequency of R4600 processor in MHz, and (1000/f)
represents the time per cycle. The following figure describes
the header file used by the high level functions of R4600 timer.

1* orion_globals.h *1

1* speed based on user specified
frequency of R4600 processor *1
unsigned int current_speed;

1* speed based on default frequency of
R4600 processor *1
unsigned int def_speed;
1* counter keeps track of the time count
*1
unsigned int counter;

Figure 10
orion_globals.h

Starting R4600 Timer
Timer is started by resetting the value of the COUNT

register in R4600 microprocessor to zero. The following piece
of assembly code and c-code shows how to start the timer.

#include -r4kcpO.h-
, Timer is started by assigning zero to
, COUNT register located in CPO

• globl TimerStart
• ent TimerStart
• set noreorder

TimerStart:
and vO, $0
mtcO vO, CPO_COUNT
nop
nop
j ra
nop
nop

• end TimerStart

Figure 10
R4600 TimerStart routine

1* r4kcpO.h *1
'define CPO_CONTEXT $4
'define CPO_BVADDR $B
'define CPO_COUNT
#define CPO_COMPARE $11

1* r4kcpO.h ---contd. *1
#define vO
#define v1
'define ra
Figure 11
R4600 header file r4kcpO.h

#include <orion_globals.h>

unsigned int timer_start()
{

if (cur_speed)

$9

$2
$3
$31

def_speed • cur_speed;

150

TIMERS USING SONIC'" AND COUNT REGISTER IS ORION'"

counter = TimerStart();
return counter;

Figure 12
R4600 timer_start routine

Stopping R4600 Timer
Stopping the timer involves simply getting the contents of

the COUNT register that represents the most recent timer tick
count and converting that timer tick count to microseconds.
The following piece of assembly code and c-code shows how
to stop the timer.

#include "r4kcpO.h"
.globl TimerStop
• ent TimerStop

TimerStop:
mfcO vO, CPO_COUNT

The timer is stopped by getting
the most recent value of COUNT
register

nop
nop
j ra
nop
nop
• set reorder

• end TimerStop

Figure 13
R4600 TimerStop routine

extern unsigned int counter;

unsigned int timer_stop()
(

/*

*/

counter = TimerStop() - counter;

when counter == i,
i*20 == time in nanosecs
(i/1000)*20 == time in microsecs

return counter/50;

Figure 14
R4600 timer_stop routine

Displaying Time (R4600)
"disp_time" function is very similar to the one presented

previously for the SONIC timer module. Only difference in this
case is that the time displayed is based on the frequency of the
R4600 in the 79s460-board (50-MHz).

APPLICATION NOTE AN-127

Constraints on R4600 timer
The timer module is capable of counting upto 85 seconds

assuming that the R4600 processor is set to run at 50MHz. If
the R4600 processor is set to run at a different frequency,
function "set_timer_speed" should be called before calling
"timer_start" so that "disp_time" displays the correct time. The
following piece of c-code describes the "seCtimer_speed"
function.

extern unsigned int cur_speed;
void set_timer_speed(int speed)
(

cur_speed = lOOO/speed;

Figure 15
R4600 seCtimer_speed routine

TIMER MODULE USAGE
The procedures to use SONIC timer for 79s460-board,

SONIC timer for 79s381-board, and R4600-timer for 79s460-
board are the same. The following figure describes it. More­
over, IDT-C 5.0 is shipped with SONIC-timer/79s460-board
and R4600-timer/79s460-board.ln IDT-C 5.0, source code for
SONIC-timer/79s460-board is located under "/IDTC/timers/
SONIC-timer"; and source code for R4600-timer/79s460-
board is located under "/IDTC/timers/ORION-timer". Figures
16 and 17 give the general procedure to use the timer routines.

#include <timer.h>
main()
(

timer_start();

/* main body */

timer_stop();
disp_time(O);

Figure 16
How the timer routine is to be used

/* timer.h */
unsigned int timer_start();
unsigned int timer_stop();

void disp_time(unsigned int);

151

Figure 17

timer.h

~
R4600™ POWER APPLICATION

CALCULATIONS NOTE
AN-129

Integrated Device Technology, Inc.

By Robert Napaa

INTRODUCTION
The IDT R4600'" Orion'" RISC microprocessor is a full 64-

bit architecture that is fully compatible with numerous 32-bit
and 64-bit Operating Systems and applications. It is a highly
integrated microprocessor designed to serve embedded ap­
plications. It incorporates large on-chip caches (16KBytes for
both the instruction and the data caches); both two-way set
associative. The R4600 implements a large TLB to map 96
virtual pages (raging from 4KB to 16MB in size) to their
corresponding physical addresses. The R4600 has a four
deep write buffer to isolate the high speed internal caches
from the low speed external memory.

The R4600 uses advanced power management tech­
niques to lower the peak and typical power consumption. The
power saving is implemented through an intelligent scheme
which turns off the power from the unused sections of the
device (e.g. the FPU). A standby mode is also available which
shuts down the internal clocks and freezes the pipeline, thus
reducing the consumed power substantially. This feature is
very desirable for power sensitive applications such as por­
table systems and notebooks.

This Application Note explains how to compute the R4600
power consumption under different working conditions and
capacitive loading.

TYPES OF POWER
The data sheet of the R4600 lists three different modes of

power consumption in the Icc table: Standby mode,
Active_Typical mode and Active_Max mode. The R4600
operates in anyone of these three modes. The mode of
operation of the R4600 is under the system control (both SfW
and HfW).

Standby Mode
The R4600 implements a Standby mode which is entered

through software control using the WAIT instruction. Execut­
ing the WAIT instruction enables the interrupts and causes the
CPU to enter the Standby mode. The Standby mode is
actually entered when the WAIT instruction finishes the W
stage of the pipeline. In this mode, the internal clocks are
shutdown and the pipeline is frozen. No instruction advances
through the pipeline and the external bus activity stops.
However, the PLL, internal timer, some of the input pins
(-lnt[5:0], -NMI, -ExtReq, -Reset, -Cold Reset, Syncln and
the MasterClock) and the output clocks (TClock[1 :0],
RClock[1 :0], SyncOut, ModeClock and MasterOut) continue
to run. In this mode, the R4600 consumes very little power
which is reflected by the standby Icc values in the data sheet.

Once the CPU is in Standby mode, any unmasked inter­
rupt, including the internally generated timer interrupt, will

cause the CPU to exit the Standby mode.

Active_Maximum Mode
In this mode the R4600 is fully functional. The pipeline is

continuously running, instructions are advancing through the
pipeline and the CPU is accessing the internal caches and the
system resources. In this mode, the power to all the internal
units may be turned on. This is achieved if the code sequence
uses and accesses all the internal units (such as the integer
unit, the FPU , etc.) continuously. This mode also represents
the worst case power consumption values, with the supply
voltage at its max limit (e.g. 5.25V). In this mode, the R4600
consumes its max power and this is reflected by the max Icc
values in the data sheet.

Active_Typical Mode
This mode is similar to the Active_Maximum mode with the

exception that the instruction sequence doesn't fully exercise
the internal resources (like the FPU for example). The R4600
implements advanced power management techniques to take
advantage of such code sequences. In this mode, the unused
sections of the device are powered down. For example, if the
FPU is not used, it wi!1 be powered down to reduce the overall
power consumption. This amounts to substantial power con­
sumption savings compared to the maximum case. In this
mode, the supply voltage is assumed to be at its mid-point
nominal value (e.g. 5Vor 3.3V). This mode is reflected by the
typical Icc values in the data sheet. It represents the average
(typical) power the device will consume in a typical application
that is not fully utilizing the internal resources. In such typical
applications, the CPU is usually executing instructions 75% of
the time and stalled the remaining 25%.

COMPONENTS OF POWER CONSUMPTION
The total power consumption of the R4600 in the previous

three modes includes two components: the internal power
consumption and the output powei consumption ofthe device.

The sum of the internal and the output powers is the total
power consumption of the R4600. The system designer must
calculate these two values for any mode to obtain the total
power consumption of the CPU in that mode.

Note:
In this Application Note, the power examples assume a system with the

following attributes:
SV power supply for typical measurement
S.2SV power supply for max measurement
MasterClock is SOMHz, the pipeline clock is 100MHz and the SysAd bus
operates in the divide by 2 mode (SOMHz).
The examples use the values of Icc published in the March 1994 revision
of the R4600 Data Sheet. For the most accurate results, the system
designer should use the values published in the most recent revision ofthe
data sheet.

The lOT Logo Is a registered trademar1l and RISControlier. Orion. and R4600 are trademar1ls .of Integrated Device Technology. Inc.
The MIPS Logo 15 a registered trademar1l and R3000 is a trademark of MIPS Computer Systems. Inc.

152

R4600N POWER CALCULATIONS

Internal Power
The internal power is provided in the data sheet. It

represents the power consumed by the internal logic of the
device. However, it excludes the power consumed by the
output buffers, since that is system dependent. Specifically, it
depends on the capacitive loading of the output pins and the
write pattern supported. The internal power is available in the
data sheet and corresponds to the 0 pF loading condition on
the output clocks and no SysAD activity. The internal power
consumption (IP) is computed using the following equation:

IP = Icc * Voltage (Watts)

For the system example used in this Application Note with
a supply voltage of SV, the Standby internal power consump­
tion is 920mWatts (17SmA * S.2SV). Similarly, the Typical
internal power consumption is 437SmWatts (87SmA * SV)
while the Maximum internal power consumption is 6S6SmWatts
(12S0mA * S.2SV).

Output Power

The output power is the power consumed by the output
buffers of the R4600. It is completely system dependent. It is
a function of the capacitive loading the output buffer is driving
and the frequency of the signal. System designers should use
the guideline provided in this Application Note to compute the
output power for their particular applications.
The output power per output pin is computed using the

following equation:

OP = C * V2 * f (Watts)

OP is the OutpuCPower
C is the capacitive loading on the output pin.
V is the supply voltage
f is the frequency (number of low-to-high transitions I sec)

of the output pin.

The total output power consumed is the sum of the output
power for every individual output pin.

EXAMPLE OF OUTPUT POWER CALCULA­

TIONS

APPLICATION NOTE AN-129

SyncOut. Typically SyncOut is connected to Syncln or to a
single buffer to match the delay on the TClock and RClock.
This is about 20pF of loading. The frequency of SyncOut is the
same as MasterClock (SOMHz). So the typical output power
consumed by the SyncOut clock is:

OPSyncOut = C * V2 * f (Watts)

OP _ TypicalsyncOut = (20*10-12) * (5)2 * (50*106) Watts

OP _ TypicalsyncOut = 25 mWatts

The max output power consumed by the SyncOut clock is:

OP _MaxsyncOut = (20*10-12) * (5.25)2 * (50*106) Watts

OP _MaxsyncOut = 27.5 mWatts

MasterOut. Typically MasterOut is connected to a couple of
loads (mostly to the reset logic). This is about 30pF. The
frequency is the same as the MasterClock (SOMHz). So the
typical output power consumed by the MasterOut clock is:

OP _ TypicalMasterOut = (30*10-12) * (5)2 * (50*106) Watts

OP _ TypicalMasterOut = 37.5 mWatts

The max output power consumed by the MasterOut
clock is:

OP _MaxMasterOut = (30*10-12) * (5.25)2 * (50*106) Watts

OP _MaxMasterOut = 41.3 mWatts

TClock[1 :OJ and RClock[1 :O}. Typically TClock[1 :0] and
RCLock[1 :0] are connected to several loads; for this example
assume that they add up to about SOpF. The frequency of
TClock[1 :0] and RClock[1 :0] (fTRClock) depends on the
bus_clock_divisor which is selected at boot time (from 2 to 8).
It is calculated using the following equation:

fTRClock = MasterClock * 2 (MHz)
bus_clock_divisor

The bus_clock_divisor in this example is set to 2. The
fTRClock is then:

fTRClock = (50*106) * 2 MHz = 50 MHz
2

There are 4 clocks (two TClocks and two RClocks). So the

The R4600 has two classes of output signals. The clock
output signals and the bus signals (which include the SysAd
and the output control signals). This example shows how to
compute the output power for each class. Every calculation
has to be done twice: to compute the Typical and the Max
output power consumption. Remember that for the Typical
power consumption, the power supply is assumed to be at its
nominal value (SV in this case) and for the Max power
consumption it is assumed to be at its max (S.2SV in this case).
Clocks Output Power typical output power consumed by the TClocks and RClocks

in this example is:
The R4600 has 6 different output clocks: MasterOut,

SyncOut, TClock[1 :0] and RClock[1 :0]. The output power OP _ TypicalTRclock = 4 * (50*10'12) * (5)2 * (50*106) Watts
calculation for each clock should be done separately.

OP _TypicalTRClock = 250 mWatts

153

R4600N POWER CALCULATIONS

The max output power consumed by the TClocks and
the RClocks is:

OP _MaxTRclock = 4 * (50*10-12) * (5.25)2 * (50*106)

OP _MaxTRclock = 275.5 mWatts

The typical total output power consumed by the clocks is
the sum of the typical output power consumed by the indi­
vidual clocks:

OP _ Typicalclock OP _ TypicalSyncout +
OP _ TypicalMasterOut +OP _ TypicalTRClock

OP _Typicalclock = 25 + 37.5 + 250 = 312.5 mWatts

Similarly, the max total output power consumed by the
clocks is the sum of the max output power consumed by the
individual clocks:

OP _Maxclock = OP _Maxsyncout + OP _MaxMasterOut +
OP _MaxTRclock

OP _Maxclock = 27.5 + 41.3 + 275.5 = 344.3 mWatts

Of course, the system designer should determine the
power estimate for any given system, factoring in the loading,
the clock frequency and the supply voltage.

Bus Output Power

The R4600 bus transactions consist of main memory
accesses (read and write operations). The output power
consumed by the bus signals differs from one transaction to
the other. Read and block read transactions represent the
best case since the R4600 consumes output power only
during the address phase of the transaction. During the data
phase, the system returns the data to the CPU and the R4600
doesn't consume much output power. The output power
consumed in the read transactions can be obtained by com­
puting the power consumed during the address phase of the
bus. This case will not be demonstrated in this example; since
in a typical system, the power contribution of the read trans­
actions is negligible.

On the other hand, the write transactions tend to consume
much more output power because the R4600 is continuously
driving the bus with either the address or the data. The worst
case output power consumption by the bus unit is when the
R4600 does a stream of uncached write transactions or write
-through stores when the address is the complement of the
data. It also assumes that all the SysAd and the SysCmd bits
need to toggle. This case represents the max output power
consumed by the bus. The example in this Application Note
will concentrate on this situation.

Further, there are two major cases to consider when
calculating the bus max output power consumption during
write transactions. The first is the R4xxx compatible bus write
protocol and the second is the write-reissue or the pipelined

APPLICATION NOTE AN-129

write bus protocols.
Before starting the calculations of the bus output power

consumption during the write transactions, a generic formula
to compute the average SysAd_Data_Frequency (fSysAd_Data)
is needed. This is the frequency that is used in the
OutpuCPower equation. The average fSysAd_Data is com­
puted as follows:

fSysAd_Data = 1 * MasterClock * 2 * !!. (MHz)
2 bus_clock_divisor m

MasterClock * 2 is the frequency of the output
bus_clock_divisor clocks (TClock and RClock).
n is the number of transitions on the SysAd bus
m is the total number of bus clock cycles to complete

a write transaction
1/2 The output clock frequency is divided in half

because the max transitions on the SysAd bus are
at half the output clock frequency.

R4xxx compatible write protocol. In this mode, the R4600
performs an uncached write transaction every 4 SysAD cycles
(the actual pattern is ADxx). The number of transitions "n" is
2 and the total number of clock cycles "m" is 4 in this case. The
bus frequency in the case of a bus_clock_divisor equals to 2
is:

fCompatible =], *
2

(50*106)*2 * 2 =12.5MHz
2 4

There is a total of 81 output signals used during the write
transactions (64 SysAD outputs, 8 SysADC outputs and 9
SysCmd outputs). There is also -ValidOut which should
toggle once in this case. However, for simplicity reasons it will
not be part of the calculations. On the other hand, all the
SysCmd bits are assumed to toggle which might not be the
case. Assume a 50pF load on each. Then the max output
power consumed by the bus in the R4xxx compatible mode is:

OP _MaxBusCompatible= 81 *(50*10-12)* (5.25)2 * (12.5*106)

Watts

OP _MaXBusCompatible = 1395.5 mWatts

Write reissue and pipelined write protocols. I n these modes,
the R4600 performs an uncached write transaction every 2
SysAD cycles (the actual pattern is AD). The number of
transitions "n" is 2 and the total number of clock cycles "m" is
2 in this case. The bus frequency in the case of a
bus_clock_divisor equals to 2 is:

fPipelined = .! * (50*106) * 2 * 2 = 25 MHz
222

There is a total of 81 output signals used during the write
transactions (64 SysAD outputs, 8 SysADC outputs and 9
SysCmd outputs). -ValidOut will not toggle in this mode and

154

R4600'" POWER CALCULATIONS

is not counted. Assume a 50 pF load on each. Then the max
output power consumed by the bus in the write reissue or the
pipelined write modes is:

OP _MaxBusPipelined = 81 * (50*10-12) * (5.25}2 * (25*106)
Watts

OP _MaxSusPipelined = 2790mWatts

Typical-case bus output power. In a more typical system,
the bus output power consumption of the R4600 is much less
than the worst case numbers. In normal operation, the R4600
performs primarily block write transactions. In this case, the
non-block write transactions are a small percentage of the
total bus activity and the output power consumed during non­
block write transactions is irrelevant. The block write transac­
tions represent the typical output power consumed by the bus.

The statistics from standard benchmarks indicate that a
typical application, executing from the internal caches, re­
quires the R4600 to perform a block write transaction every "I"
processor cycles on the average. A processor cycle is execut­
ing at the speed of the internal pipeline (MasterClock * 2). The
value of "I" is independent from the write back pattern in the
block write transaction (because it is always 5 transitions no
matter what). The total number of clock cycles to complete the
transaction "m" is then actually equals to "I" divided by the
bus_clock_divisor as stated in the following equation:

m= __ :---'-::--:-:-:-_ (clock cycles)
bus_clock_divisor

The number of transitions in a block write transaction "n" is
5 (address and 4 double words of data). In this case the
frequency of the bus (fSusTypical) in the case of a
bus_clock_divisor equals to 2 and a value of "I" equals to 200
(for example) is:

fSusTypical =1.* (50*106) * 2 * 5 = 1.25 MHz
2 2 (200/ 2)

There is a total of 81 output signals used during the write
transactions (64 SysAD outputs, 8 SysADC outputs and 9
SysCmd outputs). There is also -ValidOut which might toggle
or not depending on the write-back pattern selected. In this
case, with a write back pattern of ADDDD, the -Valid Out
signal doesn't toggle and will not be counted. Assume a 50 pF
load on each. Then the typical output power consumed by the
bus during a typical write back mode (when all outputs switch)
is:

OP _TypicalsusTypical = 81 * (50*1O-12) * (5}2 * (1.25*106)
Watts

OP _ TypicalsusTypical = 126.5 mWatts

The typical total output power consumed by the R4600 is
the sum of the clocks typical output power and the bus typical

APPLICATION NOTE AN-129

output power. Similarly, the max output power consumed is
the sum of the max clock output power and the max bus output
power consumptions. The max output power consumption
depends on the bus write protocol (R4xxx compatible or write
reissue or pipelined write transactions). The typical output
power consumption doesn't depend on the write protocol or
the write back pattern.

TOTAL POWER CONSUMPTION
The total power consumption of the R4600 is then the sum

of the internal power and the output power consumptions. It
depends on the system design in terms of the loading on the
bus as well as on the application SIW and the mode of
operation of the R4600. The system designers should com­
pute the output power consumption fortheir particular applica­
tion to obtain the total power consumption of the device. The
Total Power (TP) is expressed in the following equation:

TP = IP + OP (Watts)

To finish the example started in this Application Note, the
total typical power consumed by the R4600 in the system
described is:

TP _ TypicalR4600 = IP _ TypicalR4600 + OP _ TypicalR4600
Watts

TP _ TypicalR4600 = 4375 + [126.5 + (25 + 37.5 + 250)) Watts

TP _TypicalR46oo = 4814 mWatts

Similarly, the total max power consumed by the R4600 in
the system described using the R4xxx compatible write mode
is:

TP _MaxR46oo = IP _MaxR46oo + OP _MaxR46oo Watts

TP _MaxR46oo = 6565 + [1395.9 +(27.5 + 41.3 + 275.5)]
Watts

TP _ TypicalR46oo"" 8305 mWatts

CORRELATION WITH THE DATA SHEET
The power consumption of the R4600 is listed in the data

sheet in the Icc Table. There are several columns in the table
that correspond to the internal pipeline frequency and to the
external bus frequency (1 OO/SOMHz column as an example).
For every column, the typical and the max current consump­
tion is listed for the Standby mode and for the Active modes.
The OpF loading with no SysAd activity condition represents
the internal power consumption of the device.

The SOpF loading condition in the Standby mode corre­
sponds to the max power consumed in this mode with the
active clocks loaded with 50pF. Remember that in this mode
only a few external clock signals are active.

The SOpF loading condition forthe Active mode for both the
Typical and the Max case is the total power consumption of the
device. These values are derived using the equations intro-

155

R4600N POWER CALCULATIONS

duced in this Application Note. However, the loading on the
bus is different. The clocks are assumed to be driving a load
of 50pF. This is substantially more than the 20 or 30pF
assumed for SyncOut and MasterOut in this Application Note.
Similarly, the R4xxx compatible mode and the pipe lined or
write reissue mode assume the number of output signals
toggling to be 81. The -ValidOut signal is not part of the
calculations. The loading on every output pin is assumed to be
50pF. There is also a small added guard band in the published
numbers.

System designers can use the values provided in the data
sheet as a max upper limit for the possible power consumption
of the R4600 under the mentioned conditions. However, it is
always recommended for the system designers to compute
the exact power consumption of their particular application.
The values they obtain will be much more accurate than the
upper limit presented in the data sheet, which reflect the worst
case assumptions used during device testing.

APPLICATION NOTE AN-129

CONCLUSION
The R4600 is designed from the ground-up to consume as

little power as possible while achieving very high perfor­
mance. It incorporates advanced power management tech­
niques to turn off the power from the unused units of the
device. This reduces the typical power consumed compared
to other microprocessor in its class. On the other hand, the
R4600 doesn't sacrifice performance for the reduction in the
power consumed. Several systems have shown the R4600 to
outperform the R4400PC by at least 30% at a given frequency.

This Application Note explains how to compute the output
power consumed for every situation and howto derive the total
power of the CPU under different system conditions. The
system designer should use it as a reference and a guideline
in computing the power consumption for their particular appli­
cation. In addition, the system designer can use this informa­
tion to make power consumption trade-offs during system
design.

156

G
VISIBLE DIFFERENCES BETWEEN APPLICATION
THE R4650 AND THE R4600/R4700 NOTE
ORION FAMILY MEMBERS AN-135

Integrated Device Technology, Inc.

By: Ketan Deshpande

INTRODUCTION:
The IDTR4650 is a low cost member of the IDTR4600

(Orion) family, targeted towards a variety of embedded appli­
cations. R4600 features not required in many embedded
systems have been removed in the R4650 to lower device
cost; others have been added to better suit the processor for
its target applications. Given these changes in architecture,
software designed to run on the Orion may need to be slightly
modified to be able to take full advantage of the features of the
R4650.

This Application note discusses the software visible changes
integrated within the R4650; this information is required when
porting existing low-level software (e.g. compilers, debuggers
and other assembly language programs) from the R4600 to
the R4650.

Architectural Differences:
While a complete discussion of the architectural differ­

ences between the R4650 and the Orion is beyond the scope
of this note, the relevant differences will be enumerated and
software issues discussed. Some system control registers
have been deleted, some new ones have been added, and
some have been modified. Also, some exceptions are no
longer generated, and some new exceptions can be gener­
ated.

1. Integer Execution Unit:
The R4650 uses the same ALU as the Orion, with a few

modifications:
a) Faster MUL T/DMUL T instructions.

As a result of the faster MULTI DMUL T instructions,
assemblers or assembly language programmers need
not wait as many cycles as earlier to retrieve the result
from the HilLa registers.

For MUL T instructions (32x32->64 bits) the R4650 detects
the actual size of the operands; the execution time of the
multiply is thus determined by the actual number of
significant bits in the operands. For 16-bit operands, the
time taken to perform a MUL T instruction is 2 pipeline
cycles (PCycles) and for 32-bit operands, the time is 3
PCycles.

The time to perform a DMUL T operation(64x64-> 128 bits)
is 5 cycles, irrespective of the size of the operands.

b) New instructions: MUL and MAD.
The MUL instruction can be used to multiply two CPU
general purpose registers (GPRs) and store the result in
another GPR (32x32->64-bits), bypassing the HilLa pair,
and eliminating the MFHI/MFLO instructions.

The MAD instruction multiplies two (32-bit) GPRs and adds
the product to the contents of the HilLa registers, storing

The IDT logo Is a registered trademark of Integrated Device Technology. Inc.

the result in the HilLa pair.
MUL and MAD are defined only for 32-bit numbers; there
are no DMUL I DMAD instructions.

2. Control Processor 0 (CPO):

CPO has been greatly changed from the original R4600
Orion. Only two modes: user and kernel are supported (se­
lected by setting the UM bit in the STATUS register). All
addresses (virtual and physical) are 32 bits. There is no 64-bit
virtual address mode. All CPO registers are now 32-bit, and the
DMTCO/DMFCO instructions are no longer valid. However,
these instructions will not generate a trap.
a) PRld Register:

If the same software will be used to support the Orion
and the R4650, CPU-specific code can be separated on
the basis of the Implementation field of the PRld register
in CPO, which is Ox22 for the R4650, and Ox20 for the
Orion.

b)STATUS Register:
The STATUS register has a different format in the
R4650.

i) It has a bit to lock set A of the I-Cache (the IL bit, bit 23),
and one to lock set A of the Dcache (the DL bit, bit 24).
Critical sections of the code I data may thus be locked
into the cache for fast access. When locked, this set will
not be chosen for line refill. However, a line in a locked
set will still be chosen for refill if that line is invalid. Thus
locked sets may be flushed without having to unlock
them first. It takes 5 instructions after setting the IL bit for
refills to be disabled, and 3 instructions after setting the
DLbit.

ii) The FR bit (bit 26) can be set to select 16 or 32 32-bit
floating point registers.

c) CAUSE Register:
The CAUSE register has a slightly different format. It has
two new bits that denote whether the exception was due
to IWatch or DWatch (bits 24 & 25 respectively, dis­
cussed below) and one bit (IV bit, bit 23) to force inter­
rupts to use a different exception vector offset. On reset,
Cause. IV is cleared; thus exceptions and interrupts use
the same exception vector offset (Ox180). When
Cause.lV is set, interrupts use a new exception vector
offset (Ox200). This can be used for faster decoding of
interrupts. This new exception vector did not exist in the
R4600 Orion; thus, the use of a dedicated interrupt vector
is an option, not a mandate, in the R4650. For systems
whose performance is highly dependent on interrupts,
additional software modifications may be desirable, since
there may be code at that location that now needs to be
moved, as well as moving the interrupt management
code to that location.

3174

157

VISIBLE DIFFERENCES BETWEEN THE R4650 AND THE R4600IR4700 ORION FAMILY MEMBERS APPLICATION NOTE AN-135

d) TLB:
The R4650 does not include the R4600 Orion Memory
Management Unit (MMU). The CPO TLB registers 0-6,10
and 20 have been removed. The instructions TLBR,
TLBWI, TLBWR are no longer defined, but will not
generate a trap. TLB exceptions like TLBMiss /
XTLBMiss will never be generated. The exception vector
offsets OxOOO and Ox080 are no longer used.

The R4650 performs virtual address translation based on
Base/Bound register pairs. There are two sets of these
pairs: One for Instruction and one for Data. In user mode,
when an address is generated, it is compared with the
base / bound register pair. If the address is "out of
bounds", an exception is generated, with the appropriate
ExcCode bits set in the Cause register (Ox2 for Instruc­
tion, Ox3 for Data). An MTCO instruction which changes
any base / bound register must be done in unmapped
space and mapped space cannot be entered for 5
instructions following a change to these registers. In
kernel mode, all addresses undergo a fixed virtual to
physical address translation, bypassing the baselbound
pairs. In kernel mode, the base/bound exception will
never be generated.

e) Cache Algorithm Register:
The LLAddr register in the Orion has been replaced with

• the CAlg register, which defines the Cache Algorithm for
each 512 MB region of the virtual address space. On
reset, it gets initialized to Ox22233333, which is consis­
tent with the Orion's interpretation of the KO bits in its
own CONFIG register. An MTCO instruction should not
change the field corresponding to the address space
currently active. Doing so will cause undefined behavior.

f) Watch Registers:
Two new registers, IWatch and DWatch, greatly facilitate
software debug. By setting the contents of the registers
to the desired watch point and enabling the Watch
Exception, an exception handler can be called every time
the watch point is hit. The exception generated is at the
general exception vector, with ExcCode = Ox23 in the
Cause register. The IW/DW bits in the Cause register are
set to denote whether the exception was caused by a
Data Watch point or Instruction Watch point. The actual
exception will be generated whenever both the ERL &
EXL bits in the STATUS register are cleared. When
DWatch is enabled, the two instructions immediately
following may not be checked for match with the watch
value. When IWatch is enabled, the 5 instructions follow­
ing may not be checked for match with the watch value.

g) CONFIG Register:
The CONFIG register in the R4650 is read-only. The
format has been modified: the IC & DC bits are both now
001, denoting the 8KB:8KB cache sizes. The KO field has
been deleted since this function has been expanded and
is now performed by the CAlg register.

h) Other Registers:
The BadVAddr, EPC & ErrorEPC registers in the Orion
were 64 bits; in the R4650 they are 32 bits wide.

3. Co-Processor 1 (CP1):
This is the Floating point coprocessor on board the R4650.

The single biggest departure from the Orion is that the R4650
supports single precision operations only. The R4650 does
not support double precision operations, which could be
performed by an emulation library, if required. CP1 has a set
of general purpose registers (FGRs) that are 32-bit wide, and
can be accessed as a group of 16 or a group of 32 registers,
by setting the FR bit in the CPO STATUS register to 0 or 1,"
respectively. If STATUS.FR = 0, only even numbered FGRs
can be accessed, and accessing an odd numbered register
generates a trap. Any double precision operation in CP1
causes a trap to occur; thus a trap-based library could be
written to emulate double-precision operations. DMFC1/
DMTC1 instructions will generate a trap.

There are two floating-point execution units in the R4650:
one multiply unit and one unit for add/convert/divide/SQRT.
As a result, multiplies and add/subtracts can be overlapped.

CONCLUSION:
This Application Note discussed the issues involved in

porting assembly code from the R4600 Orion to the R4650.
Some relevant architectural differences were noted, with
implications for software modification.

158

~
HIGH ENDI LOW POWER R4650 WITH APPLICATION
DSP CAPABILITIES NOTE

AN-137

Integrated Device Technology, Inc.

By Robert Napaa

INTRODUCTION
In the next few years, the market share of the portable

systems is expected to increase steadily. Furthermore, users
will demand that the performance of these systems matches
the performance of desktop systems. The portable systems
should be able to manipulate data, voice and video in a
multimedia environment exactly like their desktop counter
parts. Unlike the desktop systems, portable systems face
another set of challenges. First, the power consumption of
these systems is limited by the battery life. This implies thatthe
components used should consume as little power as possible
and have power management capability to reduce the con­
sumed power even more when the system is idle. Secondly,
the portable systems are becoming smaller and smaller,
lighter and lighter. This implies that more functionality is
implemented using a fewer number of devices. The trend is to
implement as much functionality in software as possible to
reduce the need for dedicate hardware solutions.

MULTIMEDIA
The definition of multimedia is somewhat vague. Multime­

dia refers to systems capable of manipulating digital voice,
digital images and digital data such as speech, video and file
transfers. Multimedia systems must be able to manipulate
these applications in either a real time environment or in a play
back environment. In the real time environment such as
cellular telephony, the max delay can be 250 - 350 msec,
because delays longer than that will result in a poor quality of
sound. The voice will be chopped and hard to understand.
Similar constraints apply to real time digital video.

The above applications involve large amounts of data to be
manipulated and stored. Usually the data is compressed to
minimize the storage requirements and to increase the effec­
tive bandwidth of the systems. Similarly, the data could be
encrypted to preserve the content of the information. All these
different techniques are based on various Digital Signal Pro­
cessing (DSP) algorithms. As an example, video images are
compressed using different algorithms. Motion-JPEG, MPEG 1
and MPEG2 are used for motion video, while JPEG is used for
still images. Similarly several algorithms have been devel­
oped for speech compression such as TrueSpeechTM. All
these techniques require a very fast real time DSP engine.

Along with the DSP capability, multimedia systems are
general purpose systems that implement other tasks as well,
such as interfacing to memory, storage devices or other types
of I/O devices. These tasks require the use of a general
purpose microprocessor tailored more towards these usages.

TRADITIONAL SOLUTIONS
Traditional implementations for portable systems separate

the general systems functions from the specific functions such
as DSP or graphics. This separation is accomplished both on
the hardware level and on the software level. On the hardware
level, two or more types of different compute engines are
used. At the center of the design is a general purpose
microprocessor or microcontroller responsible for various
system tasks and overall system management. Other dedi­
cated hardware modules such as DSP microprocessors,
graphic accelerators and custom ASICs are used in the
system. Each of these modules serves a particular function.

On the software level the same separation takes place. The
general purpose tasks are separated from the specific tasks.
Procedure calls link various tasks together. In most instances,
different operating systems (OS) are executing in parallel on
different microprocessors in the system. As an example, a
portable system may be implemented using a real time kernel
for general purpose and system administration while a DSP
specific-OS is used for the DSP tasks.

These traditional solutions are not well positioned to meet
the challenges of the future. Specifically, the power consump­
tion of these systems is not in line with the requirements of true
portable systems. Similarly, the use of multiple devices places
constraints on the form factor, the development time and the
resulting system.

The trend is to merge more and more hardware function­
ality into a smaller number of devices. These devices perform
several independent tasks that once required separate hard­
ware modules. In addition, there is more emphasis on a
software approach. Several independent software modules
are combined together to execute on a single device. The
software solutions are much more flexible than the hardware
ones. Applications can be easily added, modified and custom­
ized at will without the need for a complete redesign of a
hardware module. To be as efficient and as fast as the
hardware modules they are replacing, these combined soft­
ware modules require extensive compute power.

THE IDT ORION™ R4650
The IDT Orion R4650 is the latest member of the

RISControlier™ family from IDT. It is a derivative of the IDT
Orion R4600 and is based on the MIPS architecture. The
Orion R4650 is a highly integrated microprocessor specially
designed for the embedded market. It includes 8 KBytes of
Instruction Cache and 8 KBytes of Data Cache, both of which
are two-way set associative. The Orion R4650 executes at
speeds up to 133 MHz. The internal core of the R4650 is a full
64-bit implementation of the MIPS III Instruction Set Architec-

The lOT logo Is a regislered trademark and RISControlier and Orion are trademarks of Integraled Device Technology. Inc.

159

HIGH ENOl LOW POWER R4650 WITH DSP CAPABILITIES

ture (ISA) with 32 internal general purpose registers. It has a
built-in floating-point accelerator unit. The raw performance of
the R4650 is about 175 Ohrystone MIPS at 133 MHz. With
these capabilities, the R4650 is an excellent general purpose
microprocessor.

Most of the OSP algorithms rely heavily on a fast
Multiply_and_Accumulate operation to perform effectively.
To address the needs for multimedia applications, the Orion
R4650 has a dedicated unit to perform integer
Multiply_And_Accumulate (MAC) operations. This unit per­
forms a multiply and add instruction every two clock cycles.

The Orion R4650 is also designed for low power

APPLICATION NOTE AN-137

systems. It consume less than 1.6 watts peak at 100 MHz,
even less power at lower frequencies. It also incorporates
active power management mode to further reduce the con­
sumed power. This mode is dynamically invoked through the
software. Figure 1 illustrates the simplified block diagram of
the R4650.

Thus, the Orion R4650 offers the best of both worlds. It is
a powerful general purpose compute engine for overall control
and management tasks. It also executes OSP algorithms
effectively, reducing the need for a dedicated OSP micropro­
cessor. Its power consumption is very limited and can be
dynamically adapted to the portable applications.

133 MIPS 64-bit Orion CPU System Control Coprocessor 44MFLOPS Single-Precision FPA

64-bit register file Address Translationl FP register file
Cache Attribute Control

64-bit adder e e Pack/Unpack
C Exception Management C

Load aligner 0 0
0 Functions 0
Q) Q)

FPAdd/Sub/Cvt/ StoreAliqner .S .S
Q3 Q3 Div/Sqrt
Cl. Cl.

Loqic Unit a:: a::

High-Performance FPMultiply
Integer Multiply

t Control Bus T
Data Bus

Instruction Bus

t ~

Instruction Cache
SetA Data Cache

SetA

Instruction Cache
SetB 32-/64-bit Data Cache

(Lockable) Synchronized Set B System Interface (Lockable)

3181 drw01

Figure 1. R4650 Block Diagram

SOFTWARE CONTROL
The R4650 is a true RiSe compute engine, where the

software has control over most functionality of the device. The
software can manipulate the internal instruction and data
cache to optimize the performance of the system. By using the
"CACHE" instructions, the software can control the contents of
any cache line. This fine control over the contents of the
caches enables the as to ensure that the data is always
available for the different tasks it is scheduling.

The contents of the caches can also be locked. This means
that a particular section of the instruction cache will never be
replaced. This ensures that a time sensitive routine such as
the interrupt service routine or a dedicated task such as a OSP
algorithm is always in the cache. This minimizes the time
interval between procedure calls. Similarly, a section of the
data cache also can be locked. This ensures that the data is
available for real time OSP algorithm for example. This mini­
mizes the need to access the main memory and thus makes
the response of the system more predictable, since the
instruction and the data are local to the internal caches.

160

HIGH ENOl LOW POWER R4650 WITH DSP CAPABILITIES APPLICATION NOTE AN-137

• L..I __ A_u_to_m_a_ti_c_h_a_rd_w_a_re_----'

133MHz

R4650

50ns
la
sw
sw
sw
mfcO
mfcO
sw
mfcO
sw

kO,except-regs #fetch address of reg save array
AT R AT*4(kO) #save AT
VO,R.=vO*4~kO) #save reg vO
v1,R V1 *4 kO) #save rei) v1
vO,CU_EP #fetch EPC .
v1,CO SR #fetch status register
vO,R_EPC*4(kO) #save EPC

sw
and
Iw

vO,CO CAUSE #fetch cause register
v1,R_SR*4(kO) #save status register
#now, di~atch service routine
aO,R_AT 4(kO) #save aO
v1 ,vO,EXCMASK#isolate mask . .

130ns

f>W
aO,cause-table(v1/Jget address of Interrupt routine
a1,R A 1 *4(kO) #use delay slot to save register 1
aO - #branch to service routine J

sw k1 ,R_k1 *4(kO) #save k1 register

I Do the real work

Iw
Iw
mtcO
Iw

kO,CO SR*4(AT) # fetch status r~g. contents
vO,R_VO*4(AT) # restore reg. vO"
kO,CO SR # restore the status reg. contents
kO,R_EPC*4(AT)# Get the return address

AT,R_AT*4(AT) : ~~fJ~~1t~~~~r~x~~~Xon
50ns

Iw
eret

-3.0 us

3181 drw02

Figure 2. R4650 Interrupt Response Time
Real-Time Interrupt Response

To combine several independent software modules, such
as a general purpose as and a DSP algorithm, onto a single
execution engine requires extensive use of interrupts. Usu­
ally, the task swapping is triggered by an external event. The
interrupt driven approach is much more efficient and dynamic
than a polled system. For real time applications, such as
multimedia with large amounts of data to be serviced at high
bandwidth, polling might not even be an option.

Usually an interrupt is asserted to request the R4650 to
swap the tasks. To meet the real time requirements of the
application or external event the task swapping must be
accomplished as fast as possible.

The R4650 at 133 MHz can respond to interrupts in less
than 250 nsec. This time includes recognizing the exception,
preserving the state, decoding the exception and restoring the
state at the end of the exception. Sample code to accomplish
these steps is illustrated in Figure 2.

POWER CONSUMPTION
The components used in a portable system must consume

as little power as possible. The R4650 is designed with this
goal in mind. It is available in both 3.3V and 5V versions. The
3.3V has a peak power consumption of about 1.6 watts at 100
MHz. Furthermore, the R4650 uses an advanced power
management scheme to further reduce the average power
consumed. In this mode, the unused sections ofthe device are
powered down. This mode is entered automatically when the
internal logic determines that are no activity involving some
section of the device. Thus average active power consump­
tion in reduced to about 1 watt.

161

Finally, the R4650 provides a "Stand-By" mode, which is
invoked by the software. In this mode, all of the internal clocks
and the pipeline are frozen and the bus activity is stoped. This
mode reduces the consumed power to less than 200 mwatts.

The as can take advantage of all these power saving
features on the R4650 by entering the "Stand-By" mode, when
there is no system activity to reduce the average power
consumption. If on the average, a portable system is active
25% of the time and idle the remaining 75%. The average
power consumed by the R4650 will be in the order of 400
mwatts. It is important to note that the R4650 replaces several
dedicated hardware modules in the system. This means that
the average power consumed is substantially less than the
traditional solutions. In addition, I/O power is alos reduced
because the interface to the system is stopped.

DSP CAPABILITIES
The DSP algorithms are designed to manipulate large

amounts of data effectively. At the heart of any DSP algorithm
is a Multiply_And_Accumulate instruction. The R4650 is de­
signed to execute DSP algorithms efficiently. It has a dedi­
cated integer Multiply_And_Accumulate unit that executes at
133 MHz. A new multiply-accumulate instruction can be
started every two cycles. As a result, the R4650 can perform
66.7 M multiply-accumulate instructions per sec. This integer
DSP performance of the R4650 exceeds the performance of
any other DSP microprocessor available on the market today.
Table 1 illustrates the peak integer DSP performance of
several architectures.

This type of DSP performance allows the R4650 to imp le-

HIGH ENOl LOW POWER R4650 WITH OSP CAPABILITIES

ment all the major OSP algorithms effectively. As an example
the speech compression algorithm TrueSpeechTM from the
OSP Group requires about 10 MIPS or less than 8% of the
R4650 compute power to execute.

TABLE 1. COMPARISON OF VARIOUS DSP
ARCHITECTURES

PRODUCT FIXED POINT MACs
(In Millions)

TI - TMS320C25 12.50

TI - TMS320C50 40

ATT - DSP16 54

MOT- 56K 40

IDT - R4650 66.7

31811biOl

This example illustrates that the R4650 can mix general
purpose tasks along with dedicated OSP algorithms in an
efficient way. This powerful OSP engine reduces the need for
dedicated external OSP microprocessors.

CONCLUSION
The R4650 is a general purpose microprocessor geared

towards the portable applications. It implements a fast multi­
ply-accumulate unit to speed up the different OSP algorithms.
It can mix general purpose control tasks with OSP specific
applications in an efficient way. These capabilities reduce the
need for external dedicated OSP hardware modules. These
features, combined with the average low power consumption,
makes it ideal for portable applications.

APPLICATION NOTE AN-137

162

(;) ADAPTING AN R4600 DESIGN TO APPLICATION

THE R4650 NOTE
AN-139

Integrated Device Technology. Inc.

by Robert Napaa

INTRODUCTION
The IDT R4650 RISC microprocessor is the third genera­

tion 64-bit architecture targeted for a variety of performance­
hungry embedded applications. It is the second derivative of
the Orion family (also referred to as the R4600). The R4650
removes some of the functional units not frequently used in
embedded applications, such as double precision floating
point arithmetic and a TLB. The R4650 adds new features that
are in line with its target applications, such as a dedicated
integer DSP core, cache locking, improved real-time support
and an optional 32-bit bus interface.

The R4650 is bus- and upwardly software compatible with
the Orion family. It maintains the same bus protocol as the
R4600 in both the 64-bit and the 32-bit external bus options.
The external bus protocol refers to the handshaking between
the CPU and the external logic as well as the timing for the
various bus transactions. This insures that ASICs and system
logic designed to interface to the R4600 will work with the
R4650 without modifications. However, the external clock
structure of the R4650 is different from that of the R4600 which
provides greater flexibility to the system designer.

This Application Note explains: 1) the differences the
internal and external clock distribution tree of the R4600 and
the R4650, and 2) how to convert the R4650 clocks into R4600
compatible clocks to interface to existing ASICs and external
logic.

-Cold Reset

Syncln

Masterln

PLL 1/
Clock
Doubler

2F

DIFFERENT CLOCK STRUCTURE

The R4600 and the R4650 have different input and output
clock structures but maintaining the same bus protocol.

R4600 Clocks

The R4600 implements the same clock structure as the first
generation 64-bit devices such as the R4000 and the R4400.
The R4600 uses a single input clock (MasterClock) that is
doubled internally by one PLL to generate the pipeline clock
(PClk). A second PLL doubles MasterClock, then divides it by
a constant number (from 2 to 8 as programmed during reset)
to generate the output clocks (RClock, TClock, MasterOut and
SyncOut). These clocks are used by the system logic to
interface to the R4600 during read and write operations.
Figure 1 illustrates the architecture of the R4600 internal clock
distribution tree. A more detailed explanation of the usage of
these clocks is presented in the "IDT79R4600 Hardware
User's Manual".

R4650 Clocks

The R4650 uses a completely different architecture for the
internal clock distribution tree. The R4650 uses a single input
clock (MasterClock). MasterClock is multiplied internally us­
ing a single PLL by a constant number (from 2 to 8 as
programmed during reset) to generate the pipeline clock

2F

Clock
Dist.
Tree

PClock (2F)

PLL 2/
Clock
Doubler 2F+90

Figure 1. R4600 Clock Distribution Tree and PLLs

The lOT logo Is a registered trademark and RISControlier and R3051 are trademarks of Integrated Device Technology. Inc.
The MIPS logo Is a registered trademark and R3000 Is a trademark of MIPS Computer Systems, Inc.

163

ADAPTING AN R4600 TO THE R4650

(PClk). The R4650 does not generate any output clock. The
MasterClockshould be used as the system control logic clock.
The R4650 guarantees that the interface signals with the
external system logic will be sampled using the rising edge of
MasterClock. Figure 2 illustrates the internal clock tree of the
R4650.

An advantage of the R4650 is that the MasterClock fre­
quency may be kept small. Similarly, the absence of output
clocks from the R4650 reduces the power consumption of the
device. This architecture allows several systems to synchro­
nize using a single input clock at any frequency without being
locked by the clocks provided by the CPU. This is particularly
advantageous for backplane applications where the input
clock is provided from the backplane to several plugged-in
cards.

-Cold Reset

Mode Bits
Masterln

nF

APPLICATION NOTE AN-139

GENERATING R4600-COMPATIBLE CLOCKS

Systems using the R4650 can reuse the logic and ASICs
already developed to work with the R4600. This mechanism
requires the generation of MasterOut, SyncOut, RClock and
TClock, or alternatively, a subset of these according to the
system requirements. The functionality of the different clocks
is explained more in detail in the "IDT79R4600 Hardware
User's Manual".

The clock distribution tree has to be implemented at the
input of the R4650. The R4600 clock generation is illustrated
in Figure 3. In this case, a buffer is used to delay the input clock
to the R4650. The output of the buffer is equivalent to TClock,
MasterOut and SyncOut. The input of the buffer is equivalent
to RClock. For a tight delay between RClock and TClock, it is
better to use a buffer that has a very narrow window for the min
and the max input to output delays. An example of such a clock
buffer is the Motorola MC1 OH645 buffer, which guarantees a
single nanosec difference between the min and the max
delays.

Clock
Dist.
Tree

PClock (nF)

ModeClock

PLL2/
Clock

Multiplier nF+90

PLLOff

Figure 2. R4650 Clock Distribution Tree and PLL

164

ADAPTING AN R4600 TO THE R4650

RClock only if needed
by the system

RClock

TClock

SysAD J.t----+--c~ SysAD

External Agent

Figure 3. Generating R4600-Compatible Clocks

APPLICATION NOTE AN-139

It is also important to note that in systems using only the
R4650, the SyncOutto Syncln path is irrelevant, since neither
the R4650 nor the system logic use these clocks. The
MasterOut could be relevant, depending on the system archi­
tecture.

DESIGNING A SYSTEM THAT SUPPORTS BOTH CPUs
It is possible to design a single system to support either ~he

R4600 orthe R4650 on a single PCB board. The same design
allows using the R4600 for high performance applications,
while using the R4650 to serve the medium performance
segment of the market. This approach preserves the invest­
ment in the ASIC development, the system logic, the system

OE------~----~

R4600 R4650

RClock I----(.J

....-I----O~ Syncln TClock 1------+---__ ..,

MasterOut ~----+------H~]

SyncOut ~----~-----r-+-(1

ModeClock~~~~----~-+-+-~

SysAD~-+-~--r-r-~~

~---c~ MasterClock

Board Interface

Figure 4. Single System With R4600 and R4650

165

MasterClock

ADAPTING AN R4600 TO THE R4650

software and so on. Figure 4 illustrates the block diagram for
a system that can support both CPUs on the single PCB.

In this implementation, the clock from the external oscilla­
tor, MasterClock, is fed as the input clock to the R4600. It is
also fed to the clock distribution circuitry that generates
RClock, TClock, MasterOut and SyncOut to be used when the
R4650 is used. It is importantto note that only one CPU should
be plugged-in at any onetime. The clock distribution circuitry
is tri-statable when the R4600 is used, since it produces these
clocks.

The SyncOut clock is routed on the PCB and returned as
Syncln. The Syncln clock is fed to the R4600 to align the
internal clocks used to sample the system interface, with the
RClock and TClock seen by the system logic. In the case of the
R4650 the Syncln clock is used as the input MasterClock to
the CPU. This ensures that the input clock to the R4650 is
aligned to the system clocks (RClock and TClock) that are
generated by the clock distribution circuitry.

APPLICATION NOTE AN-139

THE 79S461

The 79S461 is a small module that supports both the
R4600 and the R4650 on a single PCB. It plugs into the PGA
socket of the R4600 on any design. It allows the system
designer to evaluate the performance of either CPU in the
system without modifications to the existing design. Figure 5
illustrates the block diagram of the 79S461. In addition, the
schematics of the S461 board are attached to the end of this
App Note to provide a better understanding in converting from
one clock architecture to the other.

CONCLUSION
It is relatively easy to adapt a design that is based on the

R4600 to support the R4650 on a single PCB. This approach
offers a great flexibility in selecting the appropriate CPU forthe
level of performance needed without redesigning the system.
The same design allows using the R4600 for high perfor­
mance applications, while using the R4650 to serve the
medium performance segment of the market.

R4650
PQFP

Clock Clocks

PGA Logic r-- ModeClock
R4600 ~ Conve~sion .,

Clocks

ModeClockl---------+ ... •

r- SysAD

R4650
PGA

"-f-r- Clocks

'-___ S_y_S_A_D..!""--------,G ~ ModeClock

- SysAD

Figure 5. 79S461 Block Diagram

166

..
en

P3-MODULE PGA PLUG

,----_____ SYNC-%N-UOOpwa

,--_____ ... SYNC_OUT_4600PLUG

o.m."~: n .. _~."'= R8:LEASR.-N RELEASE
WRRDY -...N WRRDY

RDRDY -...N RDRDY
aXTRQST -...N II:XTRQST -_ .. _._._. __ 0;-_:::.:.:· :5"","".

600PLU LOCKl.
TCt.QCKO-4600PLU LOCKO

600PLU CLOCK1
RCLOCKO-"'600PLU CLOCKO

INTEGRATED DEVICE TECHNOLOGY,

179 PGA R4600 PLUG

CR 5461 1.0

~TB. 3-1-1995_10:57

» g
~
Z
c;)

»
z
:rJ

"" en o o
~ o
~
::J:
m
:rJ

"" en
U1 o

»
"C
"C
r
(;

~ o
z
z
~
m
»
~
w co

....
Q)
QI

~Ircc
.,

f~o ;
F~ 004 Ft .
~~,

-

P3-MODULE-PGA & PQFP-SOCKETS

-4-
zzzizz~ gg: gg g 8 ~~~:~~

L...:..:='--........ 't't~~;"'" 'n "j!!111 ~Ir n , ~. "

~17' L!r!1

~~~~~ 

itff,F~~ffrrf~~"f .~ :11:1 ,I~~! I~~~i~~~tl 

D 

S¥!':J\.OCO ce 

n 

~ssp 

--

toltlllllflHllflltnlllillt!ltlltl) 
0(0(0<0(0(0(0(0(0(0(0(0( 
rnttl(llfn~lJltIJ~Hlli/HIlQ! »»»»))» 
Otlooccoccccc 

~1\\1\~~~~~ 
Irnnnnrr 

1llll!lllllilHIl(/l 
»»)) 
~,::n:l'::H':lO 

RCLOCk1-660QPLUG 

TCLOCKO-4600PLUG 

TCLOCK1_4600PLUG 

F 

I 
ILl 
:Er'{B 

INTEGRATED DEVICE TECHNOLOGY, 

R4650 SOCKETS 

;;;IDWGNO. 5461 

DATRI 3-1-1995 J..O: 58 

1.0 

> o 
> 
"tI 
::! z 
G) 

> 
Z 
:tI 
"'" Q) 
o 
o 

d 
-f 
:::r 
m 
:tI 
"'" Q) 
IJ'I 
o 

> 
"tI 
"tI 
r o 
~ 
i5 
z 
z 
~ m 
> 
~ 
w 
CO 



P3-MODULE-CLOCK-DISTRIBUTION & BUFFERING 

.-------------------------------------------------.------11aMASnR-CLOCK-'N-4600PLUG 

a1~ays 5v supp1y 

~---------------

1 ' a RCLOCKO-4600PLUG 

'--------tlil RCLOCK1-4600PLUG 

1-'---------_IIa TCLOCKO-4600PLUG 

OND OND I L _________ L ______ IJ '--------tl. TCLOCK1-4600PLUG 

> 

~ 
to 

~I ..i. VII I ~~ I ~~ 
ON. F 0 F~ 0 

INTEGRATED DEVICE TECHNOLOGY, INC. 

R46S0 CLOCK DISTRIBUTION 

RN 5461 1.0 

DATE, 3-1.-1995_10: 59 

l> 
C 
l> 
'tl 
-i 
Z 
G') 

l> 
Z 
:II 
~ en 
o 
o 
-i o 
-i 
:I: 
m 
:II 
~ 
en 
U1 
o 

> 
'tl 
'tl 
r-
(1 

~ 
o 
z 
z 
S 
m 
> 
!: 
(,J 
to 



~ o 

J5 

r:L 
I=t= 

> 
.::I:; ~. 

"

0 

~U 

~ 
1 --I I I . vee 

poT pI pI F.I -

P3_MODULE CPU BYPASS CAPACITORS 

-- ~C. --T -T --r -T --1--r --1- -1--r -r -I I -r --r- -1--
• FI 1 1 1 J 1 J 1 J J l~a 1~8 1 J J 

· hhI hhhhI II 
GND. 1:8 J:C 1 J:~ 1:~ 1:~ 1:~.1 FI J 

~
ee 

RP1 S F .... ULT...,N 

4.7K(R9) " :lOrN 

., .J'TMS 

• JTDO 

.. JTDX 

"IIIILL,L 
. I I 1 pI pI ~8 1 ~8 J ~8 

INTEGRATED DEVICE TECHNOLOGY, 

CAPACITORS 

~; I DWG NO. S461 

3-1-1.995 10,42 1 SHEET 4 

I 
REV 

1..0 

OF 4 

> g 
~ 
Z 
r;) 

> 
Z 
:D 
~ en 
g 
d 
-I 
:t 
m 
:D 
~ en 
U'I 
o 

> 
"V 
"V 
I"'" o 
~ 
o 
z 
z 
o 
-I 
m 
> 
~ 
to) 
CD 



(~5 DESIGN OF A RISC-BASED PC Conference Paper 
CP-11 

Integrated Device Technology, Inc. 

By Phil Bourekas, Integrated Device Technology, Inc. 
and Blaise Fanning, Deskstation Technology, Inc. 

INTRODUCTION 
Modern personal computers can take advantage of the 

processing power inherent in today's high-performance mi­
croprocessors. The emergence of WindowsTM NT as a 3rd 
generation operating system for PCs enables the power user 
to access a wide variety of sophisticated applications simulta­
neously, and provides a user-friendly windowing interface. 
This combination means that the modern PC needs to utilize 
the highest-performance processors available, and take ad­
vantage of modern memory system techniques, to offer the 
performance required for this software environment. 

On the other hand, the market place desires that these PCs 
remain low cost. The market has built an entire infra-structure 
to support low-cost PCs, including system chip-sets, add-in 
cards, and peripherals. 

This paper describes the implementation of a high-perfor­
mance, low-cost RISC-based PC. The system is implemented 
using standard PC-style components and techniques, but 
uses the high-performance R4000PC RISC microprocessor 
to achieve ultra-high performance. The resulting system 
achieves the performance desirable in a Windows NT envi­
ronment, while meeting the cost constraints of the PC market­
place. 

PROJECT GOALS 
The goals for the original DeskStation PC were to imple-

I 
~ 

Data 0 OJ 
0 

Cache 
(1j 

ClJ l-
0 

+ ~ 

Store Buffer/Alianer I 
r "'l I 

I Write Buffer 1 
~ I 

DBus I 

t rl PCache 

FP Register File Control 

FP Pipeline/Bypass 

FP Status Register 

7l Pipeline 
FP Multiply r-- Control 

FP Divide ~ 
FP Add, Convert, 

Square Root 

ment a high-performance EISA-based PC, at low system cost. 
Along with these primary goals, a few secondary goals helped 
to shape the actual implementation. 
• Maintain PC flexibility. EISA allows a wide variety of add-in 

functions, including low-cost ISA cards through high-perfor­
mance EISA master cards. 

• Design upgradeability. The PC market place both requires 
and allows that designs be periodically modified to address 
different price-performance points. Thus, the initial imple­
mentation was designed to insure that these degrees of 
freedom were maintained. 

• Ease of design. Again, given the rapid rate of advancement 
of the PC marketplace, it made sense to target an imple­
mentation that could rapidly be brought to market. In addi­
tion, ease of design typically reflects on system cost, as 
more complex designs typically require more expensive 
system logic to implement. 

Thus, the implementation chose the following: 
• Windows NT as the operating system. This brings PC 

flexibility and compatibility, while offering a robust software 
environment for sophisticated applications. 

• The R4000 RISC microprocessor family. This 3rd genera­
tion RISC processor offers ultra-high performance, a pain­
less upgrade path in the future, and compatibility with 
Windows NT. Figure 1 shows a block diagram of the 
R4400PC microprocessor. 

ClJ 

I OJ "0 
(1j Instruction 0 

I- 0 

Cache ClJ 
0 

t • IBus I 
~ 

.----

t SysAD 

System r- T + Control 
1 CPO Reaisters 1 
I ITLB I 

JTLB 
OVA IVA 

I Address TIn It 1 
I -, PC Inr.n''!mpntAr 1 

t .. 
Reai~tAr FilA 

All] 
Load Aligner/ 
Store Drive 

Integer Multiply/ 
Divide MDHI, MDLO 2922 drw 01 

Figure 1. R4000PC Block Diagram 
Orion Is a trademar1< and the lOT logo Is a registered trademar1< of Integrated Device Technology. Inc. 
WindowsNT Is a trademar1< of Microsoft Corp. 
1486 Is a trademar1< of Intel Corp. 

171 



DESIGN OF A RISC-BASED PC 

The R4000 features a high-speed pipeline (100 MHz or 
greater), while preserving the ability to keep the system bus 
at 50MHz or less. High-speed execution is supported by 
large on-chip caches: 16KB each of instruction and data 
cache for the R4400. Further, the processor is multiply 
sourced, and readily available. 
Although the R4000 family offers a device with a dedicated 
secondary cache port (the R4000SC), this system is built 
around the lower cost R4000PC. The processor performance 
is aided by the use of a discretely-built secondary cache 
which resides on the main memory bus, analogous to the 
secondary caches constructed for i486™ processors. 

• A traditional PC system architecture, to take advantage of 
the low-cost and ease of design infrastructure of the PC 
marketplace. Thus, the design targeted the use of a stan­
dard PC chip set, and standard PC peripherals and add-in 
cards. 
Since the system design target was for an EISA PC, the Opti 
EISA chipset was selected to implement the main memory 
and I/O systems. Thus, the primary design burden was to 
interface between the R4000PC/R4400PC, and the Opti 
EISA chip set. 

INITIAL DESIGN 
In order to minimize time-to-market, and to prove that the 

high-performance inherent in the R4000 architecture could be 
readily obtained from a PC system architecture, the initial 
design utilized discrete parts to interface between the R4000PC 
and the Opti PC chip set. 

The design uses standard PALs, data buffers, and SRAMs 
to construct the processor secondary cache, and to provide 
the interface to the Opti chip set. Although the Opti chip set 
does feature secondary cache control for an i486 processor, 
the design chose to implement a higher bandwidth secondary 
cache for the R4000; thus, the secondary cache controller in 
the Opti chip set is not utilized. Instead, a discrete secondary 
cache controller, using PALs to control standard 32K x 8 
SRAMs, is implemented. 

CONFERENCE PAPER CP-11 

The design was partitioned in such a way to to be easily 
modified to different chip sets, cache algorithms, and to 
simplify debug. In addition, the overall design can be readily 
cost reduced, by re-implementing the control and/or data path 
functions into low-cost, low-complexity ASIC devices. 

System Overview 
The system overview is shown in figure 2 below. The 

system functions are broken down as follows: 
• R4000PC and Secondary Cache 
• Opti EISA chip set and interface. 
• Main memory and EISA expansion bus. 

R4000PC and Secondary Cache 
The secondary cache on the CPU main memory bus is 

designed to provide a balance between ease of design/low 
cost and high-performance, high-bandwidth. 

In order to achieve high-bandwidth, the cache implements 
a 128-bit wide memory array. Thus, a single cache read can 
provide four 32-bit words, which are returned to the R4000PC 
as two 64-bit pieces of data. The two 64-bit datums are 
available in adjacent cycles, minimizing processor latency on 
cache hits. 

In order to minimize the cost and complexity of the second­
ary cache, a few tradeoffs were made: 
• The cache is implemented as write-through, rather than 

write-back cache. This greatly simplifies both the control 
and data path logic. The cache logic is further simplified by 
the R4000 "write-behind" operation; that is, on a cache miss 
that requires a memory write back, the cache miss read is 
processed prior to the cache line writeback; thus, memory 
write performance is not a first order control of system and 
processor performance. 

• The cache contains 7 tag bits + 1 valid bit. Thus, the total 
amount of main memory is relatively limited (relative to the 
64GB address space of the R4000). Nonetheless, the 
cache architecture allows a main memory of 64MB, which 
is much larger than what is found in non-server PC's. 

Control Control 
Logic 

Main 
Memory 

I Opti 
R4000 EISA 

PC ChipSet 

I 
Address EISA 

and 
Secondary Data Data 

Cache Path 
(SRAMs) Buffers 

2922 drw02 

Figure 2. System Block Diagram 

172 



DESIGN OF A RISC-BASED PC 

• The cache is implemented using 25ns 32K x 8 SRAM, with 
a separate but similar SRAM for the cache tag. Thus, 
relatively modest speed SRAMs are used, and no specialty 
TAG rams are required. 
The cache glue logic is implemented using standard PALs 

and data buffer chips. The data buffers sequence the data 

TABLE 1. SYSTEM CACHE CONTROL SIGNALS 
Host Buffer Control Latch Control 

HdClk(1:0) AClkEn 

HWW(1:0) AClkEn 

HRD DClkEn 

PDClk 

i486 Host Bus Interface 
The other primary design consideration had to do with 

implementing a reasonable i486 host bus interface between 
the R4000PC/secondary cache subsystem, and the Opti chip 
set. 

Fortunately, the relatively large cache resources available 
to the processor (both on-chip and in the secondary cache) 
serve to largely decouple system performance from the main 
memory bandwidth. Thus, a relatively simple host bus inter­
face could be constructed, minimizing both design time and 
system cost. The host bus interface in the initial system 
requires 8 buffer devices. 

The main memory is directly controlled by the Opti chip set, 
and provides a relatively modest 40MB/sec of peak band­
width. The main memory system is only 32-bit wide DRAM; 
thus, R4000 cache line refill requires four page mode ac­
cesses. Similarly, the memory system does not support a 
burst write protocol; cache line write back is processed as four 
separate write transactions. 

TABLE 2. HOST BUS INTERFACE SIGNALS 
Address Control Arbitration/Cycle 

Control 

HA(3:2) HClk Rdy 

BE(3:0) HMem BRdy 

HWr Hold 

HData HoldA 

HLock HAdS 

BLast 

BusReq 

CONFERENCE PAPER CP-11 

between the R4000PC, its cache, and the host bus interface 
to the Opti chipset. 

Table 1 shows the Cache Logic control signals, broken 
down by group. As can be seen from this relatively short table, 
this cache control logic can easily be replaced by a low-cost 
ASIC device, to further reduce cost. 

Cache Control Tag Bits 

Cache En SADT(9:0) 

CBusEn Tag(9:0) 

CBOWE TagOE 

CB1WE TagWE 

CBOEn Valid 

CB1En 

CBOOE 

CB10E 

CWriteO 

CWrite1 

The i486 host bus interface contains 32 address bits, 32 data 
bits, and 10 control bits. In this system, it is derived from the 
R4000PC interface, which uses a 64-bit data bus which is time 
multiplexed to include 36 address bits, and which uses 18 bits 
of control data (actually, the R4000 uses a bi-directional 
command bus, and other control signals to coordinate trans­
fers on the bi-directional control and data busses). 

Table 2 shows the signals derived from the host bus control 
logic interface. Again, the number and types of signals are 
small and simple enough to be easily integrated into the same 
ASIC which implements the cache control. 

The 32-bit host bus address is derived from the processor 
36-bit address by registering the SysAD bus from the R4000PC. 
Since the i486 bus is only 32-bits, the upper four address bits 
from the processor are dropped. 

The host bus data interface is constructed from a pair of 32-
bit data transceivers. By sequencing the output enables of the 
transceivers, the 32-bits host bus is created by effectively 
multiplexing the halves of the 64-bit processor bus. Since a 

173 



DESIGN OF A RISC-BASED PC 

cache line write back involves two 64-bit chunks, and since a 
cache line read involves four 32-bit datums, the control logic 
insures proper data staging occurs between the R4000 SysAD 
bus and the host bus 32-bit data bus. 

The control bus of the host bus is constructed by simply 
converting the various processor requests into the appropri­
ate sequences of host bus requests. This conversion process 
obviously also utilizes the datastages, so atomic R4000PC 
requests can be broken down into the appropriate series of 
host bus transfers, and the data kept consistently timed with 
the request. 

EISA Bus Interface 
The EISA bus interface requires no modification from the 

Opti design recommendations. EISA is chosen because it 
provides fairly good 110 performance (compatible with a high­
performance RISC processor), yet also allows low-cost ISA 
add-in cards to be used. 

The system relies on the EISA bus to provide functions 
such as networking and SCSI. By relegating these to the 
system bus, maximum flexibility but minimal cost is obtained. 

SOFTWARE CONSIDERATIONS 
Obviously, the introduction of the R4000 as the system 

microprocessor does change the software requirements from 
those of a typical PC to that of an ARC (Advanced RISC 
Computing) system. Fortunately, Windows NT is architected 
to allow this kind of flexibility. 

Windows NT directly supports the R4000 processor. That 
is, Windows NT runs native on the R4000. In addition to 
allowing new R4000 applications to be run, Windows NT 
allows existing 16-bit DOS and Windows applications to be 
run on the ARC system. Thus, Windows NT insures compat­
ibility with older software. 

Further, Windows NT allows a wide variety of underlying 
hardware implementations to be built, by segregating system 
specific functionality into a lower-level of software, called the 
Hardware Abstraction Layer (HAL). HAL code is responsible 
for machine management functions, such as cache manage­
ment. 

Thus, the task of software development for the Deskstation 
ARC system was minimized to providing a layer for Windows 
NT. 

CONFERENCE PAPER CP-11 

ARCS BIOS Firmware 
The BIOS firmware is responsible for certain basic aspects 

of system software, including configuration management, OS 
installation support, and providing a uniform boot environment 
for Windows NT. 

The BIOS firmware provides the low-level system 110 
functions and the processor boot-up software. The firmware 
can be shadowed in the main memory, to provide higher 
performance than from EPROM accesses. The BIOS re­
quired approximately 40K lines of source code, and is approxi­
mately 200KB of compiled binary. 

Hardware Abstraction Layer 
The hardware abstraction layer then resides on the hard 

disk, along with the operating system itself. Whereas the BIOS 
provides very-low-level, almost OS independent system func­
tions, the HAL is designed to provide the various system 
dependent runtime support functions for Windows NT. 

The HAL was developed beginning with the HAL kit pro­
vided by Microsoft, and ported to the specifics required by the 
underlying hardware implementation. 

SUMMARY 
The combination ofthe R4000 microprocessor, the Windows 

NT operating system, a standard PC chip set from Opti, and 
some clever design work using low-cost discrete components 
enabled Deskstation to implement an extremely high-per­
formance PC without incurring substantial system cost. 

The system retains maximal flexibility, based on its design 
objectives. Future options include: 
• Higher frequency versions of the R4000 family. Higher 

frequency parts do not necessarily raise the bus interface 
frequency, thus raising system performance without raising 
system cost. 

• Lower cost versions of the R4000 family, including the 
forthcoming lOT Orion™. 

• Other PC standard architectures. Once the problem of 
mating the R4000 to an i486 host bus interface is solved, 
other standard architectures, including ISA and various 
Local Bus standards, can be easily implemented. 

• Cost reduction via "ASIC-ization." 
• Performance improvement via cache expansion. 

Thus, this system represents a technology baseline for the 
rapid adoption of lOT/MIPS RISC into the Windows NT 
desktop marketplace. 

This paper was presented at the 1993 Windows Hardware Engineering 
Conference in Santa Clara, California. 

174 



(;)® THE lOT R4600 POWERS CONFERENCE 
INTER-NETWORKING APPLICATIONS PAPER 

CP-14 

Integrated Device Technology, Inc. 

. . 
By Philip Bourekas 

Manager, RISe Product Definition & Applications Engineering, Integrated Device Technology, Inc. 

INTRODUCTION 
In recent times, there has been significant expansion in the 

number of applications using embedded RISC processors. 
Inter-networking equipment is one of the most visible applica­
tions to embrace the price-performance available from em­
bedded RISC processors. 

The lOT R4600 (Orion) dramatically increases the perfor­
mance available to this application class, by tripling (or more) 
the performance available to the embedded system designer, 
while achieving the cost and power goals of an embedded 
system. To fully appreciate what the Orion brings to this 
application, one must look at what the application requires, 
and then examine how the Orion addresses those needs. 

INTER-NETWORKING SYSTEMS 
Inter-networking applications emphasize different archi­

tectural capabilities than do laser printer or desktop computing 
applications. As this market continues to advance, it is ex­
pected to place higher demands on embedded processors, as 
database sizes increase, transmission rates go up, and addi­
tional protocols and media become supported. 

It is clear that there are a few processor capabilities that will 
continue to be valued most highly: 
• Packet movement will emphasize the available band­

width of the processor. What will be especially important 
is the ability of the processor to move the kind of data 
found in the packet header into and out of the CPU, for 
packet processing. In some systems, it may be important 
for the processor to perform the movement of the entire 
packet as well, although this is often done by OMA. 

• Packet processing, including routing and protocol conver­
sion, will continue to require rapid completion of relatively 
simple calculations. The single cycle nature of RISC 
boolean, ALU, and load/store operations serve this need 
well; higher frequencies and larger caches enable more 
of the peak performance to be actually achieved. 

• Interrupt response and task switching times will be key 
metrics for the processor. Relatively low interrupt and 
task management overhead allows more of the processor 
performance to be directed to the packet processing 
operation, rather than processor state management. 
The Orion speeds each of these key metrics, resulting in 

more value (more packets/second and/or more channels) 
from the resulting system. 

ORION OVERVIEW 
The lOT R4600, also well known as the Orion, is the latest 

and highest-performance member of the lOT RISController 
family. 

The Orion is derived from the R4000 architecture, and 
shares many traits in common with the original R4000 de­
vices. These traits include: 64-bit architecture, high-speed 
pipeline, and large on-chip caches. However, the Orion repre­
sents an independent design effort, targeting lower cost, and 
lower power consumption, than the R4400. 

Key attributes of the Orion include: 
• 64-bit integer CPU 
• 64-bit FPA 
• 16kB, 2-set associative instruction cache 
• 16kB, 2-set associative data cache. The data cache can 

be managed with a mix of write back and write through 
protocols 

• 5 stage traditional RISC pipeline operating currently at 
133M Hz, scalable to 200MHz. 

• 64-bit burst interface bus 
• Flexbus™ allows the bus interface to be run at 1/2 to 1/8 

the pipeline clock rate. 
Figure 1 gives a block diagram representation of the Orion. 

ORION'S PACKET MOVEMENT CAPABILITY 
Although RISC processors are typically known for their 

computational performance, inter-networking performance is 
typically more dependent on the processor's ability to move 
data rapidly through the system. 

Note that what is required here is more than just an efficient 
block copy: in processing the packet header information, the 
processor must be able to rapidly process unaligned Big­
Endian data, and must be able to efficiently handle data 
structure accesses. These areas are key strengths of the lOT 
Orion. 

Most systems utilize external OMA engines to actually 
move the packet data between channels. However, other 
systems may employ the processor for this task, under soft­
ware control. 

If the system approach is to utilize external OMA, then the 
processor must be able to rapidly process the packet header 
information, perform the routing, and then perform the DMA 
channel pointer management. In addition, the processor needs 
to allow the external OMA to have significant amounts of 
bandwidth left for its data movement. 

To support these goals, the Orion implements high-band­
width, both internally and on the bus, to allow the packet 
header information to be moved rapidly; large on-chip caches 
to speed the routing (including a large data cache, which can 
contain significant amounts of routing information), and a 
high-speed pipeline. In addition, the large caches (which can 
be managed using a writeback protocol) insure that the 

The lOT logo is a registered trademark and FLEXbus. R3041. R3051. R3052. R3081. R3721. R4600. Orion. and RISControlier are trademarks of Integrated Device Technology. Inc. 

175 



THE lOT R4600 POWERS 
INTER-NETWORKING APPLICATIONS 

processor operates most frequently out of the on-chip memory, 
leaving significant amounts of bandwidth available for exter­
naiDMA. 

In the case of software controlled data movement, the 
processor needs the attributes described above, but also 
needs to be able to move data in efficient bursts. To support 
this need, the Orion implements high-bandwidth (described 
below), and a set of cache operations to allow the programmer 
to explicitly access this bandwidth (useful if the data move­
ment is designed to flow-through the CPU). Alternately, the 
system can utilize a fly-by technique; when the processor 
reads data from a certain address range, external system 
logic can sample the data simultaneous with the CPU. This 
avoids the need for the processor to later utilize write cycles, 
at the cost of some system logic. For these systems, the large 

CONFERENCE PAPER CP-14 

address space of the Orion enables "aliasing" of system 
memory, simplifying the design of these fly-by techniques. 

The Orion strategy for bandwidth is to implement high­
bandwidth between the on-chip register file/functional units 
and the on-chip caches, and separately to implement high­
bandwidth between the on-chip caches and the external main 
memory. Ratherthan consume valuable chip real estate (and 
slow context switch performance) with a windowing register 
file, the MIPS architecture uses a large orthogonal registerfile, 
with the cache feeding the register file at over 1 G8/second. In 
addition, the cache is able to hold relatively complex data 
structures (as is found in complex systems programmed in 
high-level languages), rather than being limited to "word" and 
sub-word data (as is typically found in a register windowing 
system). 

Data Tag A 

Data SetA 
DTLB Physical 

Instruction Set A 

I Store Buffer Data Tag B 

I r A r- .-
"- I SysAD "-

t I I I 
t Instruction Select 

Write Buffer Address Buffer 
Instruction Register 

Read Buffer Instruction Tag A J 

ITLB Physical 
Data Set B Instruction Set B 

Instruction Tag B 

DBus 
IBus 

Control I I 

+ Tag AuxTag • Floating-point :;- Load Aligner 
Register File 

CD 
Joint TLB 10 Integer Register File 

~ Unpacker/Packer 
() 

tVA 
0 Integer/Address Adder 

e a 
'E Q. Data TLB Virtual 0 

Floating-point () Coprocessor 0 Add/Sub/Cvt!Div/Sqrt 'E Shifter/Store Aligner 
Integer Divide ·0 

c.. 
OJ Logic Unit c 
.~ 

0 PC Incrementer u: 
FloatinK,1pointllnteger 

I- System/Memory Branch Adder ultiply 
Control 

Instruction TLB Virtual 
IVA 

Phase Lock Loop, Clocks 
Program Counter 

Figure 1. lOT Orion Block Diagram 
3106 drw01 

176 



THE lOT R4600 POWERS 
INTER-NETWORKING APPLICATIONS 

In addition to raw bandwidth from the data cache, the Orion 
implements other techniques to speed packet movement 
(especially for key header and routing data) in an inter­
networking system. 

Big- or little- endian memory system support. The Orion 
directly implements big- or little- end ian systems, as well as 
systems of mixed byte ordering. Most inter-networking appli­
cations will implement Orion using a Big-Endian system, 
which is compatible with the byte-ordering conventions of 
networking protocols. 

Unaligned datum support. Since packet data is not guaran­
teed to be aligned to word addresses, unaligned data support 
is important in achieving the desired bandwidth. The Orion 
implements the MIPS "Ioad-word-Ieftlright" instructions, and 
complementary store instructions. These instructions are 
designed to support 32-bit 64-bit datums which may not be 
aligned on the proper modulo byte address. These instruc­
tions eliminate the exception/emulation method required in 
other processors, and also eliminate the need to process the 
unaligned word through a series of byte-load/shiftlOR opera­
tions. Instead, a single pair of instructions can be used to load 
or store a 32- (or 64-) bit quantity between a single CPU 
register and the memory system. This mechanism allows 
these "split" datums to be loaded in just 2 clock cycles. 

These operations can be invoked either through assembly 
level programming or from C. For example, the Gnu C com­
piler uses unaligned operations to move data marked with the 
"packed" attribute. 

Ultra-high on-chip bandwidth. Inter-networking requires 
high data-bandwidth, so that packet data can be brought 
rapidly in and out of the processor registers. To support this 
need, the Orion implements large on-chip caches. With dual 
2-set associative, 16kB caches on chip, the Orion delivers 
average performance very close to its 133-MI PS peak perfor­
mance, by allowing most instruction accesses to be served 
from the on-chip cache. In addition, when packet data is 
accessed cache ably, data can be brought into the cache at 
over 500MB/sec, and subsequent cached accesses to addi­
tional portions of the packet will occur at over 1 GB/second. 
Concurrently, instruction fetch bandwidth exceeds 500MB/s. 

Many embedded processors provide special mechanisms 
for high data bandwidth. However, the effectiveness of these 
mechanisms is dramatically reduced if the execution engine is 
"starved" of key instruction and data information by insufficient 
on-chip caches. The Orion, on the other hand, provides large 
on-chip caches, to keep the engine running at full speed. 

There is yet another advantage from these large caches; 
systems which employ external DMA engines to move packet 
data through the memory and I/O systems will find more of the 
bus bandwidth available to them. Since the CPU will be able 
to execute for long periods of time from the internal caches, 
and since the data cache can be managed with write-back 
protocols, the processor will require the bus only infrequently. 

Early restart of execution. To facilitate real-time processing 
of packet data, the Orion restarts execution as soon as the 
requested datum is brought on-chip from memory or I/O 
devices, even if additional data is being brought in to fill a 
cache line. The rest of the cache line (which usually contains 

CONFERENCE PAPER CP-14 

additional useful packet data) fills the on-chip cache simulta­
neous with the processing of the first datum. This parallelism 
allows the bus bandwidth to proceed in parallel with the 
execution bandwidth. With instruction cache fetches occur­
ring at over 500MB/sec, and data accesses at greater than 
1000MB/sec, and the bus moving data at 500MB/sec, the 
Orion represents over 2GBytes/sec of packet movement 
horsepower. 

64-bit datum support. Bulk data movement, such as fetch­
ing of packet headers, or block copies, can take advantage of 
the 64-bit operations of the Orion. This elevates peak band­
width, and allows more data to be processed in a single 
operation. Processing power is also increased, since more of 
the packet header or data is processed in a single operation. 

Varying cache management protocols. Inter-networking 
applications manage diverse types of data, including rela­
tively "static" data such as the program stack, task queue, and 
routing table entries, as well as the more "dynamic" packet 
data. To speed both types of data, the on-chip caches support 
both write-through and write-back operation. In an inter­
networking application, general processing data (such as the 
runtime stack) benefit from the cache write-back algorithm, 
while packet data, which may later be DMA'd out on another 
network channel, are managed using the write-through proto­
col to insure cache and memory coherency. The on-chip 
write-buffer allows the execution core to continue processing 
additional data, as write-through or write-back data gets 
processed out to the memory system. The addressing modes 
of the Orion allow subfields from data structures to be rapidly 
accessed, using base-address plus sub-field offset address­
ing directly in the load or store instruction (and thus eliminating 
explicit address calculation instructions). 

The varying write protocols, coupled with the large address 
space, also enable the system designerto implement "aliased" 
physical memory. Eitherthroughthe use of the on-chip MMU, 
or through address decode logic, multiple virtual address 
spaces can be mapped to a single physical address space. By 
assigning differing write protocols to the various virtual spaces, 
the programmer can then choose to reference data as 
uncacheable, cacheable with writeback, or cacheable with 
write-through, merely by the choice of the virtual address 
used. When the MMU is used, theprogrammercanfurtheruse 
the multi-tasking capability of the MMU to insure that code is 
"well-behaved", by limiting access to certain virtual address 
regions to certain tasks. 

Explicit cache management support. To allow the system 
to directly control the available bandwidth, Orion provides a 
set of "cache operations". Cache operations can be used to 
pre-load the caches with desired data and/or instructions, and 
can also be used to initiate the write-back of data to insure 
cache and memory coherency before DMA activity occurs. 

The Orion cache ops allow the assembly programmer to 
explicitly manage the bandwidth between the cache and the 
external main memory; they can be used to initiate burst reads 
and/or writes of main memory, for example. This facility, 
coupled with the fact that the Orion executes multiple instruc­
tions per bus clock cycle, enables the system to achieve 
average bandwidth close to the peak bandwidth of the inter­
face. 

177 



THE lOT R4600 POWERS 
INTER-NETWORKING APPLICATIONS 

PACKET PROCESSING 
The Orion really shines in packet processing. The Orion 

features 133-MIPS execution, which is typically sustained by 
the large on-chip caches. Thus, the Orion can quickly deter­
mine the appropriate routing or conversion for a packet, 
perform the operation, and use its high-bandwidth to dispatch 
the packet. By reducing the amount of time to obtain the 
packet, to process the packet, and to dispatch the packet, the 
Orion supports higher "packets-per-second" rates, as well as 
higher numbers of channels under the control of one proces­
sor. 

Instruction throughput. Other processors may claim high 
peak MIPS rates; however, on closer examination, it becomes 
obvious that these rates are rarely achieved. The effects of 
data dependencies and issue restrictions on pipeline through­
put, coupled with the low hit rates associated with small 
caches to feed the engine, dramatically degrade actual sys­
tem performance. 

To avoid this problem, the Orion architects made certain 
fundamental decisions: the pipeline would be a traditional 
RISC pipeline, avoiding the issue restrictions found in most 
superscalar machines and the pipeline bubbles found in 
super-pipelined machines; the pipeline would be high-fre­
quency; and the pipeline would be sustained by large, high­
bandwidth, efficient on chip caches. Thus, the performance 
ratio between the "133-MIPS Orion" and other embedded 
RISC processors targeted to inter-networking is actually sig­
nificantly larger than the ratios of their peak MIPS rates. Figure 
2 shows the Orion pipeline structure. 

High-level language programming. This traditional RISC 
micro-architecture has other benefits as well. For example, 
the Orion architecture, as with the MIPS architecture in 
general, is "high-level-language friendly". The optimization 
rules for it are easily supported by modern compilers. Thus, 
the system programmer can achieve the performance poten­
tial of the Orion without having to program in assembly, 
resulting in code that is more portable and easy to maintain. 
The Orion is designed to allow efficient translation of "C" 
programs to its object code. The large caches allow the 
programmer plenty of "elbow room" for system software, 
without requiring assembly level tuning. 

64-bit data support. Inter-networking applications can also 
find advantage in using the 64-bit ALU and boolean opera­
tions of the Orion, as well as the high-bandwidth from its on­
chip 64-bit wide registers to memory. These operations en­
able the Orion to process more data in a single chunk. 

Although the Orion is a true 64-bit architecture, it is equally 
adept with smaller data. The system can be constructed to use 
32-bit addresses (reducing the size of pointers, and thus using 
less memory) and to use 64-bit operations only for "long" data. 
This is accomplished merely by the selection of appropriate 
compiler switches, along with the types declared for datums. 

CONFERENCE PAPER CP-14 

I I 
One Cycle 

3106 drw02 

Figure 2. Orion Pipeline 

INTERRUPT RESPONSE AND TASK SWITCH· 
INGTIME 

The Orion also excels at minimizing the overhead for 
exception processing and task switching. The Orion does not 
require explicit pipeline state management, cache flushing, 
TLB or MMU management, or register spill management. 
Exceptions feature very low latency, and special registers in 
the Orion facilitate exception decoding and interrupt service 
dispatch. Thus, very little overhead is required in the interrupt 
and task switch model, leaving more processing power for 
packet movement and processing. 

Although many vendors attemptto use the time required for 
exception recognition as a measure for real-time efficiency, 
this dramatically understates the requirements of a real sys­
tem. True exception latency is a function of exception recog­
nition, exception decode, state preservation, state restora­
tion, service dispatch overhead, and instruction throughput. A 
number of these factors are operating system specific (for 
example, the amount of state preservation/restoration, and 
the overhead for prioritization and task selection). 

Exception recognition. In general, the amount of time 
required to detect an exception is less than the pipeline length. 
In the particular case of interrupts, latency is 5-6 cycles. Of 
course, the longest CPU stall cycle (e.g. due to a main 
memory access) can lengthen the amount of time. 

Once an exception is detected, the Orion will (automati­
cally): 
• enter kernel mode 
• disable interrupts 
• encode state information in on-chip registers designed for 

exception management 
• branch to an exception vector location 

These activities are automatic, and occur in the few cycles 
of exception latency mentioned above. Figure 3 illustrates the 
exception latency. 

178 



THE lOT R4600 POWERS 
INTER-NETWORKING APPLICATIONS 

11 

12 

13 

Exception Vector 

CONFERENCE PAPER CP-14 

Exception service dispatch. Once the Orion has branched 
to the exception vector, software is responsible for decoding 
the cause of the exception, performing whatever state preser­
vation is appropriate, and dispatching the service routine. 

The Orion contains registers designed to speed exception 
decode and to simplify return to normal execution at the end 
of exception processing. These registers show the cause of 
the exception, the return address, and other bits of information 
for decode. Because of these registers, exception decode, 
minimal state preservation, and service dispatch can be 
performed in as few as 15 instructions (less than 120ns). 

Exception Vector Address 3106 drw 03 Figure 4 shows the code typically executed at the general 

.set 
la 
sw 
sw 
sw 
mfcO 
mfcO 
sw 
mfcO 
sw 
sw 
and 
Iw 
sw 

sw 
.set 

Figure 3. Orion Exception Latency 

noreorder 
kO,except-regs 
AT,R_AT*4(kO) 
vO,R_ VO*4(kO) 
v1,R_V1*4(kO) 
vO,CO_EPC 
v1,CO_SR 
vO,R_EPC*4(kO) 
vO,CO_CAUSE 
v1,R_SR*4(kO) 
aO,R_AT*4(kO) 
v1,vO,EXCMASK 
aO,cause-table(v1 ) 
a1,R_A1*4(kO) 
aO 
k1,R_k1 *4(kO) 
reorder 

exception vector. 

#tell assembler not to fill delay slots 
#fetch address of reg save array 
#save a few general registers 

#fetch return address 
#fetch status register 
#save return address 
#fetch exception cause register 
#save status register 
#save another general register 
#get at the actual "cause index" 
#get address of service routine 
#use delay slot to save another reg. 
#branch to service routine 
#save one more general register 
#re-enable pipeline scheduling 

Figure 4. Exception Service Dispatch code 

Note that the advantages of the Orion register, cache, and 
MMU architecture serve to minimize the amount of state 
software needs to preserve. Specifically, the use of unique 
process ID's avoid the need to flush the MMU at context 
switch; physically tagged caches eliminate the need to flush 
the on-chip caches; and the orthogonal, non-windowed regis­
ter file eliminates the need to manage window overflow. 

. set 

Iw 
Iw 
mtcO 
Iw 
Iw 
j 

.set 

noreorder 

kO,CO_SR*4(AT) 
vO,R_ VO*4(AT) 
kO,CO_SR 
kO,R_EPC*4(AT) 
AT,R_AT*4(AT) 
kO 
eret 

reorder 

Return from Exception. Returning from exception is equally 
simple and quick. Basically, the software needs to restore the 
original machine state registers and any preserved context, 
and execute a return to the saved return address. One 
additional instruction, the eretinstruction, restores the bits of 
internal state designed to be hidden from the programmer. A 
minimal return/restore from exception sequence can be imple­
mented in as few as 7 instructions (less than 60ns). Figure 5 
shows this typical code . 

# by the time we have gotten here 
# all general registers have been 
# restored (except kO and vO) 
# reg. AT points to the reg save array 
# fetch status reg. contents 
# restore reg. vO 
# restore the status reg. contents 
# Get the return address 
# restore AT in load delay 
# return from int. via jump reg. 
# the eret instr. is executed in the 
# branch delay slot 

Figure 5. Exception Return code 

179 



THE lOT R4600 POWERS 
INTER-NETWORKING APPLICATIONS 

Instruction Throughput. As illustrated above, service dis­
patch and return from exception are performed via simple 
software functions requiring very few instructions. Thus, the 
key to minimal exception service latency is to keep instruction 
throughput high. 

As discussed above, the Orion is able to sustain extremely 
high instruction throughput rates, based on its 133MHz pipe­
line fed by its large internal caches. Various techniques, 
including cache locking, fast local memory, and appropriate 
data cache protocols, can also be used to sustain the high-rate 
of instruction throughput. 

Special techniques. Note that it is possible to use the on­
chip registers reserved for the on-chip FPA as a high-band­
width backup store for processor state in certain exceptions. 
Software can be written to use these registers as a small stack 
for key machine state. Since the Orion implements sophisti­
cated dynamic power management on chip, these registers 
can be used without incurring a large increase in CPU power 
consumption. 

SUMMARY 
The Orion serves as an excellent device for inter-network­

ing applications. With over 2 GB/sec total bandwidth, efficient 
management of packet data (including unaligned data), and 
133 MIPS processing power, the Orion provides the CPU 
resources necessary to support the increasing requirements 
of inter-networking, imaging, printing, multi-media, and desk­
top computing applications, while maintaining the cost and 
power goals required by these applications. As the Orion 
frequency continues to increase, the performance gap with 
other architectures will widen further. 

CONFERENCE PAPER CP-14 

180 



(;) SYSTEM DESIGN ISSUES WITH THE CONFERENCE 
R4600/R4400 PROCESSORS PAPER 

CP-1S 

Integrated DevIce Technology, Inc. 

By: Russell Cummings 

INTRODUCTION 
This article describes the basic issues related with the 

design of a system using either the IDT79R4400 or the 
IDT79R4600 64-bit CPU. It will cover the concepts of the 
system interface between the CPU and the rest of the system 
and give an example of a zero-wait state SRAM based 
memory system. The major focus will be on the system 
interface, how it relates to the rest of the system and the new 
features of the R4600 to improve performance. To end the 
article, I will discuss some of the issues of a zero-wait state 
memory system for the R4600. 

THE R4XOO SYSTEM INTERFACE 
The system interface connects the R4xOO CPU to external 

memory and other peripherals. This section will discuss the 
various aspects of the system interface including the signals 
used. 

The system interface consists of three main elements: 
1) The 64-bit multiplexed address and data bus; 
SysAD[63:0] 
2) The 9-bit command bus; SysCmd[8:0] 
3) The 6 handshake signals to control issue rates and 
validate requests; 
RdRdy, WrRdy, ValidOut, Valid In, ExtRqst and Release 

THE SYSAD BUS 
The SysAD bus is shared for both addresses and data 

cycles. It will present addresses during cycles where a valid 
interface command is present on the SysCmd bus. Data will 
be presented during cycles which have a valid data identifier 
on the SysCmd bus. During the address cycles, only the 36-
bit physical address will be driven on SysAD[35:0] allowing up 
to 64GB to be accessed. For the R4400, the unused address 
bits will be driven as zeros. The R4600 will drive zero on 
SysAD[55:36] and will drive virtual address bits 19 .. 12 on 
SysAD[63:56]. 

THE SYSCMD BUS 
The 9-bit SysCmd bus is used to encode the type of 

transaction that is present on the SysAD bus. SysCmd[8] will 
indicate whether the current driven cycle is a command 
(SysCmd[8] = 0) or data (SysCmd[8] = 1). During the address 
cycles, the other bits encode the type of cycle (read, write or 
nUll) along with the amount of information to be transferred. 
For the data cycles, the remaining bit determine if the current 
datum is the last of the transfer, if the data is for a read request, 
if there is an error and if the CPU should check the parity. 

THE SYSTEM INTERFACE CONTROL SIG­
NALS 

The system interface control signals are used to communi­
cate when buses have valid data and when the external 
system is ready to accept a command. The output, ValidOut 
and the input, Validln are used by the CPU to indicate when 
there is valid information driven on the bus either by the CPU 
(Valid Out) or the external system {Valid In). Two input signals, 
RdRdy and WrRdy, are used by the external system to 
indicate to the CPU that it can accept a command. The CPU 
output, Release indicates to the external system that the CPU 
has releasing the SysAD and SysCmd buses and it can start 
driving these buses after a bus turn-around cycle. The exter­
nal system will indicate to the CPU that it need the system 
buses by asserting the ExtRqst signal to the CPU. 

SYSTEM INTERFACE PURPOSES 
The major purpose of the system interface is to handle 

requests that arise from system events. The system events 
include; Load Misses, Store Misses, Store Hit on a write­
through page (R4600 Only), an uncached Load/Store or 
CACHE operations. These system event~ will translate into 
one or more requests from the processor, Processor Re­
quests, or the external agent, External Requests. There are 
two Processor Requests; a Read Request and a Write Re­
quest. There are three External Requests; a Read Request 
(although there are no readable CPU resources), a Write 
Request (to write the interrupt register) and a System Inter­
face Null Release Request. 

PROCESSOR REQUESTS 
Processor requests are used to transfer data between the 

processor and the external system. The processor will issue 
a read request eitherfor a cache line sized block (a Block Read 
Request) or for an uncached datum (a Word Read Request -
can be either a doubleword, word or partial word access). A 
processor write request can also be of a Block or Word type. 
The Block Write will be of a cache line that is possibly being 
replaced. A Word Write can result from either an uncached 
store or from a store hit to a cache line whose page attribute 
is write-through (this is for the R4600 only). Each processor 
request will have an "Issue" cycle after which the CPU will 
finish the rest of that transaction. 

PROCESSOR REQUEST ISSUE 
The processor samples the RdRdy and WrRdy signals to 

determine when a read or write request has issued. These 
signals are sampled at the rising edge of the S Clock (the 
system interface clock). The actual issue cycle will be the 

The IDT logo is a regislered trademar1< and IDT/sim. R304 t. R3051. R3052. R3081. R3721. R4600. and RISControlier are trademar1<s of Integrated Device Technology. Inc. 
All others are trademar1<s of their respective companies .• 

181 



SYSTEM DESIGN ISSUES WITH THE 
R4600/R4400 PROCESSORS 

cycle two S Clocks after the respective control signal (Rd Rdy 
for read and WrRdyforwrite) was sampled as asserted. Figure 
1 shows this for a read request issue cycle. 

SCycie II 2 3 4 5 6 

SClock I 
SysAD Bus 1 __________ -' 

RdRdy·1 \'------
3108 drw01 

Figure 1: Read Request Issue Cycle 

PIPELINE RESTART FOR READS 
When a cache miss occurs, the pipeline will stall until some 

or all the data for the miss is returned. For the both the 
Instruction and Data caches of the R4400 and the Instruction 
cache of the R4600, the pipeline will stall until after the entire 
cache line is returned. The first returned doubleword will 
contain the missed instruction or data. In the R4600, when a 
Data cache is serviced, the pipeline will restart after the first 
doubleword is returned. This first doubleword contains the 
missed data. The rest of the missed cache line is returned in 
parallel. This can result in significant performance increase 
due to the data streaming and also results in more efficient use 
of the CPUs resources. 

PROCESSOR READ REQUESTS 
When the processor needs some information from the 

external system or need the next instruction(s) to execute, it 
will use a read request to get it. A read request begins by 
driving the address on the SysAD bus and the appropriate 
read command on the SysCmd bus. For a block read, the 
command will indicate that a block is needed and the size of 
the block; this can be 4 or 8 words forthe R4400 while the block 
size is fixed at 8 words for the R4600. For a word read, the 
command will indicate this along with the number of bytes it 
expects returned. With the valid address and command driven, 
the CPU will assert the Valid Out signal to let the external 
system know that there is valid information on the buses and 
that the external system is expected to service the request. If 
the Rd Rdy signal has meet the requirements for an issue, the 
valid address and data is driven for that cycle only, otherwise 
the CPU will continue to drive the same information until the 
issue requirement is meet. Forthe R4600, the CPU will further 
indicate an issue cycle by asserting the Release signal in the 
issue cycle. After the Release signal is asserted for the one 
cycle, the CPU will 3-state the buses to allow the external 
system to start driving them. The R4600 guarantees that the 
Release will assert in the issue cycle. For the R4400, the cycle 
for the Release to be asserted can be the issue cycle but may 
be delayed by several cycles based on internal activity. 

After the release cycle, the buses will "turn-around" to allow 

CONFERENCE PAPER CP-1S 

the external system to drive the read response data back to 
the CPU. The external system will drive valid data on the 
SysAD bus along with a command on the SysCmd bus to 
indicate the this is read response data. The command will also 
tell the CPU other information about the returned data such as: 
if the data is erroneous, if the CPU should check the data and 
check bits and, for a block read, if this is the last data element 
for the block. Once the external system has the valid informa­
tion on the buses, it will assert the Validln signal, this indicates 
to the CPU that it can now sample the buses for the requested 
information. After the external system returns the last data 
element, it will3-state its drivers and turn the buses around for 
the CPU to start driving after a one cycle delay. 

BLOCK READ REQUESTS, MORE DETAILS 
When the R4xOO issues a block read request, it expect the 

data to be returned in "sub-block ordering". The idea behind 
sub-block ordering is to start with the doubleword at the miss 
address, the address driven by the CPU to start the read 
request. The external system will determine the next 
doubleword address to return by the XOR of the start address 
with the value of a binary counter. The number of bits in the 
binary counter are determined by the line size the CPU uses. 
For example, with 8 word lines, one needs a 2-bit counter and 
will XOR the count with address bits 4 .. 3 to determine which 
double word to return next. This scheme works well with 
interleaved memory systems. The overall, the algorithm is: 
• Get the doubleword which missed first; 
• Next, get the doubleword which will fill out the quadword 

containing the missed data; 
• Then get the quad word filling the octalword, in the same 

order as the previous quadword. 

PROCESSOR WRITE REQUESTS 
As with the read request, a write request can be either a 

block or a word write. For a block write, the CPU will first drive 
the start address on the SysAD bus and the block write 
command on the SysCmd bus with the ValidOut signal as­
serted. For the R4600, the CPU will start sending the data out 
in the cycle immediately following the address issue cycle. 
The address issue cycle follows the rules stated before with 
respect to the assertion of the 'vVrRdy signal. The number of 
cycles between the doublewords is programmable at boot 
time. This is the data write-back pattern and can be as fast as 
a doubleword every cycle to a doubleword every 4 cycles. The 
setting used is determined by the speed at which the external 
system can handle the write data. Forthe R4400, there can be 
a delay between the address issue cycle and the first 
doubleword out but the remainder of the write-back will occur 
at the programmed rate. One thing to note is that once the 
write has issued, there is no way to stop the write-back and 
there is no way to dynamically throttle the number of wait 
cycles between the doublewords. 

For single writes, the address issue cycle is the same as 
that of the block write. The R4400 can then have an unused 
cycle after which it will drive the data out and follow this by 
another unused cycle. This results in a 4 cycle minimum for a 

182 



SYSTEM DESIGN ISSUES WITH THE 
R4600/R4400 PROCESSORS 

single write and is due to the internal state machine implemen­
tation. 

The R4600 can perform single writes in the same manner 
or it can use one of the two new write modes. These write 
modes are programmed at reset. In the R4xOO compatible 
mode, the R4600 will issue the write address, immediately 
follow this with the write data and finish the write cycle with 2 
unused cycles during which it will continue to drive the valid 
data on the SysAD bus but will only have the ValidOut signal 
asserted for the first data cycle. This again results in 4 cycle 
writes. The new write modes are Write Re-issue and Pipelined 

SCycle II I Issue I 
No 

Issue 

SClockl~ 

CONFERENCE PAPER CP-1S 

Writes, both of which result in 2 cycle writes. 
For the Write Re-issue protocol, the CPU will first look at the 

WrRdy signal as with other writes to see that it is asserted two 
cycles previously but in addition, the WrRdysignal must still be 
asserted in the issue cycle for the CPU to consider the write 
to have issued. If the WrRdy was deasserted in the issue 
cycle, the CPU will retain the address/data pair in the write 
buffer and re-issue the write once the WrRdy is again asserted 
at the appropriate times. The Write Re-issue is shown in 
Figure 2. 

I 
No 

Issue 

SySADBUSI __________ ~ ~~ ________________________ ~ ____ __ 

SYSCmdBUsl ~ Write ~ 
WrRdy·I ________ ----I! ,'-___________ _ 

3108 drw 02 
Figure 2 

The Pipelined write protocol maintain the issue rules of the 
R4xOO compatible writes but eliminates the two unused cycles 
between back-to-back writes. The external system is there-

SCycle II I Issue I Issue 

SClock I 
SysAD Bus I 

fore required to accept one additional write after the WrRdy is 
deasserted for a stream of back-to-back writes. The Pipelined 
Write is shown in figure 3. 

I No I No 
Issue Issue I 

No 
Issue I Issue 

SysCmd Bus I __________ ~~_W __ rite ____________________ _ 

WrRdy· I -------'/ \~--------------~~ 3108 drw 03 

Figure 3 

EXTERNAL REQUESTS 
External requests are used by the external system to 

transfer information to the CPU. There are four possible 
external requestforthe R4xOO: Read Response, Read, Write 
and Null. The Read Response is used for the return of data 
requested by a processor read request. The external Read 
request is intended to allow the external system to read data 
from internal CPU resources but there is currently nothing to 
read from. The external Write request is used to directly write 
to internal CPU resources with the Interrupt register the only 
currently implemented write-able resource. The external Null 

request is used by the external system to return the system 
buses to the CPU when the external system is finished with 
them. The Null request is only required if the external system 
is not sending data to the CPU, i.e., it is not needed forthe read 
response or external write request, only if the external system 
has requested the system buses for some other use that the 
CPU is not involved with such as a DMA. 

The external system must arbitrate with the CPU for the 
control of the system buses. This is initiated by the external 
system by first asserting the ExtRqst signal to the CPU. Some 

183 



SYSTEM DESIGN ISSUES WITH THE 
R4600/R4400 PROCESSORS 

time after the ExtRqst is asserted, the CPU will signal to the 
external system that it is giving up mastership of the system 
buses to the external system by asserting the Release for one 
cycle. One cycle after the CPU asserted the Release, the 
external system can start issuing its request(s). For a read 
response, external read and external write request, the CPU 
will regain mastership of the system buses once the external 
request is completed. If the external request does not involve 
the CPU, the external system will need to drive a Null request 
to the CPU in order to return mastership of the system buses 
to the CPU. 

R4XOO CLOCKING 
The R4xOO CPUs have several clocks that are involved in 

various aspects of operations. The input clock is MasterClock. 
The MasterClock is used by the internal PLLs to generate the 
other clocks. The MasterClock frequency is 1/2 the pipeline 
frequency. The MasterOut clock signal is aligned and at the 
same frequency as the MasterClock. This clock is used for the 
synchronous assertion and deassertion of the reset control 
signals. There are two internal only clocks, PC lock and 
SClock. The PClock is the actual pipeline clock and is 2x the 
MasterClock frequency, i.e., if MasterClock is 50MHz, the 
PC lock is 1 OOMHz. The SClock is the system interface clock 
and it is used to clock all the into or out of the system interface. 
The frequency of the SClock is determined at reset through 
the programmable divisor which can be from 2 - 8. All the 
external timing, drive-out, setup and hold, are with respect to 
the SClock. 

There are 4 more externally accessible clocks. The SyncOut­
Syncln pair are used as the feedback path one of the internal 
PLLs and is used to model the delays and loading of the 
external system. If the other two external clocks, TClock and 
RClock, are buffered, then an identical buffer is placed in the 
SyncOut to Syncin path to allow the PLL to align the external 
clocks with the internal SClock so the user will know when the 
CPU will sample inputs and drive outputs. The other external 
clocks are used to sample outputs from the CPU or to clock 
signals to the CPU. The RClock is the receive clock and can 
be used by the external system to register the driven outputs 
from the CPU. The RClock is at the same frequency as the 
internal SClock but its phase leads the SClock by 25%. The 
TClock is the transmit clock are can be used to clock signals 
to the CPU. The TClock is also at the same frequency as the 
SClock and is aligned to the SClock. 

CONFERENCE PAPER CP-15 

R4XOO MEMORY INTERFACE EXAMPLE 
As an example memory system, I will discuss a O-wait state 

SRAM based memory. By Q-wait state I mean that the CPU 
requests run at the maximum speed. This means that the CPU 
requests complete in following number of cycles: 

Block Read 3-1-1-1 
Single Read 4 
Block Write 2-1-1-1 
Single Write 4 (2 for the R4600 new write modes) 

The memory system will be 2-way interleaved with each 
back 64-bits wide. The address path will consist of a first level 
register that registers the address on the rising edge of the 
RClock, followed by a latch to provide a one-level address 
buffer to allow for the read following a write case of back-to­
back CPU requests. For the registers, we use the 
IDT74FCT162823ET 18-bit registers and the latches are the 
I DT74FCT162841 ET 20-bit transparent latches. 

The data path consists of IDT74FCT162501 18-bit regis­
tered transceivers acting as registers for data to the memory 
and latches for data from the memory, and the 
I DT7 4FCT162260 12-bit tri-port bus exchangers to control the 
data from the 162501 to the even and odd banks of the SRAM 
memory. 

Because the memory is interleaved, the read access is the 
limiting time, writes can overlap to some extent with the next 
transaction. To determine the read access time, we need to 
return the data to the CPU in at most 3 clock cycles (60ns for 
a 50MHz system interface bus). From this maximum time we 
first subtract the propagation delay times for the clock-to-out 
of the register and the address latch. Finally, we must subtract 
the propagation delay for the data to get to the CPU and the 
setup time required by the CPU. The result is the maximum 
read access time for the SRAMs. 

For the given components, we get the following for a 
50MHz system: 

Access Time = 60ns - (address time) - (data time) 
= 60 - (4.4 + 7.5) - (3.5 + 7.4) = 19ns 

For this design we will use 15ns SRAM SIMMs to allow for 
a margin. 

CONCLUSION 
The R4xOO system interface has many features that can 

make a design challenging but with a little common sense and 
some careful planning, one can take advantage of the system 
interface and design and build a high-performance system. 

184 



G 
PORTING R3000 CODE TO AN R44001 CONFERENCE 
R4600 PLATFORM PAPER 

CP-16 

Integrated Device Technology, Inc. 

By: Sami Khan 

INTRODUCTION 
The IDT79R4xOO family supports a wide variety of proces­

sor based applications including 32-bit Windows™ NT desk­
top or notebook systems. It is also suited for a variety of 
embedded applications, such as laser printers and data 
communications. R4xOO provides complete upward applica­
tion software compatibility with the IDT79R3000 family of 
microprocessors. 

IDT79R4xOO family extends performance range for em­
bedded applications performing greater than 68 SPECint92 
and 60 SPECfp92 at 100Mhz. Migrating earlier generation 
designs to R4xOO family of microprocessors is of great impor­
tance. 

This paper describes various aspects of porting software 
from R3000 embedded system to a R4xOO-based system. 
The discussion will start with changes in the software model 
from R3000 to R4xOO and associative changes in the kernel 
model. Next, various software modules that needs modifica­
tion will be discussed. The lOT's System Integration Manager 
(IDT/simTM) software will be used as an example to empha­
size major changes in the kernel model. 

Finally, some of the compatibility issues between R4600 
and R4400 will be explained to provide the better understand­
ing as how to apply the modifications to R4600 system. 

MIPS R4XOO FAMILY 
lOT's R4xOO family is the extension of lOT's RISC road 

map. It targets various segments of embedded market such 
as disk arrays, color printers and routers. The architecture 
integrates full 64-bit integer and floating point units which are 
supplemented by larger caches. It is fully upward compatible 
with R3000 instruction set. 

The changes in the software model depicts that only kernel 
model needs to be modified when earlier generation code 
(R3000) is migrated to the R4xOO architecture. User applica­
tions do not need to be modified even though some perfor­
mance improvement by taking full advantage of MIPS IIIISA. 
Changes in the software model include: 

• System control coprocessor (CPO) 
• Exception processing 
• Memory management 
• Instruction set 
• Cache organization 

SYSTEM CONTROL COPROCESSOR 
System control coprocessor (CPO) has been has been 

completely changed. Existing R3000 status register has been 
modified along with the introduction of some additional regis-

ters. Changes in the status register reflects changes in the 
exception, memory management and cache organization 
from R3000 architecture. The new registers are: 

Exception handling: Cache error register 
Xcontext register 
Error EPC register 

Memory Management: Page Mask register 
EntryHi and EntryLoO, 
EntryL01 register 
Index register 
Random and wired registers 

Cache management: Cache Tag registers 

EXCEPTION PROCESSING 
Besides changes in the exception model, newer excep-

tions were defined in R4xOO architecture. New exceptions are: 
• Trap exception 
• Floating point exception 
• Reference to WatchHI I WatchLo address 
• XTLB refill 
• Cache error exception 

Floating point errors are no longer mapped to Interrupt. 
Floating points errors are reported by an exception. Also 
exception vector locations has been changed. The R3000 
exception vector base location for non-cache access has 
been changed from OxbfcOOOOO to Oxbfc00200. Along with 
new exception vector base address, the location of exception 
vectors with respect to the base address has been changed. 
They are: 

• TLB refill OxOOO 
• XTLB refill Ox080 
• Cache error Ox100 
• General Ox180 

The 'rfe' (return from exception) instruction which is ex­
ecuted as the last instruction of exception handler has been 
replaced with 'eret' (exception return) instruction. These 
changes require major modification to the exception handling 
code. Again, this does not affect the user application as this 
code runs in kernel mode only. 

MEMORY MANAGEMENT 
In addition to 32-bit addressing mode, 64-bit addressing 

mode has also been introduced in R4xOO architecture. More­
over, three levels of security have been implemented. They 
are: 

• User mode, for user applications 
• Supervisor mode 

The lOT logo is a registered trademarK and IDT/sim, Orion, R3041 , R3051, R3052, R30Bl, R3721 , R4600, and RISController are trademarKs of Integrated Device Technology, Inc. 
Windows NT is a trademark 01 Microsoft Corporation 

185 



PORTING R3000 CODE TO AN 
R4400/R4600 PLATFORM 

• Kernel mode 

Each mode's memory map can be configured as 64-bit 
virtual addressing space, or 32-bit virtual addressing space. 
Memory management logic maps this 32-bit or 64-bit virtual 
address space to 36-bit physical address space. 

R4xOO has integrated 'fully associative' TLB. Unlike R3000 
which has 64 entries, R4xOO has 48 entries, each mapping a 
set of odd and even pages. This effectively allows mapping of 
96 pages ata time. Moreover, 256 process IDs allows multiple 
processes share the TLB without the need of flushing it at 
context switch. 

R3000 has fixed page size of 4kB, whereas R4xOO allows 
variable page sizes, varying from 4kB to 16MB. Coherency 
attributes can be set for a page which allows the selection of 
cacheablity of the memory on a page by page basis. 

INSTRUCTION SET ENHANCEMENT. 
New instructions have been added to fully use 64-bit 

architecture. Additional instructions have been added for 
cache management, exception handling, 64-bit data move­
ment, and data manipulation. These additions include: 

• New CACHE operation instruction which allows cache 
management functions described later 

• Double word load and store operations (LDL, LOR ... ) 
• TRAP instruction for software trap exceptions. 
• Double word arithmetic operations (DADDI, DADDIU ... ) 
• Double word load and store operations to and from 

floating point coprocessor. 
• Exception handling 'rfe' instruction has been replaced 

by 'eret' instruction. 

CACHE ORGANIZATION. 
Two level of caches are supported. On R4xOOPC and 

R4600, only primary caches are supported. The caches are 
integrated on-chip and are separated as instruction and data 
caches. The cache size has been increased. R4xOO architec­
ture can support maximum of 32kbytes.ln case of IDT79R4400 
and I DT79R4600, size is fixed to 16kbytes, both for instruction 
and data caches. Line size of the caches can be configured as 
4-wide or 8-word wide. In case of R4600, line size is fixed as 
32-byte. 

Unlike the R3000 caches which has write-through update 
policy, the R4xOO has write-back caches. Caches are Direct 
map except for R4600, which has 2-way associative caches. 

MODIFYING CODE 
The porting of the R3000 code to R4xOO environment 

needs major modification to lOW-level kernel code. The user 
application can remain the same even though some perfor­
mance gain can be achieved by taking advantage of MIPS III 
I SA. 

IDTsim can be used as an example to explain the modifica­
tion required. I DT's System Integration Manager is a ROMabie 
software product that permits convenient control and debug­
ging of RISC systems built around R3000 ISA CPUs. Facilities 
are included to operate the CPU under controlled conditions, 

CONFERENCE PAPER CP-16 

examining and altering the contents of memory, manipulating 
and controlling CPU resources. IDT/sim runs in kernel mode 
and was developed originally for the R3000 environment. In 
order to port the code to R4xOO platform, minimal modification 
is required to the kernel and will be used as an example. 

In orderto discuss IDT/sim, it is important to understand the 
execution flow of IDT/sim and see which modules need 
modification. 

IDT'S SYSTEM INTEGRATION MANAGER 
(IDT/SIM) 

IDT/sim starts by executing startup code and then jumps to 
the main program which runs command line interpreter. 
Commands can be entered on-line to execute functions of the 
monitor program. 

Startup code performs several functions and then passes 
the execution control to the main program. This includes 
initializing caches, TLB, memory and configuring and initializ­
ing internal registers of the processors. The following diagram 
graphically explains execution flow of the startup code. 

Startup code 

initmem 

config. cache 

flush_cache 

init dev tab 

initialize 

move exc code 

init io 

in it memory 

init_cmd tab 

clear brkpts 

main 

output sign on mes 
I 

sage 

- - - , 

1 

I 

~ _ ~ csu_idt.s 

- - -I 

~ _ .,imain.c 

---' 
I --, 

, -~ command line interpreter(cli) 1 

command1 

command2 

I commandn 

1 ... ---, 

1 

I 

1 

: __ ~ iclLc 

3109 drw01 

IDT/sim's Global Execution Flow 

The startup code begins by initializing CPU registers. This 
includes writing to the status register which disables the 
interrupts globally. 

186 



PORTING R3000 CODE TO AN 
R4400/R4600 PLATFORM 

The next step is 'initmem' routine which does cache ma­
nipulation operations. Precisely, it configures and sizes the 
caches, then caches are flushed. This part of the code needs 
major modification as cache architecture has been completely 
changed for R4xOO. 

STARTUP CODE OF IDT/SIM 
After initializing the status register, IDT/sim determines the 

28 27 26 25 24 23 

I W' I W P I cs I 
2 

71 

CONFERENCE PAPER CP-16 

size of the caches. In case of R3000, cache sizes are deter­
mined by isolating and then writing and reading different data 
patterns to the caches. 

In case of R4xOO, cache size and line size can be deter­
mined by reading the IC and DC bits and IB and DB bits of the 
status register, respectively. 

D-cache organization 

o 
PTag n 

64 63 24 o 
DataP Data 17-

"', 

DataP Data ',' 

DataP Data .' 
~: 

W' 
W 
P 
CS 

Even parity for the write-back bit DataP Data 

Write-back bit 8 
Even parity for the PTag and CS fields 
Primary cache state: 0 = Invalid, 1 = Shared, 
2 = Clean Exclusive, 3 = Dirty Exclusive 

PTag Physical tag 
DataP Even parity for the data 

64 3109 drw02 

Figure 1 

26 25 24 23 o 
P 0 V I PTag 

24 65 64 63 o 
DataP Data 

I-cache organization DataP 
\ 

Data 

PTag Physical tag 
DataP Data 

V Valid bit DataP Data 

Data cache data 
P Even parity, for PTag and V fields 2 64 3109 drw03 

DataP Even parity; 1 parity bit per byte of data 

Figure 2 

Caches are invalidated in R3000 architecture by isolating 
and writing partial words to the them. In case of R4xOO, cache 
operation instructions are provided which perform operations 
on caches, and when used in certain sequence, perform 
cache invalidation. 

Figures 1 and 2 explain the organization of R4xOO instruc­
tion and data caches. Note that both data and tag parts of the 
caches are parity protected. At power-up, the states of the 
parity bits and the data plus tag fields are unknown. If caches 
are accessed in this state, we may get parity error and, unlike 
the R3000 architecture where parity errors are treated as 

cache miss, the R4xOO processor will take cache error excep­
tion. Therefore, invalidating the caches in the R4xOO architec­
ture also involves forcing good parity in both the data and tag 
fields. 

The invalidation involves following steps: 
a) First, tags are initialized. The software first disables the 

cache error exceptions by writing to the DE bit of the 
status register. This is to make sure that cache error 
exception does not occur while the caches are being 
accessed. Then the value of zero is loaded into TagHi 
and Taglo registers and is transferred to all the entries of 

187 



PORTING R3000 CODE TO AN 
R4400/R4600 PLATFORM 

the tags (both I and D caches). This is done by issuing 
'Index store tag' command. This forces good parity into 
the tags and also clears the V and CS fields of instruction 
and data cache tags, respectively. The index values are 
determined by the size of the caches and the line size. 
However, this operation does not initialize the W' and W 
field of data cache tags. 

b) Once tags have been initialized and invalidated, the next 
step is to force good parity into the data part of the 
caches. In the case of Instruction cache, 'FilU' command 
is available which allows moving data directly from the 
main memory into the caches on line by line basis. This 
operation brings data into the cache, and writes corre­
sponding valid parity. 

c) For the case of data cache, where corresponding 'Fill' 
command is not available, different means are used to 
force good parity. First, the state of the cache is changed 
from 'invalid' to 'dirty exclusive' by issuing 'Create Dirty 
Exclusive' command. Once all entries in the data cache 
have been validated, known value (say zero) is stored to 
all locations of the cache. This stores valid data and 
forces good parity. This also sets the W' and W bits of 
the tag. 

Both caches are in a valid state at this point. In order to 
invalidate these caches, 'Index invalidate' command for In­
struction cache and 'Hit invalidate' command for data cache 
are issued. The index values are determined by cache size 
and cache line size of respective caches. 

The next software module of the startup code which needs 
attention is 'initialize' routine, which is responsible for moving 
exception code to the DRAM and initializing TLB. This part of 
the code needs modification because, for the R4xOO, some 
new exceptions have been defined and the vector locations 
have been changed. The code is moved using processor's 
block write mode. The code is read into the internal registers 
from EPROM as an uncached read, and then is stored into the 
cache using the store operation. Once the code is written to 

CONFERENCE PAPER CP-16 

the D-cache, DRAMs are written by issuing 'Hit Writeback 
invalidate' cache commands. 

The next important function of the module is initializing TLB. 
For the R3000, known values are stored in EntryHi and 
EntryLo registers. Then the index value of the entry is written 
to index register which is then shifted by 6 bits. At the end, the 
'tlbwi' instruction is issued which writes the values in the 
EntryHi and EntryLo registers into the TLB entry. 

TLB entries for R4xOO are different than R3000 entries. 
Values are written to EntryHi, EntryLoO and EntryL01 regis­
ters. Page sizes are set by writing to the page mask register. 
The index value is written into index register, and then the 
'tlbwi' instruction is issued. Note that in the case of the R4xOO, 
shifting the contents of the index register by 6 bits is not 
required. 

COMPATIBILITY WITH THE R4600 ORION 
At the conclusion of this paper, it is important to discuss the 

compatibility-related issues affiliated with the R4600. The 
processor is software-compatible with earlier generation R4xOO 
architecture processors, such as R4000 and R4400. The 
processor provides some additional features which enhance 
the performance of existing R4xOO designs. The points to note 
are: 

Unlike the R4400, the R4600 has 2-way associative caches 
with line size fixed to 32-bytes. Operations which uses index 
values need to access set 0 by setting virtual address bit 13 
equal to zero and set 1 with virtual address bit 13 equal to 1. 

In addition to new cache organization, a WAIT instruction 
has been added for power management. 

CONCLUSIONS 
This paper has presented the modifications required when 

an R3000 code is ported to an R4xOO platform. Specifically, 
only the kernel mode code needs modification, whereas the 
user application can remain the same. The source code of 
IDT/sim has been used as an example to explain minimal 
modifications. This allows the design upgrade within a mini­
mal amount of time. 

188 



G R4600 BUS ERROR HANDLING TECHNICAL 
NOTE 
TN-15 

Integrated Device Technology, Inc. 

By Peter N. Glaskowsky 

INTRODUCTION 
The Fast Restart feature of the IDT R4600 RISC CPU has 

changed the way that databus error detection is handled. This 
tech note will explain the change and describe ways to 
implement robust error detection in R4600-based systems. 

"FAST RESTART" IN THE R4600 
When the R4600 experiences a data cache miss in the data 

fetch stage ofthe execution pipeline, a stall condition stops the 
pipeline until the required data is supplied from the external 
system interface. Since the R4600 uses only SUb-block order­
ing for block reads, the data requested by the fetch will always 
be returned in the first doubleword in the read response from 
the external agent. 

As discussed in the R4600 Hardware User's Manual on 
page 3-7 under "Stall Conditions", the R4600 will resume 
processing as soon as this first doubleword is returned. This 
behavior is new to the R4600. The R4000 and R4400 wait until 
the entire cache line is refilled before the pipeline is restarted. 

BUS ERROR DETECTION IN THE R4600 
The R4600 takes a bus error exception if the active-low 

Good Data Indication bit, SysCmd(S), is set to 1 when the first 
data element is returned in a block read response. If no error 
is reported, the execution pipeline is restarted and the remain­
der of the cache line is loaded while processing continues. 

If the external agent were to report an error with these later 
data elements, the error could not be correctly associated with 
the instruction which caused it, and a proper Bus Error 
exception could not be generated. For this reason, the R4600 
does not evaluate the Good Data Indication bit on data 
elements after the first data element in block read responses. 

ENSURING DATA INTEGRITY 

Systems which implement parity on the SysADC bus 
Block read response data is loaded directly into a cache 

line, along with the parity from the SysADC bus. If the external 
agent detects an error in the first data element in the block, it 
may optionally set the Good Data Indication bit to 1 to 
generate a Bus Error exception. 

If the Good Data Indication bit is set to 0, the Data Checking 
Enable bit (SysCmd(4)) is also set to 0, and the first data 
element contains a parity error {Le., the external agent does 

not signal the error to the processor), the processor will take 
a Cache Error exception and indicate that the error came from 
the SysAD bus by setting bit 26 of the CacheErr register. 

If any of the subsequent data elements in the block read 
response contain parity errors, the bad parity will be stored in 
the cache, and later accesses to them will generate a Cache 
Error exception. The exception handler can examine the 
CacheErr and ErrorEPC registers to determine where the 
error occurred. 

Systems without parity on the SysADC bus 
If external logic is used to test for data errors and parity is 

not passed through to the R4600, the Data Checking Enable 
bit must be set to 1 during read responses. Parity will be 
generated internally by the R4600, stored in the cache along 
with the read response data and checked normally during 
processor operation. This allows the R4600 to use parity on 
the cache even if parity is not used on the external interface. 

An error in the first data element in a block read response 
may be signalled to the R4600 by setting the Good Data 
Indication bit to 1. Errors in subsequent data elements must be 
signalled using a different mechanism. The Non-Maskable 
Interrupt (NMI) exception is recommended, since it cannot be 
masked. However, it is not normally possible to continue 
program execution after servicing an NMI. 

It would also be possible for an external agent to retry a 
main memory read if a parity error is detected, and submit the 
data along with the Validln* control signal only if the data is 
error-free. This would add significant complexity to the state 
machine. It will generally be easier to connect external parity 
to the R4600 SysADC bus. 

Systems without parity on main memory 
In systems where parity is not provided on main memory, 

the Data Checking Enable bit must be set to 1 and the Good 
Data Indication bit must be setto 0 during read responses. The 
R4600 will generate parity internally and store the parity and 
data in the primary cache. Parity will be tested each time the 
cache is read, ensuring cache integrity even though the 
integrity of externally supplied data is not testable. 

COMMAND BUS PARITY 
The R4600 does not check parity on the SysCmd bus. The 

SysCmdP signal is not checked when the system interface is 
in the slave state (for example, during read responses). 

189 



G 32- AND 64-BIT OPERATION OF TECHNICAL 

THE IDT79R4600™ NOTE 
TN-21 

Integrated Device Technology, Inc. 

By Phil Bourekas 

INTRODUCTION 
The IDT79 R46aa™ (OrionTM) is a true 64-bit microproces­

sor; the internal registers, data paths, and arithmetic units are 
all 64-bits, and the processor directly implements various 64-
bit operations (such as arithmetic operations) as single cycle 
operations. 

The R46aa allows great flexibility in how this capability is 
used, insuring both compatibility with 32-bit applications, and 
insuring that new applications can easily take advantage of 
the higher bandwidth and throughput available from 64-bit 
operations. This technical note is intended to provide an 
introductory look at how the Orion, and its support tools, 
accomplish these objectives. 

THE R4500 54-BIT ARCHITECTURE 
In all respects, the R46aa is a 64-bit microprocessor. 

Consider: 
- The register file of the processor contains 32 64-bit wide 

registers, for the most part used orthogonally by the 
instruction set. 

- The functional units, including logical and arithmetic 
functions, multiply and divide, and memory management, 
operate directly on 64-bit datums. 

- The R46aa MMU manages full 64-bit virtual addresses. 
- The R46aa directly moves 64-bit datums between its 

internal caches and its internal execution core in a single 
cycle; that is, the cache data path is 64-bits wide. 
Although not strictly a pre-requisite for a "64-bit processor", 

the system interface is a 64-bit wide multiplexed address/data 
bus. However, to facilitate migration of existing software, the 
R46aa 64-bit architecture is directly compatible with 32-bit 
operations. Also note that for the R46aa, memory remains 
"byte addressable". Load and store operations can specify the 
operand size as 8-, 16-, 32-, or 64-bit in size. 

NUMERIC COMPATIBILITY BETWEEN 32-BIT 
AND 54-BIT OPERATION 

The R460a operates seamlessly with various 32-bit appli­
cations. The MIPS architecture insures this interoperabilityby 
defining that 32-bit operations will sign extend their results to 
fill 64-bit registers. Thus, using a 2's complement numeric 
representation, the value of the results appears identical when 
viewed as either a 64-bit or a 32-bit value. 

VIRTUAL ADDRESS MODE 
In addition to being able to directly utilize 32- and/or 64-bit 

numeric values, the R46aa can directly support 32-bit or 64-
bit addressing. The mechanisms provided allow varying as 
and applications strategies, including 32- or 64-bit applica­
tions running on a 64-bit operating system. To facilitate this 

operation, the R46aa offers two virtual addressing modes: 
- 32-bit virtual addressing mode. In this case, all virtual 

addresses are considered to be 32-bit values. This 
affects the operation of the address translation unit (the 
MMU), and also affects the selection of the TLB excep­
tion vectors. Specifically, virtual addresses whose upper 
32-bits are not equal to all "0" or all "1" are considered 
invalid addresses and will cause an address error. 

- 32-bit virtual addressing mode is only available to user 
and supervisor tasks: the kernel always executes in 64-
bit virtual addressing mode. This mode is selected via 
the UX (user mode) and SX (supervisor mode) bits of the 
CPo status register. 

When operating in 32-bit virtual addressing mode: 
- 64-bit operations (the MIPS-3 instruction set) are invalid. 

This prevents software from generating pointer values 
larger than 32-bits. 

- the "Regular" TLB refill exception vector is used. By 
separating the 32-bit and 64-bit vector locations, the as 
is able to quickly perform software TLB refill without 
worrying about the operating mode of the task. 

- physical addresses remain 36-bit. 
As noted above, the kernel always operates in 64-bitvirtual 

addressing mode. However, the R46aa does support an 
operating bit (KX) which enables the kernel to use the "regu­
lar", rather than extended, TLB refill exception vector. This 
was originally provided to enable existing R3aaa as and 
compiler support to be migrated cleanly to the R4xxx architec­
ture; this bit may be used to implement operating systems 
which only provide mapping support for 32-bit virtual ad­
dresses. 
- 64-bit virtual addressing mode. In this case, all virtual 

addresses are considered to be 64-bit values (Note, 
however, that the Orion only maps 40 bits of the 64-bit 
address space. Mappable virtual addresses whose 
upper 24-bits arc not all "0" or all "1" are considered 
invalid). In 64-bit virtual addressing mode: 

- 64-bit operations (the MIPS-3 instruction set) are avail-
able. 

- the "Extended" TLB refill exception vector is used. 
- Physical addresses remain 36-bit. 

COMPILER SWITCHES 
Most R46aa compilers offer similar flexibility in their treat­

ment of 64-bit vs. 32-bit data. For example, IDT/CTM offers 
switches to selectively manage: 

- whether the MIPS-3 instruction set extensions will be 
generated by the compiler (compatible with the choice of 
UXlSX described above). 

- the treatment of datum size by the compiler. For ex-

The lOT logo is a registered trademark and R4600, Orion, and IDTIC are trademarks of Integrated Device Technology, Inc. 

190 



32- AND 64-BIT OPERATION OF THE lOT 79R4600N 

ample, depending on switches selected, integers could 
be 32-bit or 64-bit values, and types such as "long" can 
be defined to be the appropriate width. 
The IOT/c compiler supports various switches, including 

the following: 
- MIPS-3 switch. If this switch is activated, the compiler will 

generate MIPS-3 instructions where appropriate. In this 
case, the full register width of the integer and CPU units 
is used (64-bits); types "int" and "long" are 32-bits; 
addresses or pointers are 32-bits; and the type "long 
long" specifies a 64-bit datum. 

- mlong64. This switch (used with "-mips3") makes all 
"long" variables and pointers 64-bits, but integers remain 
32-bits. 

- mint64. This switch makes all variables of type "int", 
"long", and "long long" to be 64-bits, and activates the "­
mlong64" switch automatically. 
With this flexibility, the programmer can implement a vari­

ety of schemes, including applications which use 32-bit point­
ers referencing 64-bit datums; 64-bit pointers and datums; 32-
bit pointers and datums, etc. This capability enables systems 
to take advantage of the bandwidth available from the 64-bit 
processor without rewriting the entire application (and using 
up memory resources). 

TECHNICAL NOTE TN-21 

SUMMARY 

The R4600 is a true 64-bit microprocessor. However, the 
processor architects have implemented it in a fashion that 
allows 32-bit applications to readily take advantage of the 
100+ MIPS capability of the device, without forcing compli­
cated changes to the application or the operating system. 
Although the Orion does NOT implement a "32-bit mode", the 
use of 32-bit virtual addressing mode, along with the tech­
nique of sign-extending 32-bit values so that they are compat­
ible with 64-bit operation, allows software to readily take 
advantage of the performance available in the Orion. 

191 



G R4600™ CACHE INITIALIZATION TECHNICAL 
NOTE 
TN-22 

Integrated Device Technology, Inc. 

By Russell Cummings 

INTRODUCTION 
The IDT79R4600™ Orion™ RISC microprocessor is a full 

64-bit architecture that brings desktop-like performance at a 
fraction of the price. It is pin-compatible with its predecessor 
the R4400PC™ and uses the same instruction set. It provides 
complete upward application-software compatibility with the 
IDT RISControlier™ family. The R4600 maximizes the perfor­
mance by implementing large on-chip two-way set associa­
tive caches, a five stage pipeline with fewer stalls and an early 
restart mechanism for cache refills during data cache misses. 

This Technical Note addresses the initialization of both the 
instruction and data caches. It includes the basic assembly 
code needed to do this task and also addresses any issues 
pertaining to cache initialization. 

THE R4600 CACHES 

ORGANIZATION OFTHE PRIMARY DATA 
CACHE (D-CACHE) 
2928272625 2423 

PTag 

1 1 1 1 2 24 
71 64 63 

DataP 

DataP 

DataP 

DataP 

8 

F 
Figure 2: Data Cache Line Format 

FIFO Replacement Bit 

( 

Data 

Data 

Data 

Data 

64 3127 drw02 

The R4600 contains two 16KByte caches, one for instruc- W' Even parity for the write-back bit 
Write-back bit (set if cache line has been written) 
Even parity for the PTag and CS fields 
Primary cache state: 
o = Invalid, 1 = Shared, 
2 = Clean Exclusive, 3 = Dirty Exclusive 

tions and the other for data. Both caches are two-way set W 
associative with 8 word (32-byte) line sizes. The caches are P 
virtually indexed (part of the virtual address is used to index CS 
into the cache array) and physically tagged (the tag in the 
array is compared with the physical address to determine a hit 

PTag Physical tag (bits 35:12 of the physical address) 
or miss). 

ORGANIZATION OF THE PRIMARY INSTRUC­

TION CACHE (I-CACHE) 
Each line of primary I-cache data (although it is actually an 

instruction, it is referred to as data to distinguish it from its tag) 
has an associated 28-bit tag that contains a 24-bit physical 
address, a single valid bit, a reserved bit, a single parity bit and 
the FIFO replacement bit. Word parity is used on I-cache data. 

Figure 1 shows the format of a primary I-cache line. 
2726252423 

PTag 

1 1 1 1 24 65 64 63 
DataP Data 
DataP Data 
DataP Data 
DataP Data 

2 64 

o 

( 

3127 draw 01 

PTag 
V 
F 
P 
DataP 
Data 

Physical tag (bits 35:12 of the physical address) 
Valid bit 
FIFO Replacement Bit. Complemented on refill. 
Even parity for the PTag and V fields 
Even parity; 1 parity bit per 32-bit word of data 
Cache data 

Figure 1: Instruction Cache Line Format 

DataP Even parity for the data; 1-bit per byte 
Data Cache data 

Each line of primary D-cache data has an associated 30-
bit tag that contains a 24-bit physical address, 2-bit cache line 
state, a write-back bit, a parity bit for the physical address and 
cache state fields, a parity bit for the write-back bit and the 
FIFO replacement bit. 

Figure 2 shows the format of a primary D-cache line. 

CACHE INITIALIZATION 

CACHE STATE DURING RESET 
The contents of the primary caches are undefined at the 

end of the reset sequence. Not only are the tags in an 
undefined state but the data arrays are also undefined. It is 
therefore necessary to properly initialize both the TAG and 
Data arrays before the caches are used. Properly initialized 
means: 1) there is valid parity, tag data and array data and 2) 
the tag is in the invalid state. This task is further complicated 
by the 2-way set associativity of the caches in that the system 
designer must make sure that both sets are initialized cor­
rectly. 

This was the reason that the CACHE instruction was 
defined. It allows the kernel to perform the tasks of cache 
initialization and maintenance. There are two basic types of 
CACHE instructions: indexed and hit. The indexed operations 
use part of the virtual address to specify a particular cache 
block (VA [12:5]) and VA[13] to specify a particular set. The 
"hit" operation accesses the specified cache as normal data 

The lOT logo Is a registered trademark and A4400. A4600. Orion. and AISControlier are trademarks 01 Integrated Device Technology. Inc. 

192 



R4600N CACHE INITIALIZATION 

references and performs the specified operation if the cache 
block contains valid data with the specified physical address (a 
hit). If both sets are invalid or contain different addresses(a 
miss), no operation is performed. 

PRIMARY DATA CACHE INITIALIZATION 
It is in general much simpler to test the data cache than the 

instruction cache. One reason for this is that if the data cache 
read fails, the program can still continue where as an instruc­
tion cache failure can result in the program getting lost and not 
finding its way back to the correct code. The TagHi and Taglo 
registers are used for managing the tags. The format for the 
Taglo and TagHi registers is shown in figure 3. 

31 87 6 5 3 2 1 0 

Taglo I PTagLo I PState I RWNTI FI 0 I pi 
24 2 3111 

31 0 

TagHi I 0 I 
~ 

Field Description 3127 drw03 

PTagLo Specifies the physical address bits 35:12 
PState Specifies the primary cache state 
P Specifies the primary tag even parity bit 
F The FIFO bit used to implement FIFO refill of the cache 
RWNT ReadlWrite bits required for Windows NT 
o Reserved. Must be written as 0; returns 0 when read 

Figure 3: TagHi and Taglo Format 

The basic procedure to initialize the data cache is to first 
turn off error checking (if not already off). Next, use the Taglo 
and TagHi registers along with the CACHE instruction to place 
the known good tag into the array (rememberto get both sets). 
Set the Taglo and TagHi both to zero. Next, the base address 
and loop counter are setup. The base address is where known 
good (initialized) data is loaded from and the loop counter is 
an indicator of when the procedure is finished. Now, invalidate 
all the tags using the Index_Store_ Tag CACHE instruction 
(again on both sets). Next, place known good data into the 
data array using a load word instruction (because both sets 
are now invalid, the result is block reads from memory for each 
load). Finally, re-invalidate the tags. 

1 : 

2: 

Example code is shown in Table 1. 

Ii r2, Ox8000_0000 
Ii r25,255 
mtcO rO, CO_TAGlO 

1* Setup base address"' 
1* Setup loop counter to # lines"' 
I*Setup Taglo to invalidate tags "' 

cache Ox9, OxO(aO) 1* Index Store Tag - SetO "' 
cache Ox9, Ox2000(aO) 1* Index Store Tag - Set1 "' 
Iw rO, OxO(r2) 1* clear dirty bits and set data and parity"' 
Iw rO,Ox2000(r2) 1* to known good values "' 
cache Ox9, OxO(aO) 1* Index Store Tag - Seta "' 
cache Ox9, Ox2000(aO) 1* Index Store Tag - Set1 "' 
addu r2, Ox20 1* increment address pointer "' 
bgtz r25, 1 b 1* see if loop done "' 
addi r25, -1 1* decrement loop counter"' 

Table 1: Data Cache Initialization 

193 

TECHNICAL NOTE TN-22 

PRIMARY INSTRUCTION CACHE 
INITIALIZATION 

The primary Instruction cache is initialized in a similar 
manner. Because there is no way for a load to place data into 
the I-cache data array directly, a CACHE operation is provided 
("Fill_I") to allow for data to be placed in the I-cache data 
array from memory. 

The basic procedure to initialize the I-cache is to first turn 
off error checking (if not already off). Next, use the Taglo and 
TagHi registers along with the CACHE instruction to place the 
known good tags into the array (remember to get both sets). 
Set the Taglo and TagHi both to zero. Next, the base address 
and loop counter are initialized. The base address is where 
known good (initialized) data will be loaded from and the loop 
counter indicates when the procedure is done. Now, invali­
date all the tags using the Index_Store_ Tag CACHE instruc­
tion (again on both sets). Next, place known good data into the 
data array using Fill_I CACHE instruction (because both 
sets are now invalid, the result is block reads from memory for 
each Fill_I instruction). Finally, re-invalidate the tags. 

Example code is shown in Table 2. 

1: 
mtcO rO, CO_TAGlO 1* Setup Taglo to invalidate "' 
Ii r2, Ox8000_0000 1* Setup base address "' 

r25,255 1* setup loop counter to # lines"' 
2: 

cache Ox8, OxOO(r2) 1* Index Store Tag, Seta "' 
cache Ox8, Ox2000(r2) 1* Index Store Tag, Set1 "' 
cache Ox14,OxOO(r2) 1* fillicache data from memory "' 
cache Ox14,Ox2000(r2) 1* fillicache data from memory *' 
cache Ox8, OxO(aO) 1* Index Store Tag - SetO *' 
cache Ox8, Ox2000(aO) 1* Index Store Tag - Set1 *' 
addu r2,Ox20 1* increment address painter "' 
bgtz r25,1b 1* see if loop done *' 
addi r25, -1 1* decrement loop counter "' 

Table 2: Instruction Cache Initialization 

CONCLUSION 
The R4600 is a high-performance CPU and achieves this 

through several methods, one is using 2-way set associative 
caches. The use of set associative cache adds some steps to 
the initialization of the cache but help is provided with the 
CACHE instructions. Also, to avoid problems, one must make 
sure that the caches are correctly initialized in both the tag and 
the data arrays with valid data in the tag, parity and data array 
and that the state of the line is set to invalid. 



G I DT79R4600Tht IR4400™ TECHNICAL 

"OUTSIDE-SPECS" NOTE 
TN-23 

DIFFERENCES 
Integrated Device Technology, Inc. 

By Robert Napaa 

INTRODUCTION 
The I0T79R4600'" Orion'" RISC microprocessor is a full 

64-bit architecture that brings non-desktop performance at a 
fraction of the price. It incorporates advanced power manage­
ment techniques to lower the peak and typical power con­
sumptions. It features an impressive performance at a rela­
tively low power with about 35 SPECint92IWatt. With its low 
power and high performance, the R4600 supports a large 
base of processor applications, including 32-bit Windows™ 
NT desktop or notebook systems. It is well suited for a 
multitude of embedded applications including laser printers, 
color printers, color X-terminals, routers, data communica­
tions, disk arrays and set-top cable boxes. 

The R4600 is pin compatible with its predecessor the 
R4400PC'" and uses the same instruction set. It provides 
complete upward application-software compatibility with the 
lOT RISController™ family. The R4600 maximizes the perfor­
mance by implementing large on-chip two-way set associa­
tive caches, a five stage pipeline with fewer stalls and an early 
restart mechanism for cache refills during data cache misses. 
The power saving is implemented through an intelligent power 
management scheme which turns-off the power from the 
currently unused sections of the part. A standby mode is also 
available through software control which shuts down the 
internal clocks and freezes the pipeline, thus reducing the 
consumed power drastically. 

This Technical Note addresses the differences between 
the R4600 and the R4400PC. It mainly highlights the subtle 
differences that might cause system incompatibilities when 
swapping the two parts. 

NOT AN R4400PC CLONE 
The lOT R4600 is a independent design that implements 

the MIPS-III Instruction Set Architecture (ISA). It is not an 
R4400PC clone; it doesn't use the R4400PC design data base 
or internal architecture. It is a complete new design that 
implements major internal architectural differences to achieve 
higher performance over the R4400PC with a smaller die area 
and a lower power consumption. It also implements additional 
bus interface protocols to speed the main memory interface 
and improve the overall performance of the system. The core 
of the R4600 is fully static and implements several power 
management techniques to reduce the overall system power 
consumption. The integer and the floating-point execution 
units of the R4600 share some of the internal resources ( such 
as the multiplier and the divider) to reduce the die size and the 
power requirements. 

The R4600 is designed to maintain full compatibility (hard­
ware and software) with the R4400PC but with a better 

execution engine and bus interface protocol to enhance the 
overall system performance. 

COMPATIBILITY WITH THE R4400PC 
The R4600 is plug, pin and software compatible with the 

R4400PC. This compatibility is guaranteed for systems that 
are designed to the specifications of the R4400PC data sheet 
("Within-Specs"). For such systems, the R4600 is a one-to­
one replacement of the R4400PC. Software applications 
should execute without modifications and the hardware plat­
form should be used as is. However, even for systems 
designed "Within-Specs", there are some differences be­
tween the R4600 and the R4400PC that the system designer 
and/or the code developer must be aware off. These differ­
ences ,are well documented in the data sheet of the R4600. 
These differences are mainly due to the different 
microarchitecture of the two devices, their implementation 
and their behavior. 

In systems that violate the R4400PC or the R4600 data 
sheet speCifications ("Outside-Specs"), the behavior of the 
two parts might be (and most of the time will be) completely 
different. For example, systems which rely on empirical obser­
vations of the R4400PC behavior might not run properly with 
an R4600. These situations create serious systems incompat­
ibilities for the system designers and/or the code developer. 

DIFFERENCES "WITHIN-SPECS" 
The differences "Within-Specs" between the two parts are 

primarily due to the different microarchitectures. All these 
"Within-Specs" differences are well documented in the data 
sheet of the R4600. These differences are not considered 
"bugs" and will not be modified. Systems that are designed to 
support both parts interchangeably must take these differ­
ences into account. The hardware platform has to be de­
signed in a way to take advantage of the additional bus 
capabilities of the R4600 for example. Similarly, the software 
applications have to be able to take advantage of the two-way 
set associative primary caches and a shorter pipeline. With 
these differences in mind, it is possible to design systems that 
support both parts seamlessly. 

Architecture 

There are several architectural differences between the 
R4600 and the R4400PC. These architectural differences 
enable the R4600 to improve the overall system performance 
by 20% to 30% compared to R4400PC based systems. The 
internal architectural differences include different implemen­
tation of the primary caches, the pipeline, the Co-Processor 
o and the Co-Processor 1. These implementations allow the 
R4600 to achieve a higher performance on the same applica-

The lOT Logo Is a registered trademark and RISControlier and R4400, R4600, and Orion are trademarks of Integrated Device Technology, Inc. 
The MIPS Is a registered trademark and R3000 and MIPS-lll are trademarks of MIPS Computer Systems, Inc. 
Windows Is a reglslered trademark of Microsoft Corporation, 

194 



R4600N IR4400N ·OUTSIDE-SPECS· DIFFERENCES 

tions. Furthermore, the R4600 bus interface unit is designed 
to maximize the bus utilization through the added bus write 
protocols. These new protocols increase the overall system 
performance without relying on re-compilation. 

Implementation 
There are very few differences (between the R4600 and the 

R4400PC) in the implementation of the MIPS-III ISA set. 
Mainly, the R4600 conforms to the MIPS specifications re­
garding the timing hazards when accessing some of the Co­
processor 0 registers. 

Behavior 
The R4600 matches the behavior of the R4400PC even 

when this behavior is different from the published MIPS 
architectural specifications. 

DIFFERENCES "OUTSIDE-SPECS" 
The R4600 is not an R4400PC clone. The internal logic of 

the R4600 is completely different from that of the R4400PC. 
This is mainly due to the differences in the microarchitecture 
between the two parts and the added bus protocols on the 
R4600. This means that outside the specifications of the data 
sheet ("Outside_Specs") of both parts, the behavior of the 
R4600 can be completely different from that of the R4400PC. 
This different behavior might cause serious systems incom­
patibilities when swapping the two parts. Systems designers 
must be very careful not to violate the data sheet specifica­
tions of either part to ensure total compatibility and avoid 
unpleasant surprises. 

Definition of "Outside-Specs" 
The definition of "Outside-Specs" refers mostly to the 

violations of the data sheet specifications of the R4600 or the 
R4400PC. The most common cases are the violation of the 
setup and/or hold time of the data or control signals. Another 
common one is the misinterpretation of the timing diagrams. 
There are other more subtle violations that might be harder to 
detect. For example asserting the control signals to the CPU 
(such as -Validln) for more than the required time can cause 
the state machine of the bus interface unit to lose synchroni­
zation. Further, any "between-the-Iines" interpretation of the 
R4400PC or the R4600 data sheets can also become a 
violation of the specs. This list is not all inclusive and should 
be used a guideline to possible violations or misinterpretations 
of the data sheets of either part. 

Why different behavior? 
The internal logic of the two parts is completely different 

because of the architectural differences between them. Such 
architectural differences include different primary caches, 
pipeline, Co-Processor 0 and Co-Processor 1. Mainly, the 
two-way set-associative primary caches, support for data 
streaming, and the five stage pipeline on the R4600 require a 
total different set of internal logic and state machine. Further, 
the additional bus write protocols, such as pipeline write and 

TECHNICAL NOTE TN-23 

write re-issue require more internal logic than the bus inter­
face unit of the R4400PC. 

The two parts will, most probably, react differently to 
erroneous stimulus and to violations of the data sheet speci­
fications. The scope of the reaction of each part is not 
guaranteed and depends on the internal state of the logic. 

The internal logic architecture of the R4600 is designed to 
be compatible with the specifications of the R4400PC data 
sheet but will respond differently to deviations from these 
specifications. 

First Symptoms 
The very first symptoms appear when the two parts are 

swapped in a system and the system doesn't work. This 
usually indicates a "Within-Specs" incompatibility rather than 
an "Outside_Specs" one. Such problems are usually easily 
traced to improper S/W initialization of the internal register or 
caches. Similarly, incorrect reset vectors or the wrong usage 
of any part can cause this type of problems. These problems 
are easily fixed when using the proper initialization sequence 
or the proper reset vector and so on. 

On the other hand, "Outside-Specs" problems are much 
harder to trace, to determine and to solve. They are usually 
very time consuming and very frustrating. The usual scenario 
is that the system works fine with either CPU. However, the 
system might crash from time to time when using one part and 
not the other. Most of the time this is a clear indication that 
there is a data sheet violation somewhere in the system. It 
could be hardware or software. This behavior of the system is 
in line with the expectation that two parts will respond differ­
ently to erroneous stimulus. One part could cope perfectly with 
violation of the specs while the internal state machine of the 
other is being driven to an unknown, undefined or undesired 
state. Such problems are the hardest to find and usually 
require additional searching and experimenting to be re­
solved. 

CONCLUSION 
The R4600 is plug and software compatible with the 

R4400PC "Within-Specs". However, even "Within-Specs", 
there are some differences that are well documented in the 
data sheet of the R4600 and the errata of the different 
revisions of the device. These differences are mainly in the 
microarchitecture of the part. System designers and software 
developers must be aware off these differences and take them 
into considerations when designing systems that will support 
both parts. These differences are not considered "bugs" and 
will not be modified. 

On the other hand, if the specifications of the data sheet are 
violated, the behavior of the two parts will be different, creating 
incompatibilities when swapping the two parts. System de­
signers and software developers must avoid violating the 
specs to ensure a proper design and minimize the time 
discovering the incompatible modes between the two parts. 

195 



G® HEATSINK ISSUES FOR 
MICROPROCESSOR PRODUCTS TECHNICAL NOTE 

WITH INTEGRAL SLUG TN-25 

Integrated Device Technology, Inc. 

SUMMARY: 
Designing in highly integrated, high clock rate microprocessors such as the R4600 requires careful consideration of thermal 

management. To ease this burden lOT utilizes an integral heat slug technology in its pin grid array packages. This heat slug 
is made of thermally conductive material such as CuW which is embedded into the ceramic base of the package. I n the process 
of selecting a heat sink, designers should be aware of some of the constraints associated with industry standard PGA's to avoid 
potential mechanical problems while affixing heat sinks to the integral slug. 

Heat slug is at Vcc potential: 
The Integral heat sink used in 179, 161, and 447 PGA packages allows maximum heat transfer (minimum theta jc) from 

the back of the die to the external surface of the heat sink. This puts the heat slug at Vcc potential which must be taken into 
consideration when selecting external finned heat sinks and EMI shields. 

Clips and EMI shields can damage package edge: 
Industry standard ceramic package construction techniques used by leading package vendors for electrolytic nickel and 

gold plating of internal traces leaves microscopically fine pattern of electrically active metallic contacts on all four edges of the 
ceramic package body. Sufficient abrasion of the package edges can result in unintentional electrical connection between the 
internal traces of the package and any metallic material touching the package edge; thus, the use of a metallic clip to attach 
an external heat sink to the package or a heat sink design that contacts the edges of the package is not recommended and 
must be taken into consideration for heat sink selection and attachment method. 

Recommendation: 
Avoid use of heatsink clips or EMI shields which contact the PGA package edge. Consult your heatsink vendor about the 

proper heat sink for you application. 

196 



t;J® ORIONTM SYSAD OUTPUT TECHNICAL 

TIMING ISSUES NOTE 
TN-26 

Integrated Device Technology. Inc. 

by Robert Napaa 

INTRODUCTION 
The lOT Orion™ Family of 64-bit microprocessors supports 

a wide variety of processor-based applications, including 32-
bit Windows NT desktop or notebook systems and embedded 
systems. The Orion™ family includes several members such 
as the R4600, the R4700, and the R4650. New products are 
continuously under development and introduced regularly. 

This Technical Note focuses on the SysAD output timing 
parameters for the Orion™ family which appear in the "AC 
Electrical Characteristics System Interface Parameters" tables 
in the data sheets for these products. 

BACKGROUND 
The data sheets for the different devices in the Orion™ 

Family list the system interface AC parameters in the "System 
Interface Parameters" table. This table lists the AC param­
eters that specify the output timing forthe data movement from 
the CPU to the external memory (tOM and too)' It also lists the 
AC parameters that specify the input timing for the data 
movement from the main memory to the CPU (tos and tOH)' The 
tos parameter specifies the minimum data setup time that the 
system must guarantee before the rising edge of SClock for 
the CPU to sample the input data properly. Similarly, the tOH 
parameter specifies the minimum data hold time that the 
system must guarantee after the rising edge of SClock to 
ensure that the CPU sampled the input data properly. 

SCLock ~ ~ (R4600/R4700~Master 
Clock R4650) 

I 

TCLock(Or Equivalent) ~ ~ 

RCLock(Or Equivalent) 

DATA OUTPUT TIMING PARAMETERS 
There are two parameters, tDM and too that specify the AC 

parameters forthe output signals (address and data) provided 
by the CPU. 

Definition 

The output signals (address and data) from the CPU 
become stable a minimum of tOM ns and a maximum of too ns 
after the rising edge of the Clock (the SClock in the case of the 
R4600/R4700 and the MasterClock in the case of the R4650). 
This drive-time is the sum of the maximum delay through the 
processor output drivers together with the maximum clock-to­
a delay of the processor output registers. 

tDO 
too specifies the maximum time it takes for the data issued 

from the CPU to reach valid signal levels (1.5V) after the rising 
edge of the Clock (SClock in the R4600/R4700 case and 
MasterClock in the R4650 case). During that time frame, the 
external system should not sample these lines because the 
voltage levels might chane before the final levels are reached. 
The too parameter is specified by the maximum values in the 
"System Interface Parameters" table. The two values listed 
provide a range that corresponds to the levels of the output 
drivers strength programmed during the boot sequence of the 
CPU. Figure 1 illustrates the too parameter. 

/ ~ 

/ ~ 

SYSAo----------~I-.--~~~---O-A-TA---------------------------3-2-09-dm---Ol 
tOM 

Figure 1. The too Parameter 

The lOT Logo is a registered trademark and RISControlier. R3051 and Orion are trademarks of Integrated Device Technology. tnc. 

197 



ORIONTM SYSAD OUTPUT TIMING ISSUES 

tOM 
tOM specifies the minimum time it takes for the data issued 

from the CPU to reach valid voltage levels (1.5V) after the 
rising edge of the Clock (SClock in the R4600/R4700 case and 
MasterClock in the R4650 case). During that time frame, the 
voltage levels on these data lines might change before the 
final levels are reached. The tOM parameter is specified by the 
minimum values in the "System Interface Parameters" table. 
The two values listed provide a range that corresponds to the 
levels of the output drivers strength programmed during the 
boot sequence of the CPU. Figure 2 illustrates the toMparam­
eter. 

The tOM parameter should not be considered as data hold 
time from the CPU (there is no parameter that specifies the 
data hold time from the CPU to the system). The tOM parameter 
specifies when the voltage levels have stabilized not when the 
CPU starts changing the data. This actually implies that the 
CPU could start changing the data earlier than the tOM value. 

Data Sheet Testing 

The devices are tested to data sheet specifications prior to 
shipment. On the tester, only the too parameter is measured 
and characterized for both the minimum and maximum val­
ues. The tOM parameter is not measured and is only guaran­
teed by design. 

I 
SCLock 

~ ~ (R4600/R4700JMaster 
Clock R4650) 

I 
TCLock(Or 
Equivalent) ,{ ~ 
RCLock(Or 
Equivalent) 

TECHNICAL NOTE TN-26 

Practical Considerations 

For system designers, the parameter that should be taken 
into consideration is too which specifies the maximum time 
before the data is valid from the CPU. The tOM parameter in 
reality should not be used, since it specifies only the minimum 
time it might take the data to become valid. The tOM parameter 
should not be used as the data hold time from the CPU. 

When using the R4600/R4700 processors, the RClock 
should be used to sample the output signals from the proces­
sor. The RClock is leading SClock by 25% and thus offers the 
neccessary hold time for the external logic. When using the 
R4650 a similar clock to the RClockshould be generated form 
the input clock distribution tree to sample the processor output 
signals. A detail explanation on this topic is available in the 
Application Note titled "Adapting an R4600 design to the 
R4650". 

CONCLUSION 
The "System Interface Parameters· tables in the data 

sheets for the Orion™ Family of microprocessors provide the 
necessary AC parameters for the interface with the CPU. The 
tos and tOH parameters specify the timing for the data move­
ment from the system into the CPU. The tOM and too param­
eters specify the data movement from the CPU to the system. 
The too parameter specifies the maximum time for the data to 
become valid while the tOM parameter specifies the minimum 
time. The tOM parameter should not be treated as the data hold 
time from the CPU. 

/ ~ 

/ ~ 

Sys 

9 DATA AD 

.- 3209 drw02 

tOO 

Figure 2. The tOM Parameter 

198 



(~5 USING THE IDT79R3051™ APPLICATION 
WITH THE HP16500 LOGIC NOTE 

ANALYZER AN-93 
Integrated Device Technology, Inc. 

by Andrew Ng 

INTRODUCTION 
The IDT79R3051™ RISControlier™ is a highly integrated, 

high-performance MIPSTM R3000™ instruction set compat­
ible CPU that minimizes system cost and power consumption 
across a wide variety of embedded applications. The R3051 
includes 4kB - 8kB of instruction cache, 2kB of data cache, 
4-deep read and write buffers, on-chip DMA arbitration, a 
simple external bus interface, as well as the core R3000A 
execution engine - all in a single chip 84-pin package. 
However, in today's marketplace, the technical features of a 
microprocessor are not enough to guarantee a successful 
product. A new CPU such as the R3051 must also have a 
large base of software applications, and very importantly, 
adequate hardware and software development and debug 
tools. The R3051 family already has a large base of software 
applications and a large set of development tools because of 
its R3000A instruction set compatibility and also because of its 
widespread market acceptance. The use of just one of these 
tools, the IDT7RS364 Disassembler for the HP16500 Logic 
Analyzer will be explained here. 

THE IDT7RS364 DISASSEMBLER AND THE 
HP16500 LOGIC ANALYZER 

The IDT7RS364 Disassembler for the HP16500 Logic 
Analyzer is a useful tool meant to ease the task of debugging 
software run on R3000-based Target System Boards. Logic 
analyzers are inexpensive, general purpose debug tools 
which do not have the power of in-circuit emulators to actively 
control and simulate target system CPU and memory 
behavior. However, logic analyzers do provide a useful 
subset of in-circuit emulator debug capabilities by allowing an 
engineer to observe and analyze the digital circuit behavior of 
the target system. 

The I DT7RS364 Disassembler consists of a software pack­
age that when loaded into the HP16500, pre-processes and 
formats the state trace listings ofthe Logic Analyzer. As shown 
in Figure 1, the HP16500 allows the engineer to capture the 
CPU's executed hex/binary machine opcodes in a typical 
Logic Analyzer State Trace Listing format. The user can set 
multilevel trace traps to capture the area of interest. As shown 
in Figure 2, with the addition of the I DT7RS364 Disassembler, 
the hex machine opcodes are automatically decoded and 
displayed in R3000 assembly code level mnemonic format. 
Thus the readability and usefulness of the state trace list 
display screen of the Logic Analyzer are greatly improved. 

( Stateffiming E ) ( Listing 1 ) ( Invasm ) ( Print ) ( Run) 

ADDR II DATA II STAT II Time 

Hex II Hex II Hex II Absolute 

-6 1FCOOOOO OBFOO088 0010 0 s 
-5 1FCOOO04 00000000 0010 760 ns 
-4 1FC00220 3C020010 0010 1. 52 us 
-3 1FC00224 40826000 0010 2.24 us 
-2 1FC00228 40806800 0010 3.00 us 
-1 1FC0022C 3C02AOOO 0010 3.76 us 

0 1FC00230 3C08AAAA 0010 4.52 us 
1 1FC00234 35085555 0010 5.24 us 
2 1FC00238 AC480000 0010 6.00 us 
3 1FC0023C AC400004 0010 6.76 us 
4 00000000 AAAA5555 0000 7.40 us 
5 1FC00240 8C490000 0010 7.88 us 

00000004 00000000 0000 8.52 us 
7 1FC00244 00000000 0010 9.00 us 
8 00000000 AAAA5555 0010 9.64 us 
9 1FC00248 11280003 0010 10.32 us 

2883 drw01 

Figure 1. R3051 Address/Data Trace List on a Logic Analyzer 

199 



USING THE IDT79R3051™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-93 

( Stateffiming E ) ( Listing 1 ) ( Invasm ) ( Print ) ( Run) 

AOOR II R3000 Mnemonic II STAT II Time 

Hex II hex II Hex II Absolute 

-6 1FCOOOOO J Ox1FC00220 0010 0 s 
-5 1FCOOO04 Nap 0010 760 ns 
-4 1FC00220 LUI vO,Ox0010 0010 1.52 us 
-3 1FC00224 MTCO vO,$12 0010 2.24 us 
-2 1FC00228 MTCO zero,$13 0010 3.00 us 
-1 1FC0022C LUI vO,OxAOOO 0010 3.76 us 

0 1FC00230 LUI to,OxAAAA 0010 4.52 us 
1 1FC00234 ORI to,tO,Ox5555 0010 5.24 us 
2 1FC00238 SW to,OxOOOO(vO) 0010 6.00 us 
3 1FC0023C SW zero,OxOO04(vO) 0010 6.76 us 
4 00000000 STORE DATA OxAAAA5555 0000 7.40 us 
5 1FC00240 LW tl,OxOOOO(vO) 0010 7.88 us 
6 00000004 STORE DATA OxOOOOOOOO 0000 8.52 us 
7 1FC00244 Nap 0010 9.00 us 
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us 
9 1FC00248 B Ox1FC00258 0010 10.32 us 

2883 drw02 

Figure 2. R3051 Instruction Disassembly on the HP16500 Logic Analyzer 

CIk2xln, Reset Oiag(1:0) .. -- ~ --AlO(31:0) FCT373T A(31 :4), BE(3:0) .. 

LATCH 
.. 

ALE .. ~ .. 

Int(5:3), Slnt(2:0) .. ... 
SBrCond13:2) R3051 MEMORY 

_ ... 
RISControl/er SYSTEM ... 

BrCond(1 :0) 
FCT623T 0(31:0) 

--"" TRANS-... - .. 
CEIVER 

BusError .. ... IIIIIIIIIIIIIII -RdCEn, Ack -'" 
Rd, Wr, BurstlWrNear, OataEn, Addr(3:2), SysClk ... 

BusReq BusGnt .. 
2883 drw03 

Figure 3. Typical R3051 System 

200 



USING THE 1DT19R3051™ WITH THE HP16500 LOGIC ANALYZER 

Connecting the R3051 to the HP16500 Pod Sets 
Before the Disassembler can be used, the correct connec­

tions between the R3051 and the HP16500 must be made. 
The Disassembler requires five 16-channel probe pod sets. 
The Disassembler expects that the Pod Probe connections 
follow its interface protocol so that the pre-processing can 
correctly interpret the address, data, and status lines. The 
Disassembler typically uses 32 Address lines, 32 Data lines, 
a Read line, and a'Write line. 

In th~ypical R3051 system as shown in Figure 3, the 
R3051 l s Rd output is used as the read line and the R3051 's Wr 
output is used as the write line. The Disassembler uses the 
read and write signals as clocks to strobe the address and 
data into the Logic Analyzer. Since the top speed of the State 
traces on the HP16500 is 35 MHz and the fastest possible 
memory cycle is 2 clocks, the Disassembler can easily sup­
port 40 MHz R3051 CPUs and has a theoretical limitation of 
70 MHz. 

POD 5 POD 4 POD 
chan sig chan sig chan 

15 X 15 AlD(31) 15 

14 X 14 AlD(30) 14 

13 X 13 AlD(29) 13 

12 Gnd 12 AlD(2S) 12 

11 X 11 AID (27) 11 

10 Note 2 10 AlD(26) 10 

9 X 9 AlD(25) 9 

S X S AID (24) S 

7 X 7 AlD(23) 7 

6 X 6 AID (22) 6 

5 X 5 AlD(21) 5 

4 Wr 4 AlD(20) 4 

3 X 3 AlD(19) 3 

2 X 2 AlD(1S) 2 

1 X 1 AlD(17) 1 

0 X 0 AlD(16) 0 

NClk MClk Rd LClk 

APPLICATION NOTE AN-93 

The Address lines can be gathered from the Address Latch 
outputs and Addr(3:2). Not all 32 address lines need to be 
attached, as the user can format the address line's MSB 
channel probes to not show up in the state trace listing if 
desired. In such a case, the user can use the extra channel 
probes for other purposes. 

In general, Data lines can be gathered from the AJD bus. 
Some systems, with only one set of Data Transceivers, can 
gather the data from the memory side of the Data Transceivers 
in order to reduce AJD bus loading. The R3051 connections to 
the five HP16500 Channel Probe Pod sets are listed in Table 1. 

The Disassembler has three status lines, Write, AccTyp(2) 
and AccTyp(O). The R3051 's Wr output can be used as the 
write line so that the Disassembler can distinguish between a 
read and a write cycle. AccTyp(2) and AccTyp(O) are optional 
connections for cached code and in general should be grounded 
or at least left unconnected. The optional use of AccTyp(2) 

3 POD 2 POD 1 
sig chan sig chan sig 

AlD(15) 15 A(31) 15 A(15) 

AlD(14) 14 A(30) 14 A(14) 

AlD(13) 13 A(29) 13 A(13) 

AlD(12) 12 A(2S) 12 A(12) 

AlD(11) 11 A(27) 11 A(11) 

AlD(10) 10 A(26) 10 A(10) 

AlD(9) 9 A(25) 9 A(9) 

AlD(S) S A(24) S A(S) 

AlD(7) 7 A(23) 7 A(7) 

AID (6) 6 A(22) 6 A(6) 

AlD(5) 5 A(21) 5 A(5) 

AID (4) 4 A(20) 4 A(4) 

AlD(3) 3 A(19) 3 Addr(3) 

AID (2) 2 A(1S) 2 Addr(2) 

AlD(1) 1 A(17) 1 Gnd 

AID (0) 0 A(16) 0 Gnd 

KClk JClk Wr 
2883 tbl 01 

Table 1. R3051 Default Pod Connections on the HP16500 logic Analyzer 

NOTES: 
1. Master Clock Fonnat: Jt + Mt 
2. POD5(12) is AccTyp(2) and POD5(1 0) is AccTyp(O). If AccTyp(2) is grounded then AccTyp(O) is not used by the Disassembler and can be used for other 

purposes. See text for further explanation. 
3. A(3~ :4) are connected to the Address Latch outputs. The rest of the Signals are connected to R3051 outputs. X's denote unused probes that can be 

assigned by the user. 

201 



USING THE IDT79R3051™ WITH THE HP16500 LOGIC ANALYZER 

and AccTyp(O) will be explained in more detail in the Cached 
Code/Data section. The 1'6-channel status pod has 13 un­
used channels that can be used to display other signals, e.g., 
the Byte Enables. 

To a limited extent, the default ordering of the channel probe 
connections can be changed by the user. The relative ordering 
of the bits must still occurfrom MSB to LSB forthe address/datal 
status bus labels such that the Pod Number and Channel 
Numbers go from MSB to LSB. An example of reformatting the 
Pod interface is shown in Table 2 and Figure 4. The example 
in Table 2 and Figure 4 also demonstrates the use of the 
HP16500's demultiplexed clock feature. When using the 
demultiplexed clock, the address and data lines can use the 
same probes. This allows both the address and data to be taken 
from the multiplexed AlD(31 :0) bus. The address is slave-

POD 5 POD 4 POD 
chan sig chan sig chan 

15 15 15 

14 14 14 

13 13 13 

12 12 12 

11 11 11 

10 10 10 

9 9 9 

8 8 8 

7 ND(31) 7 AlD(23) 7 

6 ND(30) 6 AlD(22) 6 

5 ND(29) 5 AlD(21) 5 

4 ND(2S) 4 AlD(20) 4 

3 ND(27) 3 AlD(19) 3 

2 ND(26) 2 AlD(1S) 2 

1 ND(25) 1 AlD(17) 1 

0 ND(24) 0 AlD(16) 0 

NClk MClk Rd LClk 

APPLICATION NOTE AN·93 

clocked with ALE and the data is master-clocked with Wr or 
Rd. When using two clocks, only the 8 LSB probes on each pod 
can be used since the channels are internally multiplexed by the 
HP16500. Demultiplexed clocking is limited to 50 nsec master 
to slave clock recovery, which limits its use to 25 MHz CPU 
systems. 

The HP16500 allows an extensive number of mUlti-level 
traps and triggers so that the code trace for the area of interest 
can be found. Care should be taken when setting up trigger 
conditions. Sometimes when in the trace/trigger menu, the 
Disassembler format in the data field trigger condition can 
conceal a trap condition. Changing the Disassembler format 
temporarily to hex format while in the trigger menu can prevent 
such confusion. 

3 POD 2 POD 1 
sig chan sig chan sig 

15 15 X 

14 14 X 

13 13 X 

12 12 Gnd 

11 11 X 

10 10 Note 3 

9 9 X 

S 8 X 

AlD(15) 7 AlD(7) 7 X 

AlD(14) 6 AlD(6) 6 X 

AlD(13) 5 AID (5) 5 X 

AlD(12) 4 AlD(4) 4 Wr 

AlD(11) 3 AID (3) 3 Addr(3) 

AlD(10) 2 AlD(2) 2 Addr(2) 

AlD(9) 1 AlD(1) 1 Gnd 

AlD(S) 0 AID (0) 0 Gnd 

KClk ALE JClk Wr 
2883 tbl 02 

Table 2. Example of Reformatted Pod Connections 

NOTES: 
1. Master Clock Format: Ji +Mi 
2. Slave Clock Format: K0 
3. POD5(12) is AccTyp(2) and POD5{1 0) is AccTyp{O). If AccTyp(2) is grounded then AccTyp{O) is not used by the Disassembler and can be used for other 

purposes. See text for further explanation. 
4. On Master/Slave Pods, only the 8 LSB probes are actually connected. E.g., AlD{23:16) is connected to Pod4{7:0). 
5. X's denote unused probes that can be assigned by the user. 

202 



USING THE IDT79R305FM WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-93 

State/Timing Format 

Master Clock Slave Clock 
Ji+Mi K! 

Pods 

Label 

Pod 5 
Master I Slave 

7 .... 07 .... 0 

Pod 4 
Master I Slave 

7 .... 07 .... 0 

Pod 3 
Master I Slave 

7 .... 07 .... 0 

Pod 2 
Master I Slave 

7 .... 07 .... 0 

Pod 1 
Clock 

7 .... 07 .... 0 

ADDR 
DATA 
STAT 

******** ....... . ******** ....... . 

2883 drw04 

Figure 4. Example of Reformatted Pod Format 

When Running with Cached Code/Data 
All Logic Analyzers and Disassemblers can only capture 

external CPU memory accesses. Since the R3051 is capable 
of running code and accessing data in its internal caches, such 
accesses are not seen by the external memory system. Thus 
in order for the Disassembler to accurately reflect the com­
plete instruction/data flow, the R3051 must be run uncached. 

As the target system becomes more and more functional, 
it becomes necessary to begin running cached code and data. 
Running cached code/data will affect the Disassembler's 
accuracy in the following ways: 

Cached Instructions -
1. Instruction fetch i-cache hits are not seen. 
2. Only the last word of a cachable 4-word burst instruction 

i-cache miss will be seen. 

Cached Data Loads -
1. Data load d-cache hits are not seen. 
2. Only the last word of a cachable 4-word data block refill 

d-cache miss will be seen. 
3. If the load instruction was an i-cache hit (not seen) then 

the associated data fetch if seen will be listed as an 
instruction. The data fetch is assumed to be the second 
(due to pipelining) read cycle after the load instruction. 

Cached Data Stores -
1. Data stores are handled correctly, since the R3051 

maintains a write-through cache policy which ALWAYS 
updates main memory as well as the d-cache. 

2. Because the R3051 has a 4-word deep write buffer, a 
data store mayor may not occur on the second (due to 
pipelining) memory cycle following its instruction fetch. 
Multiple stores are always handled in the proper FIFO 
order, but each store may be interspersed with later 
instruction fetches. 

Other than running the software uncached, the following 
less intrusive methods may be used to help interpret cached 
code/data: 

1. Use the R3051 's testability mode to invoke the Force 1-
Cache Miss Mode. This will put all instruction fetches 
onto the external main memory interface so that the logic 
analyzer can see all of them. However, forced i-cache· 
misses mayor may not be 4-word burst reads. 

In general, 4-word burst reads can be displayed properly 
if a more complex read strobe is formatted: 

J clock: 
M clock: 
N clock: 

Ack== LOW 
RdCEn == LOW 
SysClk == positive edge triggered 

The HP16500 OR's level conditions together, OR's edge 
conditions together and AND's level conditions with edge 
conditions. Thus the above strobe clocks the state 
when: 

(SysClk == :;t:) AND [ (Ack == 0) OR (RdCEn == 0) ] 

This example clock setup is only applicable to systems 
that happen to bring Ack low at the same time RdCEn is 
low on 4-word burst reads or don't bring Ack low on 4-
word burst reads. Also 1/2 clock margin on the memory 
read access time is necessary in this example. Thus 
depending on the particular system design, variants of 
RdCEn, Ack, and SysClk can be combined or tempo- . 
rarily modified to create a 4-word read strobe and a write 
strobe. 

2. Latch the R3051 's Diag(1 :0) outputs with ALE. On 
external main memory reads, if LatchedDiag(1) == 1 
then the fetch is cachable and can be used as an 
indication that the state trace entry should be interpreted 
judiciously. When LatchedDiag(1) == 1, LatchedDiag(O) 
== 1 indicates a cachable instruction fetch and 
LatchedDiag(O) == 0 indicates a cachable data load. 

203 



USING THE IDT79R3051™ WITH THE HP16500 LOGIC ANALYZER 

LatchedDiag(1 :0) are the R3051 's equivalents of the 
R3000's AccTyp(2) and AccTyp(O). As such they can be 
connected to the Disassembler's AccTyp(2) and 
AccTyp(O) probes. This allows the Disassembler to 
differentiate between cached instructions and data so 
that they can be displayed properly. However, 
AccTyp(2) and Diag(1) are undefined for writes, e.g., 
when the write buffer is full or on partial word stores. So 
if the AccTyp(2) probe is used, in order for the 

Wr 

Diag(1) 

Diag(O) 

ALE 

R3051 Outputs 

I 

~~ 

FCT373 
or 

FCT841 

LATCH 

APPLICATION NOTE AN-93 

Disassembler to interpret write cycles correctly, 
LatchedDiag(1) needs to be AND'ed with Wr as shown in 
Figure 5, so that it is always low during write cycles. 

3. Use the Reset Mode Vector to set the R3051 to use 
single word data refills instead of 4-word data block 
refills. This will allow all 4 words on a data load d-cache 
misses to be seen. 

RdCache _~ ~ 
L 

AccTyp(2) 

AccTyp(O) 

Logic Analyzer Probes 

2883 drw05 

Figure 5. USing Dlag(1 :0) with the Disassembler 

( StatefTiming E ) ( Listing 1 ) ( Invasm ) ( Print )( Run ) 

( Markers ) Off 

DATA II ADDR II CLKN II BAWRRA II ALE II WRNRDN I 
Hex II Hex II Hex II Binary II Binary II Binary I 

274 8C490000 4 1 111110 0 11 
275 8C490000 0 0 111110 0 11 
276 00000000 4 1 110111 1 01 
277 00000000 4 0 110110 0 01 
278 00000000 4 1 110110 0 01 
279 00000000 4 0 110110 0 01 
280 00000000 4 1 110110 0 01 
281 00000000 4 0 110110 0 01 
282 00000000 4 1 110110 0 01 
283 00000000 4 0 110110 0 01 
284 00000000 4 1 110110 0 01 
285 00000000 4 0 100110 0 01 
286 00000000 4 1 100110 0 01 
287 00000000 4 0 111110 0 11 
288 1FC00240 4 1 111101 1 10 
289 1FC00240 4 0 111100 0 10 

2883 drw 06 

Figure 6. R3051 State Trace Listing using CIk2xln 

204 



USING THE IDT79R305FM WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-93 

Clk2xln 

SysClk 

ALE ------~;:-n\~----------~;==--
\_:_~ ______ --JI 

ND(31:0) 

Addr(3:2) 

-----4(~<Addr&BE»)..--~(Data Input>--C 

__________ ~><~~~--W-O-r-d-A-dd-r-eS-s---------~ 

\~ ____ -.JI 
2883 drw 07 

Figure 7. Choosing a Clock Edge 

Using State Trace Listings and 
Timing Waveforms 

The IDT7RS364 Disassembler is a good tool for easing the 
use of a Logic Analyzer when debugging a target system. 
However, sometimes, even lower level detail is needed to 
examine clock by clock behavior of particular bus cycles. The 
HP16500 performs this function in its State Analyzer mode by 
sampling with the CPU's system clock as shown in Figure 6. 
Because the state analyzer mode has a maximum speed of 35 
MHz, certain restrictions apply. Ideally because the R3051 
uses both edges of its SysClk output to generate control lines 
it is preferable to use Clk2xln or to clock on both edges of 
either SysClk or its buffered/inverted version SysClk. On the 
HP16500, high speed clocks should always use their ground 
shield on the probe to reference the input properly so that the 
probe does not sense signal overdrive. The edge of the 
referen.ce clock should be chosen carefully so that it ideally 
clocks Just before ALE de-asserts as shown in Figure 7. This 
allows the address to be seen along with the data on the 
multiplexed AID bus so that dedicated address lines probes 
are not required. When choosing a clock, keep in mind that the 
HP16500 has 10 nsec setup time and 1 nsec hold time relative 
to the clock. In addition, the HP16500's Time Tagging feature 
if used is limited to 16.67 MHz. 

Systems running with a Clk2xln over 35 MHz (17.5 MHz 
CPU) can either clock the State Analyzer mode less frequently 
or use the Timing Analyzer mode. When clocking less 
frequently, care must be taken to chose a clock edge that 
adequately strobes ALE during its high period so that the 
address can be determined. Because the R3051 only has a 
1/2 clock intercycle memory latency, Rd and Wr and other 
control lines may not be seen to de-assert between memory 
cycles when clocked at the SysClk frequency. 

The HP16500 Logic Analyzer's Timing mode displays 
signals in waveform format as shown in Figure 8 and is 
capable of internally generating a 100 MHz (10 nsec) sample 
clock. To maintain all the functional timing relationships 
relative to the Clk2xln, the timing mode allows asynchronous 
sampling up to 50 MHz CPU speed. The disadvantage of 
using the Timing mode is that the value of busses is hard to 
decipher when shown in waveform format. If necessary, 
HP16500 can be set up in its mixed mode display to display 
both state and timing modes on the same screen. 

205 



USING THE IDT79R3051™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-93 

( StatefTiming E) (Waveform 1) ( Print ) ( Run) 

I Sample period = 10.000 ns I 

CLKN 

ALE J n n 
WRNRDN 0 I I I I 
ACKS 0 U ~ 
WRNRDN 1 I 
ACKS U 
BAWRRA5 

A_D all II II II III II 
2883 drw08 

Figure 8. R3051 Timing Mode Waveform 

SUMMARY 
The useofthe HP16500andthe IDT7RS364 Disassembler Similarly, other R3000 software, compilers, as well as other 

is but one example of the availability and compatibility of developmenttoolssuchastheIDT7RS901IDT/sim ROMabie 
R3000 tools and software that can be used on the R3051. The Kernel/Boot Monitorcan also be used on R3051 systems with 
Disassemblerformats logic analyzer state traces into assem- little or no modification. 
bly level mnemonics to allow easier user interpretation. 

206 



t;)® USING THE IDT79R3051™ AND APPLICATION 

THE IDT79R3081™ WITH THE NOTE 
AN-111 

HP16500 LOGIC ANALYZER 
Integrated Device Technology, Inc. Supplement to Application Note AN-93 

By Gary Szilagyi 

INTRODUCTION 
In Application 'Note-93, the use of lOT's 7RS364 

disassembler with the HP16500 Logic Analyzer for the 
loT79R3051™ RISControlier™ family of CPUs was dis­
cussed in detail. However, the original versions of the 
disassembler were form-fitted for the R3000 CPU interface of 
a 32-bit non-multiplexed bus design. In orderto accommodate 
the high level of integration on-board the R3051 , including the 
4kB-8kB of instruction cache, 2kB of data cache, 4-deep read 
and write buffers and the R3000A execution engine-all in a 
single 84-pin package, the 32-bit bus required multiplexing 
address and data pins. Although the original versions of the 
disassembler remain compatible with the new family of lOT's 
RISControliers, an effort was made to simplify the interface 
between R3051 and the disassembler to accommodate simple 
triggering schemes, as well as future lOT embedded control­
lers that continue in the path of the R3051 family. 

THE IDT7RS364 DISASSEMBLER AND THE 
IDTR3051 

The loT7RS364 Disassembler consists of a software pack­
age that greatly eases the task of debugging software on the 
loTR3051 family of CPUs. The HP16500 allows the capture 
of executed hex/binary machine opcodes in a typical Logic 

( Statemming E) ( Listing 1 ) 

Analyzer State Trace Listing format with the ability to decode 
and display the acquisitions in the R3000 assembly code 
mnemonic format, as seen in Figure 1. Thus, the engineer 
does not have to resort to look-up tables, and can effectively 
determine the exact processor state for easy software debug­
ging. 

The original versions of the disassembler were form-fitted 
to the R3000 CPU interface. Although the derivative products 
of the lOT R3051 family are compatible, the Ro and WR 
signals used for data acquisitions by the disassembler pack­
age causes some confusion during a high-speed burst read. 
As discussed in Application Note AN-93, the work-around was 
to create a more complex read strobe in order to capture a 
four- word burst read by setting up a trigger mechanism on the 
HP16500 that looks like: [(SysClk == i) AND [(ACK == 0) OR 
RoCEN == 0)]. However, this is only applicable to systems 
that bring the ACK signal LOW at precisely the same time the 
RoCEN is LOW, or that don't bring it LOW at all during a four 
word burst read. If, for instance, the ACK signal triggered in 
the phase between two successive RoCENs, a duplicated 
capture would occur. The disassembler was modified a 
second time to remedy this situation. In a read cycle, the Ro 
pin will be asserted LOW for the entire cycle and the RoCEN 
signal toggles to successfully pass each of the four words 
across the bus. The newest version of the disassembler 

ADDR II R3000 Mnemonic II STAT II Time 

Hex II hex II Hex II Absolute 

-6 1FCOOOOO J Ox1FC00220 0010 0 s 
-5 1FCOOO04 Nap 0010 760 ns 
-4 1FC00220 LUI vO,Ox0010 0010 1.52 us 
-3 1FC00224 MTCO vO,$12 0010 2.24 us 
-2 1FC00228 MTCO zero, $13 0010 3.00 us 
-1 1FC0022C LUI vO,OxAOOO 0010 3.76 us 

0 1FC00230 LUI to,OxAAAA 0010 4.52 us 
1 1FC00234 ORI to,tO,Ox5555 0010 5.24 us 
2 1FC00238 sw to,OxOOOO(vO) 0010 6.00 us 
3 1FC0023C SW zero,OxOO04(vO) 0010 6.76 us 
4 00000000 STORE DATA OxAAAA5555 0000 7.40 us 
5 1FC00240 LW t1,OxOOOO(vO) 0010 7.88 us 
6 00000004 STORE DATA OxOOOOOOOO 0000 8.52 us 
7 1FC00244 Nap 0010 9.00 us 
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us 
9 1FC00248 B Ox1FC00258 0010 10.32 us 

Figure 1. R3051 Address/Data Trace List on a Logic Analyzer 
The lOT Logo Is a registered trademark and RISControlier. IDT79R3051 and IDT79R3081 are trademarks of Integrated Device Technology Inc 
Ali others are trademarks of their respective companies. • . 

207 



USING THE IDT79R30SFM AND IDT79R3081™ WITH THE HP16S00 LOGIC ANALYZER APPLICATION NOTE AN-111 

begins "LOAD" captures not on RD, but rather upon the RDCEN. 
For interleaved memory systems that do not toggle the RDCEN 
pin, please refer to section "Hazards" for more details. During 
a write cycle, it triggers upon the rising edge (from LOW-to­
HIGH) of the WR signal. Thus, the newest revision of the 
disassembler now expects the RDCEN and the WR signals as 
clocks to strobe the address and data into the HP16500, as 
well as the WR, DIAG_1 and DIAG_O to verify and decode the 
processor status 

INTERFACING THE HP16500 TO THE 1385 
EVALUATION BOARD 

In order to insure proper operation of the disassembler, the 
correct interface between the R305x target system and the 
HP16500 must be available. The disassembler requires a 
particular pinout setup on the logic analyzer's five 16-channel 
probe pod sets. The interface protocol must be followed for 
correct interpretation of the address, data, and status lines by 
the pre-processor. Table 1 displays the default pod connec­
tions that the HP16500 expects (same setup for the 7RS385 
evaluation board). This information is stored on disk in the 
configuration file "DIS_305x_E". When loaded, this file not 
only loads the disassembler, but also all the state and timing 

information, including the default pod connections expected 
at the system interface. 

Application Note-93 discusses in detail the interface be­
tween typical R305x based systems and the logic analyzer. 
Rather than repeat that discussion, the interface between the 
7RS385 Evaluation board and the disassembler requires 
some elaboration. For instance, the '385 Hardware User's 
Manual shows the connections to be made from the board's 
five 20-pin logic analyzer sockets and the logic analyzer's five, 
16-channel pods. Note however that in section 2-5 of the '385 
Hardware User's Manual, the connections on the status pod 
(pod#5) are incorrect. In order to be consistent with the 
protocol of the disassembler, some of the pins need to be 
connected as follows: 
• WR (J12 pin #17) needs to be on pod #5 channel #4 
• RDCEN (J12 pin #14) needs to be on pod #5 channel #5 

The disassembler also requires status lines for determining 
processor status: WR, RDCEN, DIAG_1, and DIAG_O. The 
WR signal distinguishes between read and write cycles. The 
RDCEN pin is used to identify a false trigger for applications 
that assert the RDCEN signal during writes. In order to avoid 
a duplicate capture, the RDCEN signal is polled to determine 
if it was the cause of the acquisition. If it was, then a trigger-

Table 1. R3051 Default Pod Connections on the HP16500 Logic Analyzer 

POD 5 POD 4 POD 3 POD 2 POD 1 
chan sig chan sig chan sig chan sig chan sig 

15 X 15 AlD(31) 15 AlD(15) 15 A(31) 15 A(15) 

14 X 14 AlD(30) 14 AlD(14) 14 A(30) 14 A(14) 

13 X 13 AlO(29) 13 AlD(13) 13 A(29) 13 A(13) 

12 Oiag_1(2) 12 AID (2S) 12 AlD(12) 12 A(2S) 12 A(12) 

11 X 11 AlD(27) 11 AlD(11 ) 11 A(27) 11 A(11) 

10 Diag_O 10 AlD(26) 10 AlD(10) 10 A(26) 10 A(10) 

9 X 9 AlD(25) 9 AlD(9) 9 A(25) 9 A(9) 

S X S AlD(24) S AlD(S) S A(24) S A(S) 

7 X 7 AlD(23) 7 AlD(7) 7 A(23) 7 A(7) 

6 X 6 AlD(22) 6 AID (6) 6 A(22) 6 A(6) 

5 RDCEN 5 AlD(21) 5 AlD(5) 5 A(21) 5 A(5) 

4 WR 4 AlD(20) 4 AlD(4) 4 A(20) 4 A(4) 

3 X 3 AlD(19) 3 AlD(3) 3 A(19) 3 Addr(3) 

2 X 2 AlD(1S) 2 AlD(2) 2 A(1S) 2 Addr(2) 

1 X 1 AlD(17) 1 AlD(1) 1 A(17) 1 BEN(1) 

0 X 0 AlD(16) 0 AlD(O) 0 A(16) 0 BEN(2) 

NClk WR MClk RDCEN LClk KClk JClk 

NOTES: 
1. Master Clock Format: Nt + Mt (default for the 7AS385 Evaluation Board setup) 
2. POD5(12) is Diag_1 and POD5(1 0) is Diag_O (Diag pins are not latched on the 7AS38S Eval Board). If running uncached, then Diag_1 MUST be grounded 

(GND), and Diag_O is not used by disassembler. 
3. A(31 :4) are connected to the Address Latch outputs. The rest of the Signals are connected to A3051 outputs. X's denote unused probes that can be 

aSSigned by the user. 

208 



USING THE IDT79R3051™ AND IDT79R308FM WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTE AN-111 

error message, "T.E", and the store instruction along with the 
write data on the bus is displayed (e.g. "T.E. (STORE 
Oxxxxxxxxx)). The diagnostic pin DIAG_1 distinguishes if the 
external memory read was cacheable, and if so, determines 
with DIAG_O if it was an instruction or data read. Note that for 
the newest IDT embedded controller, the R3081, DIAG_1 is 
defined during writes, yielding cache information for "STORE" 
instructions. A second version of the disassembler, 
"DIS_3081 ", exploits this feature for external cache support. 
By defining the DIAG_1 pin during writes, the CPU will signal 
whether the data being written was retained in the on-chip 
data cache. Keep in mind that the DIAG_O pin remains 
undefined during write cycles. This information is extremely 
helpful to the programmer to determine the processor's state 
when tracing through the software. 

The diagnostic pins on the '385 board are NOT LATCHED, 
and therefore are time-multiplexed pins. Thus, the user must 
either latch these pins with an external latch as seen in Figure 
2 or proper decoding of cached code, or connect both diag­
nostic pins to GND. Although the disassembler is capable of 
interpreting the bus transactions of cached code, keep in mind 
that all logic analyzers and disassemblers can only capture 
external CPU memory accesses. The R3051 has large 
internal caches, and is capable of running much of its code 
from within. In orderforthe disassembler to accurately reflect 
the entire instruction/data flow, the R3051 must be ran 
uncached. For more information regarding running cached 
code and data, please refer to Application Note AN-93 for a 
complete discussion. 

LOADING AND RUNNING THE 
DISASSEMBLER 

Included in the software package are two files. The first is 
the disassembler application "DIS_305x". The second is the 
setup file, "DIS_305x_E", containing all the state and timing 
information required by the disassembler, as well as the 
assigned pod connections expected by the HP16500 for the 
R305x target system. 

After the HP operating system boots up completely, the 
system configuration screen as shown in Figure 3 should be 
displayed. To load the disassembler into the HP16500, the 
following steps must be taken: 
1. Insert the disassembler diskette into the front disk drive. 
2. Select the "Configuration" field as shown in Figure 3. A 

pop-up menu with options will appear. Choose the "Front 
Disk" under the pop-up menu. 

3. A new screen will appear that looks like Figure 4. Select 
the "Load" and "StatelTiming" fields, and load in the 
configuration file "Dis_305x_E" by selecting "Execute" as 
shown in Figure 4. 

The HP16500 will then load the disassembler, as well as all 
the state and timing information and the expected pin-configu­
ration as shown in Table 1 previously. Once the disassembler 
application and setup files are loaded into the HP, the logic 
analyzer is ready to set trace conditions for data acquisition. 

209 

Wr --------------~ 

ALE -----0 

R30S! Outputs 

FCT373 
or 

FCT84! 

LATCH 
1--------------. Latched 

DIAG_O 

Logic Analyzer Probes 

Figure 2. R3051 AddresslData Trace List on a Logic Analyzer 

(system) 

Figure 3. HP16500 Screen Display 

( System ) ( Front Disk ) ~ 

( Load ) ( StatefTiming_E ) from file ( DIS_30Sx_E ) 

~ 
Filename File Type File Description ---
DIS_3051 inverse_assm R305x Inverse Assembler 
DIS_30S1_E 16S10B_config R30Sx Config file 

Figure 4. HP16500 Load Screen Display 



USING THE 1DT79R3051TM AND IDT79R3081™ WITH THE HP16500 LOGIC ANALYZER APPLICATION NOTEAN-111 

With the application files loaded, the disassembler is al­
most ready to be triggered by the target system. Follow the 
steps below that describe how to run and trigger the 
disassembler package: 
1. Select the "System" field as shown in Figure 4. A pop-up 

menu will appear with the option of "StatefTiming". Choose 
this field to enter the state and timing mode of acquisition. 

2. A new window will appear that is shown in Figure 5. Under 
the "Configuration" menu lies options that allow the user to 
set display or change the current configuration of the 
interface, clocks, and pod connections. 

3. Trigger the HP16500. 

( Statemming E ) 

E 
E 

Analyzer 1 

Name:~ 

Type: ~ 

Pod 1 

Pod 2 

E-
Pod 3 

E Pod 4 

E- PodS 

~ 
j 
j 
j 
j 

Analyzer 2 

TYPe:~ 
Unassigned Pods 

Figure 5. HP16500 StatefTiming Mode Display 

( StatefTiming E) ( Listing 1) 

Once triggered, the logic analyzer will begin its acquisition, 
and go directly to the "Listing" field. The addresses and 
disassembled data will be displayed. Note however that the 
displayed disassembly may be incorrect. This is due to an 
"unsynchronized" system. The captured data needs to be 
synchronized with the logic analyzer's display to insure cor­
rect disassembly of the bus. The problem of unsynchronized 
captures arises due to the incomplete status of the processor 
state for data loads. As a result, when an instruction fetch is 
scrolled to the top of the screen, and a load data is displayed, 
but the corresponding load instruction was "cut off" or scrolled 
off the screen, the disassembler software looses it reference 
point by which it identifies the load data. As a result, the load 
data may be decoded incorrectly as an instruction as seen in 
Figure 6. Notice in this Figure the instruction on line -2. It was 
disassembled as an instruction instead of as a data load. Also 
notice the address of the instruction in the sequence of the four 
word fetch to main memory. This is an unsynchronized 
display because the corresponding load instruction was scrolled 
off the top of the display, and due to the way the disassembler 
interprets and tags the load datas, the reference point was 
lost. As a result, the load data was interpreted and decoded 
as an instruction. As shown in Figure 7, the correctly synchro­
nized system has the load instruction displayed at the top of 
the screen (identified by its address), and the load data is 
interpreted correctly. 

( Invasm ) ( Print ) ( Run) 

ADDR II R3000 Mnemonic II STAT II Time 

Hex II hex II Hex II Absolute 

-3 1FC00224 NOP 0010 2.24 us 
-2 lFC00228 SRL t4,zero,t8 0010 3.00 us 
-1 1FC0022C NOP 0010 3.76 us 

0 1FC00230 J OX1FC084FO 0010 4.52 us 
1 1FC00234 NOP 0010 5.24 us 
2 1FC00238 LW vO,OxOOOO(sO) 0010 6.00 us 
3 1FC0023C NOP 0010 6.76 us 
4 00000000 STORE DATA OxAAAA5555 0000 7.40 us 
5 1FC00240 LW tl, OxOOOO (vO) 0010 7.88 us 
6 00000004 STORE DATA OxOOOOOOOO 0000 8.52 us 
7 1FC00244 NOP 0010 9.00 us 
8 00000000 LOAD DATA OxAAAA5555 0010 9.64 us 
9 1FC00248 B Ox1FC00258 0010 10.32 us 

Figure 6. Incorrectly Synchronized Capture (Note line -2) 

210 



USING THE IDT79R30SFM AND IDT79R308FM WITH THE HP16S00 LOGIC ANALYZER APPLICATION NOTE AN-111 

( StatefTiming E) ( Listing 1) ( Invasm ) ( Print )( Run ) 

-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

ADDR(2} 

RD 

WR 

ADDR II R3000 Mnemonic II STAT II Time 

Hex II hex II Hex II Absolute 

1FC00220 LW vO,OxOO08(sO) 0010 2.24 us 
1FC00224 NOP 0010 2.24 us 
lFC0022B LOAD DATA Ox12620003 0010 3.00 us 
lFC0022C NOP 0010 3.76 us 
1FC00230 J OX1FC084FO 0010 4.52 us 
lFC00234 NOP 0010 5.24 us 
lFC00238 LW vO,OxOOOO(sO) 0010 6.00 us 
1FC0023C NOP 0010 6.76 us 
00000000 STORE DATA OxAAAA5555 0000 7.40 us 
lFC00240 LW tl,OxOOOO(vO) 0010 7.88 us 
00000004 STORE DATA OxOOOOOOOO 0000 8.52 us 
1FC00244 NOP 0010 9.00 us 
00000000 LOAD DATA OxAAAA5555 0010 9.64 us 
1FC00248 B Ox1FC00258 0010 10.32 us 

Figure 7. Correctly Synchronized Capture (Note line -2) 

00 01 

RD 

0 
0 

00 01 

ADDR(2} x 

0 
1 
0 
1 

1 

1 
0 
0 NOTE: Signal will remain low while 

0 not in a read cycle 

TRIGGER needs to be double transition 
to capture all four words 

Figure B. Simulated RDCEN signal 

STORE 

t:.y 

If t:.y s; 10ns, a Trigger Error will 
occur (data will be diplayed). and 
the STORE will be missed. 

Figure 9. RDCEN Asserted during STORE 

211 



USING THE IDT79R3051™ AND IDT79R308FM WITH THE HP16500 LOGIC ANALYZER APPLICATIO N NOTE AN-111 

Rd 

RDCEN 

ACK 

Trigger 

Figure 10. Simple Trigger Logic 

To synchronize the system and to insure valid results, the 
following steps must be taken: 
1. Identify the first instruction fetch by its address, not its 

displayed mnemonic, of the captured data and scroll this 
line to the top of the screen display. 

2. At the top of the HP16500 screen is the field "Ivasm". 
Select this, and the currently displayed capture will be 
synchronized. 

3. Always make sure that each new capture, or a jump ahead 
in the analyzer's buffer memory is re-synchronized prop­
erly or erroneous data might be displayed. The same 
applies for any move backwards for any displayed capture. 

HAZARDS 
For interleaved memory systems that do not toggle the 

RDCEN four times, but rather keep it asserted, the only data 
to be captured during quad-word reads will be the last word of 
the transfer. In orderto fix this, the user might wish to simulate 
a RDCEN strobe during the quad-word read by utilizing the 
lower order address pins Addr(3:2). This can be accom­
plished by gating the Addr(2) pin of this 2-bit bus with the RD 
signal from the CPU. Whenever the next word in the se-

quence comes across the bus during a read cycle, the 
transition from LOW-to-HIGH, or HIGH-to-LOW will begin an 
acquisition, and thus simulate the strobbing of RDCEN. Note 
however, the trigger transition on the HP must be set to both 
rising and falling transitions as seen in Figure 8. 

Another hazard to be cautious about is if the RDCEN comes 
at precisely, or within a 1 Ons window (~y) of the rising edge of 
the WR signal. If so, then this would be regarded as an invalid 
write with a trigger error (T.E) ocurring and the data on the bus 
at the time of the invalid capture will be displayed. In this case, 
the capture on the rising edge of write will be missed and the 
data displayed with the T.E. is the valid capture as shown in 
Figure 9. During any case that a RDCEN comes in on a write 
cycle, a T.E. will occur. 

Finally, a feature in HW that would be extremely useful for 
triggering is a specified trigger signal for the H P logic analyzer 
that would distinguish between the status of reads and writes 
triggered by ACK. The trigger would simply be established by 
gating the read and write signals and ORing the results as 
shown in Figure 10. This should eliminate any trigger edge 
problems associated with simple data acquisitions for inverse 
assembly. 

SUMMARY 
The use of the HP16500 and the I DT7RS364 Disassembler 

helps to ease the task of software development and debug­
ging on the R305x and the R3081. The disassembler formats 
logic analyzer state traces into assembly level mnemonics to 
allow easier user interpretation. It is one of the many useful 
development tools already available for IDT's MIPS R3000 
compatatible CPUs. Similarly, other R3000 software, compil­
ers, as well as otherdevelopmenttools such as the I DT7RS901 
IDT/sim ROM able Kernel/Boot Monitor can also be used on 
R3051 and R3081 systems with little or no modification. 

212 



(;) IOT/e™ BINARY UTILITIES APPLICATION 
NOTE 

AN-125 

Integrated Device Technology, Inc. 

By Evelyn Zhan 

INTRODUCTION 
IDT/C'" is a development package which contains a cross 

compiler, optimizing scheduler, cross assembler, linker, and 
downloader. It is intended for cross-development with an lOT 
RISController'" as the target architecture. The 'C' compiler is 
compliant with ANSI'C' standard and performs the optimiza­
tions available in state of the art 'C' compilers. In version 5.0 
the assembler is compatible with files written for the MIPS. 
The assembler supports the R30xx machine instructions and 
architecture described in the book by Gerry Kane, "MIPS 
RISC architecture." The cross compiler package runs on a 
variety of host machines and operating systems and is part of 
lOT's Cross Development System tools which includes other 
packages such as IDT/SIM"', a debug monitor and diagnostic 
tool; and IDT/KIT"', a set of run time support libraries in source 
form to enable quick implementation of embedded applica­
tions. This application note describes the binary utilities of the 
IDTIC toolchain. 

Archive (gar): 

The gar program creates, modifies, and extracts from 
archives. An archive is a single file holding a collection of other 
files in a structure that makes it possible to retrieve the original 
individual files. Archive files are libraries of files which are 
typically used for the link process. Files are created by a 
compiler into a format known as the object format and can then 
be stored as members in an archive file. These members are 
then used by the link editor to generate a final executable 
code. The gar command is a powerful command that creates 
and manipulates archive libraries. These libraries can help 
user organize development effort and control the generation 
of executables. 

usage: gar {-J switches{mod {relpos]] archive 
... J 

(member 

switches must be one of the following operations: 

d 

m 

p 

q 

Delete modules from archive. Specify the names of 
modules to be deleted as member ... to delete. 
move member in an archive. You can use the 'a', 'b', 
or 'i' modifiers to move them to specified place. If no 
modifiers are used with m, the member ... will be 
moved to the end of the archive. 
Print the specified members of the archive to the 
standard output file. If there are no member 
arguments, all the files in the archive are printed. 
Quick append. Add files member ... to the end of 
archive, without checking for replacement. 
Insert files member ... into archive with replacement. 

x 

a 

b 

c 

o 

5 

u 

By default, new members are added at the end of the 
file; you can use modifiers 'a', 'b', 'i' to request place 
ment relative to some existing member. 
Display a table listing the contents of archive, or those 
of the files listed in member ... that are present in the 
archive. 
Extract members from the archive. If you do not 
specify a member, all files in the archive are 
extracted. 

A number of modifiers (mod) may immediately follow 
the switches keyletter, to specify variations on an 
operation's behavior: 
Add new files ~fter an existing member(relpos) of the 
archive. 
Add new files before an existing member (relpos) of 
the archive. 
Create the archive. 
Add new files before an existing member (relpos)of 
the archive. Same as 'b'. 
Preserve the original dates of the members when 
extracting them. Otherwise it is stamped with the time 
of extraction. 
Write an object file index into the archive, or update 
an existing one. 
Insert only those of the files you list that are newer 
than existing members of the same names. This 
modifier is allowed only for the operation 'r'. i.e. 'gar­
ru' ... 

usage: gar -M { < script file J 
If you use the single command-line option '-M' with gar, you 

can control its operation with a rudimentary command lan­
guage. This form of gar operates interactively if standard input 
is coming directly from a terminal. 

Here are the commands you can use in gar scripts, or when 
using gar interactively. 
ADDLIB archive (module, module, ... module) 
Add all the contents of archive (or, if specified, each named 

module from archive) to the current archive. Requires 
prior use of OPEN or CREATE. 

ADDMOD member, member, ... member 
Add each named member as a module in the current 

archive. Requires prior use of OPEN or CREATE. 
CLEAR 
Discard the contents of the current archive, canceling the 

effect of any operations since the last SAVE. 
CREATE archive 
Creates an archive, and makes it the current archive. The 

new archive is not actually saved as archive until you use 
SAVE. 

The lOT logo Is a reglslered Irademark and IDT/C, IOT/SIM, and lOT/KIT and RISConlrolier are Irademarks of Inleqraled Device Technology, Inc. 

213 



IOT/CN BINARY UTILITIES 

DELETE module, module, ... module 
Delete each listed module from the current archive. Re-

quires prior use of OPEN or CREATE. 
END 
Exit from gar. This command does not save the output file. 
EXTRACT module, module, ... module 
Extract each module from the current archive. Requires 

prior use of OPEN or CREATE. 
LIST 
Display full contents of the current archive. Requires prior 

use of OPEN or CREATE. 
OPEN archive 
Opens an existing archive for use as the current archive. 
REPLACE module, module, ... module 
In the current archive, replace each existing module from 

files in the current working directory. 
SAVE 
Commit your changes to the current archive, and actually 

save it as a file with the name specified in the last CRE· 
ATE or OPEN command. 

Example of usage of gar: 

add.c: 

int Add(int a, int b) 

int c; 

c = a + b; 
return c; 

sub.c: 

int Sub(int a, int b) 

int c; 

c = a - b; 
return c; 

mult.c: 

int Mult (int a, int b) 

int c; 

c = a * b; 
return c; 

div.c: 

int Div(int a, int b) 

int c; 

c = a / b; 
return c; 

APPLICATION NOTE AN·125 

Sample C code: 

#define SIZE 50 
int a[SIZE] [SIZE], b[SIZE] [SIZE], 

c[SIZE] [SIZE]; 

maine) 
{ 

int i, j, k; 

for (i = 0; i < SIZE; i++) 
for (j = 0; j < SIZE; j++) 

ali] [j] = b[i] [j] = 7; 

printf("Beginning Matrix Multip1ication. 
\n") ; 

for (i = 0; i < SIZE; i++) 
for (j 0; j < SIZE; j++) 

{ 

c[i] [j] 0; 
for (k = 0; k < SIZE; k++) 

c[i] [j] Add(c[i] [j], 
Mult(a[j] [k], b[k] [j]»; 

} 

printf("DONE Matrix Multiplication. \n"); 
} 

Makefile: 

LIBRARY = libmylib 
EXEC = main 
LIBOBJS = add.o sub.o mult.o div.o 
SREC = $(EXEC).srec 

all: $(LIBRARY).a $(EXEC) $ (SREC) 
$(SREC): $ (EXEC) 

objcopy -0 srec $(EXEC) $ (SREC) 
$(LIBRARY).a: $ (LIBOBJS) 

gar -rc $(LIBRARY).a $(LIBOBJS) 
gnm $(LIBRARY).a > $(LIBRARY).nm 

$(EXEC): main.o idt_csu.o $(LIBRARY).a 

214 

gcc -nostdinc -nostdlib -g -msoft-float 
-I/IDTC -L/IDTC -Ttext 80020000 -0 main 
idt_csu.o main.o \ 

.c.o: 

-lmylib -lkil -lc -1m -1lnk -lgcc 
gsize -x $(EXEC) > $(EXEC).size 
objdump -d $(EXEC) > $(EXEC).dis 

gcc -nostdinc -g -msoft-float -c -I/IDTC 
$*.c 

.S.o: 
gcc -nostdinc -g -msoft-float -

xassembler-with-cpp -c -I/IDTC $*.S 



IOT/C'" BINARY UTILITIES 

gar -rc libmylib.a add.o sub.o rnult.o 
div.o 

This creates a library called libmylib.a 
containing the files add.o sub.o rnult.o 
and div.o 

gar -t libmylib.a 
Comes back with: 
add.o 
sub.o 
rnult.o 
div.o 

gar -x libmylib.a 
This extracts the files add.o, sub.o, rnult.o 

and div.o from libmylib.a 

gar -d libmylib.a sub.o 
Deletes sub.o from the archive 

gar -t libmylib.a 
Displays add.o, rnult.o and div.o 

gar -r libmylib.a sub.o 
Add sub.o back into the archive 

Name (gnm): 
The gnm utility generates symbol table for the object file. 

The file can be a simple object file, an executable file, or an 
archive file. Each symbol is preceded by a value which defines 
the characteristics of the symbol itself. The gnm command is 
well used by users to provide information on the structure and 
content of object and executable files. 

usage: gnm [on] objectfile > outfile.nm 

List the symbol table for objectfile, sorted by symbol name ( 
-n option is sorted by symbol address), into file 
outfile.nm. 

For each symbol, gnm shows: 
• The symbol value. 
• The symbol type. If lowercase, the symbol is local; if 

uppercase, the symbol is global. 
A Absolute. 
S BSS (uninitialized data). 
C Common. 
D Initialized data. 
I Indirect reference. 
T Text (program code). 
U Undefined. 

• The symbol name. 
Example of usage of gnm: 

gnrn libmylib.a > libmylib.nrn 
libmylib.nrn contains: 

add.o: 
00000000 T Add 
00000000 t Add 

APPLICATION NOTE AN-125 

00000000 t __ gnu_compiled_c 
00000000 t gcc2_compiled. 

sub.o: 
00000000 T Sub 
00000000 t Sub 
00000000 t __ gnu_compiled_c 
00000000 t gcc2_compiled. 

mult.o: 
00000000 T Mult 
00000000 t Mult 
00000000 t __ gnu_compiled_c 
00000000 t gcc2_compiled. 

div.o: 
00000000 T Div 
00000000 t Div 
00000000 t __ gnu_compiled_c 
00000000 t gcc2_compiled. 

gnrn -n libmylib.a > 
libmylib.nrnl contains: 
add.o: 
00000000 T Add 
00000000 t Add 
00000000 t gcc2_compiled. 

libmylib. nrn1 

00000000 t __ gnu_compiled_c 

sub.o: 
00000000 T Sub 
00000000 t Sub 
00000000 t gcc2_compiled. 
00000000 t __ gnu_compiled_c 

mult.o: 
00000000 T Mult 
00000000 t Mult 
00000000 t gcc2_cornpiled. 
00000000 t __ gnu_compiled_c 

div.o: 
00000000 T Div 
00000000 t Div 
00000000 t gcc2_compiled. 
00000000 t __ gnu_compiled_c 

The addresses above are zeros since the text is 
relocatable. 

Object Copy (objcopy): 
This utility is used to convert ecoff files to S-record, so that 

code can be downloaded to the lOT evaluation board or to a 
PROM burner. 

215 



IDTlC~ BINARY UTILITIES 

usage: objcopy -a srec [-b num] 
[-i bytenum] [-p]objectfile outfile.srec 

objcopy -a srec objectfile outfile.srec 
This converts the ecoff objectfile to Motorola S3 record 

format, for downloading to the evaluation boards. 
objcopy -a srec -b num objectfile outfile.srec 

-b num is useful when programming EPROMS for boards 
which require bytewide EPROMS. 

-b 0 creates S-record files corresponding to Oth byte 
slice of 4-byte word. 

-b 1 creates S-record files corresponding to 1 st byte 
slice of 4-byte word. 

-b 2 creates S-record files corresponding to 2nd byte 
slice of 4-byte word. 

-b 3 creates S-record files corresponding to 3rd byte 
slice of 4-byte word. 
objcopy -0 srec -b num -i bytenum 
objectfile outfile.srec 

-i option must be used in conjunction with -b option. It is 
useful for programming EPROMS for boards that have 
interleaved addressing. 

-i 1 interleave one byte. 
-i 2 interleave two bytes. etc. 

objcopy -0 srec -p -b num objectfile outfile.srec 
-p option is used to create prommable S-records. It should 

APPLICATION NOTE AN-125 

00000000 align 2**4 
SECTION 2 [. text] size 00005f40 vma 

80020000 align 2**4 
ALLOC, LOAD, CODE 

SECTION 3 [ .rdata] : size 000004aO vma 
80025f40 align 2**4 

ALLOC, LOAD, READONLY, DATA 
SECTION 4 [ .data] : size OOOOOcaO vma 

800263eO align 2**4 
ALLOC, LOAD, DATA 

SECTION 5 [ .lit8] size 00000000 vma 
80027080 align 2**4 

ALLOC, LOAD, READONLY, DATA 
SECTION 6 [.lit4] : size 00000000 vma 

80027080 align 2**4 
ALLOC, LOAD, READONLY, DATA 

SECTION 7 [ .sdata] : size 00000080 vma 
80027080 align 2**4 

ALLOC, LOAD, DATA 
SECTION 8 [. sbss] size 00000080 vma 

80027100 align 2**4 
ALLOC 

SECTION 9 [ .bss] size 000078dO vma 
80027180 align 2**4 

ALLOC 

be used with -b to create bytewide PROMS. It orders the objdump -t main > main. sym 
sequence of sections to be .text, .data, .bss and starts 
the address fields from address OxOOOOOOOO. main. sym contains: 

Object Dump (objdump): 
Displays information about ecoff files. This information is 

mostly useful to programmers who are working on the compi­
lation tools, as opposed to programmers who just wnat their 
program to compile and work. 

main: file format ecoff-bigmips 

usage: objdump [-h] [-d] [-t] objectfile > outfile 

objdump -h objectfile > outfile 
Display summary information from the section headers of 

the objectfile. 
objdump -d objectfile > outfile 

Display the assembler mnemonics for the machine instruc­
tions from objectfile. This is very useful when doing 
machine level debugging. User can set a break point at 
a certain virtual address for a corresponding assembly 
instruction. 

objdump -t objectfile > outfile 
Print the symbol table entries of the file. 
Example of usage of objdump: 

objdump -h main> main.od 

main.od contains: 
main: file format ecoff-bigmips 

SECTION 0 [.scommon] 
00000000 align 2**4 

SECTION 1 [.reginfo] 

size 00000000 vma 

size 0000001c vma 

SYMBOL TABLE: 
0] e 80020000 st 

Local symbol: 
1] e 80027100 st 
fbss -
2] e 8002ea50 st 

end 
3] e 8002f080 st 

-gp 
[ 4] e 80020880 st 

init_exc_vecs 
Local symbol: 

5] e 800206a4 st 
config_memory 

Local symbol: 
6] e 80020bb8 st 

config_Icache 
Local symbol: 

7] e 80020b70 st 
config_Dcache 

Local symbol: 
8] e 80020d58 st 

flush_Icache 
Local symbol: 

9] e 80020ce8 st 
flush_Dc ache 

216 

6 sc 1 indx 1 
195 
1 sc 5 indx fffff 

1 sc 5 indx fffff 

1 sc 5 indx fffff 

6 sc 1 indx 5 

261 
6 sc 1 indx d 

244 
6 sc 1 indx 3 

280 
6 sc 1 indx 1 

278 
6 sc 1 indx 9 

286 
6 sc 1 indx 7 

start 



IDT/C~ BINARY UTILITIES 

Local symbol: 2S4 
[ 10] e S0020660 st 6 sc 1 indx 9 
init_tlb 

Local symbol: 240 

objdump -d main > main. dis 

main. dis contains: 
main: file format ecoff-bigmips 

Disassembly of section .text: 
S0020000 <start> lui $vO,S20S 
S0020004 <start+4> mtcO $vO,$12 
S0020008 <start+8> mtcO $zero,$13 
S002000c <start+c> lui $t3,43690 
80020010 <start+l0> ori $t3,$t3,21845 
S0020014 <start+14> mtcl $t3,$fO 
S002001S <start+1S> mtcl $zero,$fl 
S002001c <start+lc> mfcl $tO,$fO 
S0020020 <start+20> mfcl $tl,$fl 

80020028 <start+2S> bne $tO,$t3,80020040 
<start+40> 

S0020030 <start+30> bnez $tl,S0020040 
<start+40> 

S0020038 <start+3S> j S002004S <start+4S> 

S0020164 <start+164> lui $vO,490S8 
S0020168 <start+168> jr $vO 

S0020170 <main> addiu $sp,$sp,-40 
S0020174 <main+4> sw $ra,36($sp) 
80020178 <main+S> sw $sS,32($sp) 
8002017c <main+c> move $sS,$sp 
S00201S0 <main+l0> jal S0025fOc < __ main> 

S00201S8 <main+1S> sw $zero,16($sS) 
S002018c <main+lc> lw $vO,16($sS) 

S0020194 <main+24> slti $vl,$vO,50 
80020198 <main+2S> beqz $vl,S00202S0 

<main+ll0> 

S00201aO <main+30> sw $zero,20($sS) 
800201a4 <main+34> lw $vO,20($s8) 

S00201ac <main+3c> slti $vl,$vO,50 
S00201bO <main+40> beqz $vl,S0020264 

<main+f4> 

APPLICATION NOTE AN-125 

S00201b8 <main+4S> lw $vO,16($s8) 

Index Archive Library (ranlib): 

Generates an index to the contents of an archive and stores 
it in the archive. Ranlib converts each archive to a form that 
can be linked more rapidly. It does this by adding a table of 
contents called _.SYMDEF to the beginning of the archive. 
Ranlib uses gar to reconstruct the archive. Sufficient tempo­
rary file space must be available in the file system that 
contains the current directory. 
usage: ranlib archive 
An archive with such an index speeds up linking to the 

library and allows routines in the library to call each other 
without regard to their placement in the archive. 

Size (gsize): 

This command is used to get sizes of different sections in 
the object file. It prints the number of bytes required by the 
text, data, and bss portions, and their sum in hex and decimal 
of each object file. 
usage: gsize [-d I -a I -x I radix=number] 

objectfile... > outfile 
Lists the section sizes, and the total size for each of the 

objectfile or archive in its argument list into outfile. The 
size of each section is given in decimal ('-d', or 'ra­
dix=10'); octal ('-a', or 'radix=8'); or hexadecimal ('-x', or 
'radix=16'). 

Example of usage of gsize: 
gsize main > main. size 

main. size contains: 

217 

text data bss dec hex 
filename 

5f40 llcO 7950 599S4 ea50 main 

SUMMARY 
The IDT/C binary utilities include GAR, GNM, OBJCOPY, 

OBJDUMP, RANLIB and GSIZE. Together, they are very 
useful tools for programmers to develop and debug their 
applications. 



G THE ELF-64TMTOOL CHAIN APPLICATION 
NOTE 

AN-126 

Integrated Device Technology, Inc. 

By Ketan Oeshpande 

INTRODUCTION 
This application note describes the 64-bit C development 

tool chain available from Cygnus. The ELF-64'" tool chain is 
a 64-bit C-compiler tool chain that can be used to generate 
code for the R4600'" (OrionTM) processor operating in an 
embedded application environment. It is based on the GNU 
tool chain available in the public domain. The executable 
created is an ELF (Executable and Linking Format) file. 

TOOL CHAIN COMPONENTS 

The ELF-64 tool chain consists of the following parts: 
1. C-Compiler 
2. Assembler 
3. Linker 
4. Source level Debugger 
5. Librarian I Archiver 
6. Binary Utilities . . 
The C-compiler is ANSI C compliant and performs optimi-

zations found in all state-of-the-art C-compilers. The compiler 
generates an intermediate assembly language file from a C 
file and calls the assembler to generate an ELF object file. The 
assembler supports the entire MIPS™ ISA (described in the 
book by Gerry Kane, "MIPS RISC Architecture"). The words 
"compiler" & "assembler" are used to refer to the cross-
development environment too. . 

The linker links the object files created by the compiler, 
assembler and the librarian to create an ELF "executable". 

The debugger (gdb) provides remote source level debug­
ging capability over a serial link; this is very useful when 
developing embedded applications. 

The librarian/archiver allows the user to create archives of 
code sections that are frequently used, for linking with various 
applications. 

The binary utilities are useful in extracting information 
about the ELF file created, generating a disassembled version 
of the executable, displaying section size information and 
converting to different file formats. 

COMMAND LINE OPTIONS 

The C-compiler and linker support a number of options. 
This application note mentions only a common subset of these 
options. For a complete listing and description of all options, 
the user should refer to the manual. 

_ Compiler options 
1. Options controlling the ISA level: 
The ELF-64 compiler I assembler supports -mips1, -mips2 

and -mips3 switches, to generate code for MIPS ISA I, II 
or III. 

-mips1: Generates code for R30xx processors. This 
generates instructions that access 32-bit data. 
-mips2: Generates code for R4xOO and R60xx proces­
sors. This generates instructions that access 32-bit data, 
and some R4xOO specific instructions. 
-mips3: Generates code for R4xOO processors. This 
generates instructions that access 64-bit data, such as 
double word accesses. 
For best utilization of the 64-bit Orion architecture, the 

mips3 switch should be used, which is also the defa~lt. Whe~ 
using the -mips3 switch, the compiler defaults to uSing 64-blt 
general purpose registers and 64-bit floating point registers. 
Integers and long words are 32-bits long, "long long" words are 
64-bits. All addresses generated are 32-bits long. The com­
piler can be told to use non-default sizes for scalar data types, 
and to use specific processor pipelines for proper instruction 
scheduling. 
2. Optimization & debugging options: 

The most commonly used optimization options are -0 and 
-02, which perform a number of optimizations. The -02 option 
performs all optimizations, except loop unrolling (which can be 
forced by using -funroll-Ioops) and omitting the frame pointer 
(-fomit-frame-pointer). Optimization can be switched off com­
pletely using -00. 

The -g option tells the compilerto insert debugging i~form.a­
tion in the object file. This is necessary when debugging With 
gdb. A debugging level can be specified (1 ,2 or 3), .depending 
on the amount of information the user wants to Insert. The 
default is 2, which is typically sufficient to be able to debug 

using gdb. . " 00" . t" ". 
For debugging purposes, uSing -g - or JUs -g IS 

recommended. If optimization is also specified during debug­
ging, some statements might get moved around, which could 
be confusing to the person doing the debugging. 
3. Options changing the default data sizes: 

The -mlong64 switch forces the compiler to generate code 
using 64 bit wide long words and addresses (pointers). 

The -mint64 switch forces the compiler to generate code 
using 64 bit wide integers. The -mlong64 switch is assumed in 
this case. 

The -mgp32 switch forces the compiler to generate code 
assuming the general purpose registers in the Orion are only 
32 bits long. 

The -mfp32 switch forces the compiler to generate code 
assuming the floating point registers in the Orion are only 32 
bits long. 
4. Options for proper scheduling: 

Using the "-mcpu=" option tells the compiler to use a 
specific processor pipeline while scheduling instructions. -
mcpu=Orion or -mcpu=r4600 tells the compiler to use the 

The lOT logo Is a registered trademarl< and Orion and R4600 are trademarl<s of Integrated Device Technology. Inc. 
The ELF-64 Is a trademarl< of Cygnus Computer Systems, Inc. 
MIPS Is a registered trademarl< of MIPS Computer Systems. Inc. 

218 



THE ELF-64'" TOOL CHAIN 

Orion pipeline, and -mcpu=r4400 tells the compiler to use the 
R4400 pipeline. The compiler defaults to using -mcpu=Orion. 
5. Floating point code generation: 

The ELF-64 compiler defaults to generating hardware 
instructions for performing floating point operations. To force 
the compiler to use an emulation library, the -msoft-float 
option is specified, and the appropriate library used, at link 
time. Since the Orion has a Floating Point Accelerator, a user 
should never need to use this option, though the capability is 
available in the 'tool chain and may be used for future CPU 
products. 
6. Other options: 

-nostdinc: This option tells the compiler not to look in the 
standard include path for the include files. This is useful during 
embedded applications development, when the user needs to 
use non-standard libraries, which have their own include files. 

-Wa or -WI: This option allows the user to pass assembler 
and linker options on the C-compilercommand line. e.g. -Wa,­
alh instructs the compiler to invoke the assembler to list 
assembly and high-level source code to the display. 

Linker options 
1. Options controlling different sections in the executable: 

The ELF-64 linker places the different sections in the ELF 
file at certain default addresses. These addresses can be 
changed using the -T option. To force the linker to place the 
. text section at a specific address, the option -Ttext <address> 
can be used. Similarly, use -Tdataand -Tbss to force the linker 
to locate the .data and .bss at specific addresses. In a case 
where all 3 section addresses are specified, it is the user's 
responsibility to see that the sections do not overlap. The 
linker uses a default script to place the different sections in the 
ELF file. Users can specify their own script files, thus finely 
controlling the appearance of the ELF executable, using the 
-T <scriptfilename> switch. A discussion of linker scripts is 
outside the scope of this application note; a sample linker 
script is shown below: 

OUTPUT_FORMAT ("elf32-bigmips") 

file Format *1 
OUTPU'I'_ARCH (mips) 
_DYNAMIC_LINK = 0; 
SECTIONS 
{ 

1* Output 

1* Read-only sections, merged into text 
segment: *1 

1* • text section begins at address OxbfcOOOOO 
*1 

.text OxbfcOOOOO 
{ 

_ftext = • ; 
* (.text) 

CREATE OBJECT_SYMBOLS 
symbol for each input file *1 

_etext = .; 

.init ALIGN(8}: 
{*(.init) } =0 

1* Create a 

.fini ALIGN(8} 
{*(.fini) } =0 

.ctors ALIGN(8} 
{ * (.ctors) } 

.dtors ALIGN(8} 
{ * (.dtors) } 

APPLICATION NOTE AN-126 

1* Read only data section, aligned on 8-
byte boundary *1 

.rodata ALIGN(8} 
{ * (.rodata) } 

.rodatal ALIGN(8} 
{ 

* (.rodatal) 
• = ALIGN(8}; 

.reginfo • : { *(.reginfo) 

.data • • 
{ 

_fdata 
*(.data) 
CONSTRUCTORS 

.datal ALIGN(8} 
{ *(.datal) } 

_gp = • + Ox8000; 
.lit8 •• { *(.lit8) 
.lit4 •• { *(.lit4) 

1* Keep the small data sections together, 
so single-instruction offsets can access them 
all, and initialized data all before 
uninitialized, so we can shorten the on-disk 
segment size. *1 

.sdata ALIGN(8} : {*(.sdata) 
_edata ., 
__ bss_start = Oxa0000200 ; 
.sbss ALIGN(8} : {*(.sbss) *(.sconunon) 

.bss 
{ 

_fbss 
* (.bss) 

Oxa0000200 

* (COMMON) 1* All uninitialized & 
unallocated data from all 

input files *1 

end = • ; 

1* Debug sections. These should never be 
loadable, but they must have 

zero addresses for the debuggers to work 
correctly. *1 

.line 0 
{ * (.line) 

• debug 0 
{ * (.debug) 

219 



THE ELF-64N TOOL CHAIN 

.debug_sfnames 0: 
{ *(.debug_sfnames) 

.debug_srcinfo 0: 
{ *(.debug_srcinfo) 

• debug_mac info 0: 
{ *(.debug_macinfo) 

.debug-pubnames 0: 
{ *(.debug-pubnames) 

.debug_aranges 0: 
{ *(.debug_aranges) 

The linker puts "small" data into the small bss (.sbss) and 
small data (.sdata) sections. "Small" data is data that is smaller 
than a certain size. This size can be changed from the default 
8 bytes using -G <size>. If -G 0 is used, nothing will be placed 
in .sbss and .sdata. Elements placed in .sbss and .sdata can 
be accessed in a single instruction using _gp that is appropri­
ately set, resulting in fast data access. 
2. Other options: 

-nostdlib: This option tells the compiler not to look in the 
standard library search path for the specified library files. This 
is useful during embedded applications development, when 
the user needs to use non-standard libraries. 

New instructions 

The ELF-64 compiler implements the "branch likely" in­
structions in the Orion, when -mips2 or -mips3 is specified. 
When faced with a choice, the compiler attempts to use the 
conventional branch instruction and fill the branch with a 
branch independent operation. However, if it cannot do that, 
it converts the instruction to a branch likely instruction, and 
copies the target instruction into the branch delay slot. 

Another set of instructions implemented by the compiler 
are those instructions that can give access to unaligned data: 
LWL, LWR, SWL, SWR, LDL, LDR, SDL, SDR. Using 
_attribute_ ((packed)) to declare a variable inside a C 
structure causes the compiler to generate the above instruc­
tions whenever the packed data element is accessed. 

Assembler Directives 

1 .• set mipsn 
This directive allows the user to embed instructions from a 

higher level MIPS ISA, in a sequence of instructions that 
belong to another ISA. e.g .. set mips3 would allow the user to 
specifically enter ISA III instructions in ISA II or ISA I code .. set 
mipsO resets code generation to the default ISA. 

When compiling an assembly file at a specific MIPS ISA, if 
instructions from a higher I SA are used, the assembler reports 
a warning, but assembles them anyway. 
2 .• set noreorder I .set reorder 

Instructions in the block between the above directives are 
left as they are; no attempt is made to schedule them accord­
ing to the pipeline requirements. It is the user's responsibility 
to see that the delay slots are properly filled, and hazards are 
taken care of. The assembler defaults to .set reorder. 
3 .. set noat 

This directive instructs the assembler not to use the "at" 

APPLICATION NOTE AN-126 

register, which is used by the assembler to expand certain 
synthetic instructions. The assembler can be instructed to use 
the at register using .set at. All the instructions between the 
.set noat and .set at should be native instructions, or if 
synthetic instructions are used, should not require the at 
register. The assembler defaults to .set at. 

Binary Utilities 

1. nm 
This utility is used to display the symbol table from an ELF 

file. It lists the symbols from an ELF object file, along with the 
virtual address for each symbol. It also displays the section 
(text, data, bss etc.) in which this symbol was located. 

e.g. nm matmult > mat.nm 
The following is a part of mat.nm 

80012000 
80012000 
800123bO 
80012710 
80012770 

80018010 
8001a720 
8001ce30 

T start 
A _ftext 
T main 
T Mult 
T Add 

B matrix1 
B matrix2 
B matrix3 

The symbols tagged with a T are text symbols, those with 
a Bare uninitialized data that are placed in the .bss section, 
and those with a D are initialized data, and are placed in the 
.data section. The symbols tagged with an A are absolute 
addresses. 

2.objcopy 

This utility is used to convert the ELF executable to S­
record format, suitable for downloading to a board like the IDT 
evaluation board. This utility can also be used to build S­
records from which PROMs can be built (using the -p option). 
This can also be used to create S-records for byte-wide 
PROMs (using the -b option), with an interleaving factor, if 
necessary (using the -i option). 

e.g. objcopy -0 srec matmult matmult.sre 
e.g. objcopy -0 srec -p -b 0 -i 1 myprom myprom.sre 

creates an S-record file that can be used to build the zeroth 
byte-slice of an interleaved PROM. 

3.objdump 

This utility displays information about ELF objectfiles. It can 
be used to generate symbol table information, similar to nm, 
(using the -t switch), generate a disassembly listing (using the 
-d switch) or section header information (using the -h option). 

e.g. objdump -d matmult > matmult.dis 
The following is a part of matmult.dis: 

80012000 <eprol> lui $gp,32770 
80012004 <start+4> addiu $gp,$gp,-352 
80012008 <start+8> lui $vO,32769 
8001200c <start+c> addiu $vO,$vO,32544 
80012010 <start+10> lui $v1,32770 
80012014 <start+14> addiu $v1,$v1,-2032 

220 



THE ELF-64 TOOL CHAIN APPLICATION NOTE AN-126 

e.g. objdump -h matmult > matmult.hdr 
The following is a part of matmult.hdr: 

SECTION 2 [ • text] : size 00004f50 vma 
80012000 align 2**4 

ALLOC, LOAD, CODE 
SECTION 3 [ .rdata] size 00000330 vma 

80016£50 align 2**4 
ALLOe, LOAD, READONLY, DATA 

SECTION 4 [ .data] size 00000c20 vma 
80017280 align 2**4 

ALLOe, LOAD, DATA 
SECTION 7 [ .sdata] size 00000080 vma 

80017eaO align 2**4 
ALLOC, LOAD, DATA 

SECTION 8 [. sbss] size 00000060 vma 
80017£20 align 2**4 

ALLOe 
SECTION 9 [.bss] size 00007890 vma 

80017£80 align 2**4 
4. size 

This utility is used to display the sizes of all sections in an 
ELF file I in decimal or hex format. It also displays the total size 
of all sections in the ELF file. 

e.g. size matmult displays: 
text data bss dec hex filename 
20304 4048 30960 55312 d810 matmult 

221 



G GOB - IDT/C™ 5.0 SOURCE APPLICATION 

LEVEL DEBUGGER NOTE 
AN-128 

Integrated Device Technology, Inc. 

INTRODUCTION 

By Upendra Kulkarni 

Software 

GOB, the source level debugger component of IOT/C™ 5.0, 
allows users to debug programs written in C and/or assembler 
code. GDB provides remote debugging capabilities, where 
the debugger itself runs on a computer such as a Sun or an 
IBM (compatible) PC (the HOST) and the code being de­
bugged runs on a different system (the TARGET). The host 
and the target are connected by, and communicate through, 
a RS232C serial communication link. This application note is 
intended to provide some help in getting started with GOB; 
some of the most commonly asked questions are answered; 
some features not documented elsewhere are discussed. 

Detailed command summaries of all GOB commands can 
be found in documentation of "I OTIC Cross Compiler System 
Version 5.0" specifically in "Cygnus Support GNU Developer's 
Kit Reference Manual Volume 1." 

Detailed description of internal workings of GOB can be 
found in "GNU Debugger Internal Architecture" by Robert 
Pizzi (rpizzi@ IInl,gov). This paper is also useful for people 
who wish to make enhancements to GOB. The paper is 
available via anonymous ftpfrom sisal,llnl,gov (128.115.19.65) 
in the pub/gdb Document directory. 

BEFORE USING GOB 
Hardware 

GOB shipped with IOT/C 5.0 will work only when a serial 
port on the host is hooked up to the "ttyO" port of the target 
board which must be running IOT/SIM™. "ttyO" is the console 
port of the target board. Ordinarily, upon resetting the target 
board, a sign·on message is displayed on the console at 
"ttyO". The sign-on message ends with the prompt "<lOT>" 
provided by IOT/SIM in the target board. GOB tends to send 
a "reset board" command over the serial link to the target in 
case of trouble. GOB, then, looks for the "<lOT>" string to 
return over the serial link. Upon receiving the "<lOT>" string 
GOB recognizes "well ness" of the target board and then 
sends the target board into "debug" mode. Obviously, this 
entire process will work only if the serial link from the host was 
connected to the console ("ttyO") port of the target board. 

Console output presented by the program being debugged 
on the target (using printf, for example), does not interfere with 
the GOB messages even though the same serial link is shared 
by both. The console outputs from user code are also dis­
played on the same screen as the GOB screen. The user is 
expected to be familiar enough with the source code being 
debugged, to be able to distinguish between GOB messages 
and messages printed by the code being debugged. "Hello, 
I reached here" is a message not likely to have come from 
GOB; but "Stack Full" could have come from either source. 

The serial port used by GOB on the host needs to be set for 
baud rate of 9600, 8 bits data, no parity, and 1 stop bit. 

On the MIPS host, the serial device used for GOB needs to 
be in a mode other than the "respawnn mode. In the "respawn" 
mode, the operating system looks for a remote log in from the 
serial device. This conflicts with GOB activities and GOB fails 
to initialize. 

On DOS hosts, the following two lines must be executed 
each time, just before executing GOB: 

\idtc\asynctsr.com 1 (replace 1 by the COM port 
number used by GOB) 

mode COM1: 9600,n,8,1 
appropriate port name used by GOB) 

(replace COM1 by 

On DOS hosts, the above lines can be put in a batch file for 
easy invocation. Note that asynctsr.com uses some memory 
every time you run it. You may wish to invoke it using 
"Ioadhigh" to minimize loss of conventional memory. If you 
start running out of memory, you may have to reboot the 
computer. You may have a TSR manager that knows how to 
remove older instances of asynctsr.com from memory. 

On DOS hosts, it is important to note that GOB will not 
function at all unless SHARE is invoked manually or through 
the AUTOEXEC.BAT file. 

GETTING STARTED 

Init files 

You may wish to use the "init files" feature of GOB to 
execute certain GOB commands automatically at the time of 
invocation of GOB. "Init files" on Sun and MIPS hosts are 
named ".gdbinit". You can have a "init file" in your home 
directory and another one in your current directory as well. 
The "init file" in the home is executed first and the one in the 
current directory is executed after that. 

Currently, the "init file" feature is not implemented for DOS 
hosts. However, GOB can be invoked with the "-command 
filename" (or "-x filename") switch to achieve the same effect. 
Commands in the file "filename" will be executed automati­
cally after starting GOB. In the future, the "in it file" name for 
DOS is likely to be GOB.INI. 

You may suppress the automatic execution of "init files" by 
invoking GOB with the -nx switch. 
Preparing code for GOB 

Source code must be compiled with one of the following 
switches: 

The lOT logo Is a registered trademark and IOTIC, IOT/SIM R3041/51nllB1, R4600 RISCWlndows and RISControiler are trademarks of Integrated Device Technoiosy Inc. 

222 



GOB - lOT/eN 5.0 SOURCE LEVEL DEBUGGER 

-g - Same as -g2 below. 
-g1 - Produces minimum information needed by GOB to be 

able to debug. No information about local variables or 
line numbers is generated. 

-g2 - Produces maximum debugging information. 
-g3 - Accepted but does not do anything more than -g2. 

To debug malfunctioning code in initial stages, optimization 
level of zero (-00 or no -0 switch at all) is recommended 
during compiling and linking. This preserves the source code 
sequence and makes tracing through code easier. -0 switches 
of all levels are, however, accepted in combination with -g 
switches of any level. Substantial experience with compiler 
optimizations is necessary to be able to debug optimized 
code. 

Downloading code to target 
Users familiar with debugging code in local environments 

will be tempted to follow the intuitively natural sequence of 
starting the debugging process: invoke the debugger, load the 
executable, initialize global settings, set a breakpoint, run. 
Strictly speaking this sequence also works for remote debug­
ging. However, reversing the order of first two steps can result 
in substantial savings in time. 

Invoking GOB first and using the "load" command from 
GOB to download code (to be debugged) to the target can take 
more than five times as much time as downloading code first 
and then invoking GOB. The download protocol used by the 
"load" command of GOB is very elaborate and time consum­
ing. It is recommended, therefore, that the s-record file 
generated from the code to be debugged be downloaded first 
using the "load" command of 10T/SIM. This download pro­
cess is no different from that employed during normal running 
of downloaded code. To run the code after downloading it to 
the board, the user would ordinarily enter the 10T/SIM com­
mand "go". The "go" command should NOT be entered if GOB 
is to be used for debugging. 

Afterfinishing the download the next step (which is optional 
but recommended) is to issue the debug command to the 10T/ 
SIM. At the <lOT> prompt, enter: 

debug ttyO 
Next, exit the monitor process or program - a terminal 

emulator in case of ~OS, the "cu" command in case of Sun, 
etc. In the case of MIPS computers this is slightly confusing 
unless RISCWindows is being used. 

In the case of MIPS computers, one needs to hook up a 
physically separate VT100 terminal to the "ttyO" port of the 
board (as opposed to running a terminal emulator on the host). 
"tty1" of the target board is hooked up to the MIPS host. The 
file download takes place over "tty1 ". Once the download is 
over, the user is required to physically disconnect the VT100 
terminal from the "ttyO" port. The user is further required to 
move the cable from "tty 1 " to "ttyO". If two serial ports of the 
host, and two serial cables, are available, then the cable 
hooked to "tty1" may be left where it is. The second serial 
cable from the host can be connected to "ttyO" once the VT100 
terminal is disconnected. Note that whichever serial device of 
the host is finally connected to "ttyO", needs to be in a mode 

223 

APPLICATION NOTE AN-128 

other than "respawn". 
Note that once the code to be debugged has been down­

loaded to the target board, and the optional "debug ttyO" 
command is issued, the target board must not be reset by the 
user using the reset button or in any other way. The next step 
at this point is to start GOB. 

Invoking GOB 

The last stage of an invocation of "gcc" is the linker stage. 
The linker stage is automatically invoked if the "-c" switch is 
not used while invoking "gcc". The linker can be invoked 
explicitly as "Id" (or "gld" via a link on most Unix systems). The 
linker produces a file referred to as the executable file (or 
code). In order to create downloadable s-record file from this 
executable file, use the "objcopy" binary utility. 
To invoke GOB, simply enter: 

gdb FILE 
where, FILE is the name of the executable file as described 

in the previous paragraph. 
After displaying the sign-on message, the (gdb) prompt will 

be displayed and GOB is ready to receive commands from the 
user. 

At this point GOB knows nothing about the target. To 
introduce the target to GOB enter: 

target mips com1 (if you are using ~OS. Use 
the appropriate com port.) 

OR 
target mips /dev/ttya (if you are using Sunos4.1.3. 

Use the appropriate tty device.) 
OR 

target mips /dev/tty1 (if you are using Riscos5.01 on 
MIPS. Use the appropriate tty device.) 

The system may respond with all of the following mes-
sages: 

Timed out waiting for remote packet 
Failed to initialize; trying to reset board 
Remote MIPS debugging using com1/ttya/tty1 
Ignore the first two lines. GOB has been successfully 

initialized and is now ready to receive commands. 
Hitting a "return" at the (gdb) prompt repeats the last 

command issued to GOB. You can use short forms (first few 
letters) of all GOB commands as long as the numberof letters 
are enough to uniquely identify the command and/or the 



GOB - IDT/C~ 5.0 SOURCE LEVEL DEBUGGER 

arguments. 

MOST COMMONLY ASKED QUESTIONS 
1. Is there on-line help on GOB? 

Yes. At any point during debugging, you can receive on-line 
help on GOB commands. The starting point is to enter "help" 
at the (gdb) prompt. The main help screen gives instructions 
on how to obtain help in more detail on every specific com­
mand. Successive screens offer increasingly detailed help. 

2. After debugging for some time, I forgot which part of the 
code is currently getting executed. How do I figure out 
where I am? 
Use the GOB command "info frame". This command dis­

plays a lot of useful information including current frame 
pointer, stack pointer, stack level, pc location, saved registers, 
return address, addresses of local variables. 

3. How do I display the current register values? Can I see 
special CPO registers in IOT79R3081™ and 
10T79R3041™ RISControllers™? 
To see current register values, use the GOB command "info 

registers·. This command will display all general purpose 
registers and all CPO registers for the IOT79R305FM 
RISController. CPO registers unique to other RISControllers 
cannot be displayed using this release of GOB. 

4. In the DOS platform compiler, what exactly does 
ASYNCTSR.COM do? 
GOB functions in the ''~OS extender" world, where there is 

no DOS 110. It is difficult to get interrupts, in this case serial 
1/0, delivered in that region. ASYNCTSR.COM is, loosely 
speaking, a device driver which stays memory resident, and 
acts as the missing link between serial 1/0 and GOB. Its job is 
to intercept serial data and make it available to GOB. 

5. Can I set breakpoints identified by line numbers in an 
assembler source file? 
Unfortunately, GOB does not maintain any line number 

information about assembler source code. It is not possible to 
set a breakpoint using line numbers in assembler source as 
can be done with C source code. 

However, there is a work-around, which is not very easy but 
can prove to be useful under some circumstances. To set a 
breakpoint at line number "Iinenum" in an assembler file 
"myasmfile.S" please follow these steps: 
i. Add the following statement at the beginning of the file: 

.file fileno "myasmfile.S" (fileno is any number) 
ii. At line number "Iinenum - 1 ", add the following line: 

.Ioc fileno linenum 
iii. Now, while using GOB, to set a breakpoint at above 

location, at (gdb) prompt enter: 
breakpoint "myasmfile.S":linenum 

APPLICATION NOTE AN-128 

This procedure is rather cumbersome, especially if a num­
ber of breakpoints are desired in a number of assembler files. 
However, until a better solution becomes available, this will 
have to do. 

6. Why does -g switch force less optimization while compil­
ing even though the manual says that -0 switch can be 
used along with -g switch? 
Strictly speaking the -g switch need not perform less 

optimization if -0 switch is used in conjunction with the -g 
switch. However, an exception is made to this rule in order to 
maintain compatibility with the assembler produced by Mips 
Corp. If -g switch is used, the branch delay slots are neverfilled 
with any useful instruction; they are always filled with a "nop", 
even if -02 switch is specified. In the absence of -g switch, an 
effort is made to fill the delay slot with a useful instruction. 

7. Why does GOB time out if the code is doing something 
useful? What does "set timeout" command do? 
GOB assumes that if the target board does not respond to 

any query within 5 seconds, synchronization over the serial 
communication path is lost. Under such circumstances, GOB 
resets the board. This may be undesirable if the board was 
indeed expected to not respond within 5 seconds for a 
legitimate reason. To avoid such undesirable circumstances, 
the GOB manual describes a command called "set timeout 
seconds". A negative number of seconds in the command was 
expected to have GOB never time out under any circum­
stances, a feature useful in debugging real time applications 
where a breakpoint would be expected to be reached only 
under very rare conditions which occurred once every few 
hours or so. 

Unfortunately, the "set timeout" command was not imple­
mented correctly in GOB, and does not work as expected. In 
future releases of GOB, this command will be removed and 
time out will never occur. If the user believes that a malfunction 
on the target board is causing lack of response to GOB, the 
user will be expected to reset the target board manually. GOB 
will have no decision making intelligence regarding resetting 
the board. 

224 



APPLICATION (;) COPYING INITIALIZED DATA TO RAM NOTE 
AN-132 

Integrated Device Technology, Inc. 

By: Ketan Deshpande and Sugavaneswaran Subramanian 

INTRODUCTION 
Writing ROM-able code using IOT/C'" 5.0 or I OTIC 6.0 puts 

restrictions on 'initialized data declarations. Initialized data 
end up in ROM space, making it impossible to change such 
data during program execution. This restriction is neither 
obvious, nor acceptable to a number of C programmers. One 
technique to eliminate this restriction is explained in this 
application note. The most effective implementation requires 
modification to the C compiler utilities, which may be offered 
in future releases of IOT/C. 

OVERVIEW 
lOT's C Compiler tool chains IOT/C 5.0 and 6.0 provide a 

means of developing embedded applications based on the 
lOT R30xx and R4xOO RISControllers"'. I OTIC 5.0 generates 
ECOFF format files; IOT/C 6.0 generates ELF files. For 
purposes of this discussion, both output file formats will be 
referred to as "executable". Any differences in formats I tool 
chains will be noted wherever appropriate. 

I OTIC organizes the executable into sections by default, as 
shown below: 
1) .text: All instructions from all source files. 
2) .rdata (ECOFF) I .rodata (ELF): All initialized data that 

are declared constant. (Most commonly found elements 
here are strings.) 

3) .data: All initialized data. Oata may get moved between 
.rdata and .data depending on what the compiler be­
lieves is constant. 

4) .bss: All un initialized data. 
5) .sdata: All initialized data smaller than the size specified 

by the -G option. 
6) .sbss: All uninitialized data smaller than the size speci­

fied by the -G option. 
The layout of sections and determining what exactly goes 

into which section can be controlled using a linker script file, 
and by adding -T <script filename> in the linker command line. 

Both IOT/C 5.0 and 6.0 allow creation of user-defined 
sections and embedding user-defined symbols in the execut­
able generated, using the linker script. This flexibility is key to 
the technique discussed below. 

PROBLEM 
Initialized data in the .data section get programmed into 

ROM space when the PROMs are created. This is the only 
way that the code can "remember" the initial values of all 
initialized data, in an embedded environment. However, this 
makes it impossible for the user to modify these values. The 
user can get around this by not initializing the variables at the 
point of declaration (making them uninitialized and thus forc­
ing them into the .bss section) and then initializing them in 
code. The drawback of this approach is that the user needs to 

remember where to initialize each such data structure. An­
other way would be to have two structures: one initialized, one 
un initialized, and in the code, copy the one in . data to the one 
in .bss. This method has speed and space disadvantages. 

This Application Note describes a three-step method to 
overcome this problem. Briefly, the logic can be explained as 
(a) build the code assuming that the . data section will be in the 
RAM space; (b) in reality, burn the . data section in the ROM; 
(c) right at the start of code execution, move the . data section 
from ROM to RAM where the code expects it to be already. 

Using IOT/C, the steps would be: 
1. Link the executable program in such a way that the 

instructions look for .data section in the RAM address 
area. 

2. Build S-records using a modified version of objcopy that 
relocates the .data section to ROM area while converting 
the executable to S-record. This "saves" the initialized 
contents of the .data section. 

3. Make the startup code copy this relocated section from 
ROM area to its designated place in RAM area. This is 
the RAM address area where the instructions will be 
looking for the .data section (as explained in step 1 
above). This method has been tested and found to work 
with relocating .data from IOT/sim"'; it can be extended 
easily to cover .rdata I .rodata too. 

ADVANTAGES 
1. Allows software programmers to use initialized data 

without restrictions. 
2. Removes the necessity for additional codeldata spread 

out all over the application for modifying initialized data. 
3. Speeds up program execution, since accesses that used 

to go to ROM are now directed to RAM. 

DISADVANTAGES 
1. Increased startup time because of the code to copy the 

.data section to RAM. However, this is only a one-time 
effort, and hence is not a major overhead. 

STEPS INVOLVED 
1. Oetermine what section(s) of the executable are to be 

relocated. 
2. Modify the linker script to add informational sections (for 

objcopy) and symbols (for the startup code) that define 
the source and target of relocation. 

3. Modify the startup code to copy data from the relocated 
address (ROM) to its real address (RAM). 

4. Compile and link the application using the new linker 
script, such that the .data section now lies in RAM. 

5. Use the version of objcopy that has support for this 
relocation, to build PROMs. 

The lOT logo Is a reglslered trademark and IDTIC, IDT/sim and RISConlrolier are Irademarks of Inlegraled Device Technology, Inc. 

225 



COPYING INITIALIZED DATA TO RAM 

SECTIONS TO BE RELOCATED 
Let us assume that only the .data section needs to be 

relocated. 

MODIFYING THE LINKER SCRIPT 
Linker scripts for I OTIC 5.0 and 6.0 are slightly different; the 

modifications done are very similar. 
The following information needs to be inserted into the 

linker script to enable both objcopy and the startup code to 
perform the relocation and data movement. 
a) Sections .start, .endsect 
This is done by inserting section lines in the linker script. 

The program "objcopy" relocates all sections between 
these two sections to the address defined by _src_start. 

b) Symbols _src_start, _src_end: 
This is done by inserting symbol lines in the linker script. 

The startup code copies data from _src_start to 
_tgLstart, until_src_end is reached. 

c) Symbol_tgLstart: 
This is done by inserting a symbol line in the linker script. 

The startup code copies all data that was relocated, to 
this RAM address. 
The modified linker scripts are listed on the following pages, 

with the changes highlighted. 

Sample Linker Script for IOT/C 5.0: 

OUTPUT_FORMAT ("ecoff-bigmips") 
ENTRY (start) 
SECTIONS 
{ 

.text OxbfcOOOOO 
ftext = . I 

* (.init) 
eprol 

* ( . text) 
* (. fini) 
etext 
_etext 

.rdata 
* ( . rdata) 

/* Relocate the sections between .start and 
.endsect, to begin from the current ad­
dress */ 
.start. {} 
_src_start - • 
_tgt_start = Oxa0000200 

/* _tgt_start should be equal to the start 
of the .data section below */ 

.data Oxa0000200 : { 
_fdata = .; 
* (.data) 
CONSTRUCTORS 

edata 

APPLICATION NOTE AN-132 

/* OK, this is all we wanted to relocate */ 
• endsect • • { } 

.reginfo 

.scommon 

.bss . : { 
_fbss = .; 

* (.bss) 
* (COMMON) 

end = .; 
_end = .; 

{} 

{} 

Sample Linker script file for IOT/C 6.0: 

OUTPUT_FORMAT ("elf32-bigmips") 
OUTPUT_ARCH (mips) 
_DYNAMIC_LINK = 0; 
SECTIONS 

226 

{ 

/* Read-only sections, merged into text 
segment: */ 
.text OxbfcOOOOO 
{ 

_ftext = . ; 
* (. text) 
CREATE_OBJECT_SYMBOLS 
_etext - . I 

.init ALIGN(8) 

.fini ALIGN(8) 

.ctors ALIGN(8) 

.dtors ALIGN(8) 

.rodata ALIGN(8) 

.rodatal ALIGN(8) 
{ 

* ( . rodatal) 
. = ALIGN(8); 

* (. init) 
* (. fini) 
*(.ctors) 
* (.dtors) 
* (.rodata) 

.reginfo . : { *(.reginfo) 

=0 
=0 

/* Relocate the sections between .start and 
.endsect, to begin from the current ad­
dress */ 
.start. {} 
_src_start - • 
_tgt_start = Oxa0000200 

/* _tgt_start should be equal to the start 
of the .data section below */ 

.data Oxa0000200 
{ 

fdata = 
*(.data) 



COPYING INITIALIZED DATA TO RAM 

CONSTRUCTORS 

.datal ALIGN(8) : { *(.datal) 
_gp = + Ox8000; 
.lit8 . : { *(.lit8) 
.lit4 . : { *(.lit4) 
.sdata ALIGN(8) *(.sdata) } 
_edata 

/* OK, this is all we wanted to relocate */ 
.endsect •• {} 
_src_end = . 

_bss_start = . 
.sbss ALIGN(8) 

* ( . scorrunon) } 
.bss 

fbss 
* (.bss) 
* (COMMON) 
_end = . ; 
end 

.line 

. debug 
} 

.debug_sfnames 
* (.debug_sfnames) 
.debug_srcinfo 

*(.debug_srcinfo) 
.debug_macinfo 

* (.debug_macinfo) 
.debug-pubnames 

* (.debug-pubnames) 
.debug_aranges 

*(.debug_aranges) 

Modifying the startup code 

{ * (.sbss) 

0 * (.line) 

0 * (.debug) 

0 { 

} 

0 { 

} 

0 { 

} 

0 { 

} 

0 { 

} 

Typically, embedded applications have code that performs 
CPU control register initialization, cache flushing, memory 
sizing, initializing .bss etc. With the .data section in its new 
positions in ROM, the code will still look to RAM addresses for 
initialized data. Before any such references are attempted, the 
.data section should be copied out into it's real place. A good 
place to do this is usually after .bss initialization. The code 
segment below demonstrates how this can be done. The 
same code can be used for IDTC/S.O and 6.0; though for the 
R4xOO processors, the user may want to use double-word 
loads and stores for faster execution. 

la to, _src_start 
la tl, _tgt_start 
la t2, _src_end 

227 

APPLICATION NOTE AN-132 

2: lw t3, O(tO) 
nop 
sw t3, O(tl) 
addu to, 4 
addu tl, 4 
blt tl, t2, 2b 
nop 

Modification to OBJCOPY 
The binary utility "objcopy" needs to be modified to make it 

intelligent enough to recognize the sections that the linker 
script was asked to create, and to move the appropriate 
sections to their temporary PROM addresses. Most of the 
code modifications needed to perform this movement are in 
the function setup_sectionO in the file objcopy.c (the main 
source code file for the objcopy utility), and are shown on the 
next page, in boldface. Some adjacent code is shown for 
reference. Initialization of the variables may not be shown 
explicitly; it is mentioned wherever appropriate. 

setup_section( ...... ) 
{ 

..... /* Original variable declarations liere 
*/ 

int sec_addr; 
static int new_data_addr = 0; 
static int move_section = FALSE; 

...... /* Original code here */ 
if (!bfd_set_section_size (obfd, 

osection, 
bfd_section_size (ibfd, 

isection) ) ) 
{ 

err = "size"; 
goto loser; 

/* start_address = bfd_get_start_address 
(ibfd) ; 

in copy_object() */ 
if (Inew_data_addr) new_data_addr 

start_address; 
new_data_addr += bfd_section_size (ibfd, 

isection) ; 

/ * Got section • start? Now remember current 
address 

and keep track of new relocation address 
*/ 

if (Istrcmp(bfd_get_section_name(ibfd, 
isection) , 

".start"» 
move_section = TRUE; 

/* Got section .endsect? Stop relocation 
*/ 

else if (I strcmp (bfd_get_section_name (ibfd, 



COPYING INITIALIZED DATA TO RAM 

isection), ".endsect"» 
move_section = FALSE; 

if (move_section) sec_addr = new_data_addr; 
else sec_addr bfd_section_ vma (ibfd, 

isection); 

1* Actually do the relocation *1 
if (bfd_set_section_vma (obfd, osection, 

sec_addr) 
== false) 

err = "vma"; 
goto loser; 

if (bfd_set_section_alignment (obfd, 
osection, 

bfd_section_alignment 
(ibfd, isection)) 

== false) 

err = "alignment"; 
goto loser; 

Compile, link the application and build PROMs 
This can be done in the usual manner. The scripts shown 

above setup the. data section to reside in RAM area. The new 
version of objcopy with this option may be available in future 
releases of IDT/C. 

SUMMARY 
This application note described a technique that relocated 

certain sections to ROM and then copied them to their desig­
nated locations in RAM. This method has been demonstrated 
on the . data section; it can very easily be extended to include 
other sections too. 

The advantages are: provide C programmers with the 
ability to use initialized variables much more freely, removal of 
the need for extra code or data, faster access without requiring 
any extra ROM space. 

228 

APPLICATION NOTE AN-132 



APPLICATION (;) SCATTER LINKER NOTE 
AN-133 

Integrated Device Technology. Inc. 

By. Sugavaneswaran (Sugan) Subramanian 

INTRODUCTION 
In general, a compiler has four major components. They 

are Preprocessor, Compiler, Assembler, and Linker. This 
application note explains the "scatter" feature of SGI/MIPS 
compiler in the context of MIPS R3000/R4000 RISC proces­
sors. 

What role does a linker play in an embedded environ­
ment? 
In the embedded environment, the linker plays a major role 

in laying out the application code into RAM/ROM of the target 
system in the most productive manner. In embedded applica­
tions, the code section and the data section reside in known 
fixed memory locations. All compilers that create applications 
for embedded systems have a mechanism to specify the start 
address forthe code section. They also give the programmer 
a choice of either making the data section follow the code 
section or to start the data section at an address before the 
start of the code section or to start the data section at an 
address after the end of the code section. The linker gener­
ally, lets the programmer layout the code in the following 
manner: 
1 . One uncached code section and one uncached data 

section 
2. One cached code section and one uncached data section 
3.0ne uncached code section and one cached data section 
4. One cached code section and one cached data section 

A scatter linker offers more choices, and is, therefore, an 
integral part of the new SGI/MIPS cross-compiler for R30001 
R4000 target running on SUN SPARC host. 

Why do we need multiple sections of code and data? 
Embedded systems usually have slower main memory 

interface than desktop systems. In such systems that have a 
MIPS R3000/R4000based (RISC) CPU, the code that resides 
in the instruction cache executes many times faster than the 
code that is executed from an uncached space (Main Memory). 
Also, the data that reside in the data cache can be accessed 
many times faster the data that reside in Main Memory. The 
following cases may arise: 
1.ln some code-intensive applications, to get the most 

optimal performance out of an instruction cache, the 
programmer must have a section of code that is most 
frequently executed and that is small enough to fit inside 
the instruction cache, always cached, and the rest of the 
code in Main Memory. 

2.ln some data-intensive applications, to get the most 
optimal performance out of a data cache, the program­
mer must have a section of data that is most frequently 
accessed and that is small enough to fit inside the data 

The lOT logo Is a registered trademark of Integrated Device Technology. Inc. 

229 

cache, always cached, and the rest of the data in Main 
Memory. 

3.ln some applications that are code and data intensive a 
combination of the previous two mechanisms should be 
applied. 

What is a Scatter Linker? 
A scatter linker is a linker that lets the programmer develop 

an embedded application such that it has one or more text 
sections. and one or more data sections. The process of 
creating an application that has one or more text sections and 
one or more data sections is called scattering. This is usually 
done with the help of a linker script language. In this applica­
tion note, various features of scatter linker supported by the 
new SGI/MIPS cross compiler are described. 

The new compiler uses a linker script language to layout the 
executable code at the programmer's demand. A switch in the 
link line of the compilation lets you specify the file that contains 
the linker script having the layout information of the execut­
able code. A complete description of the linker script language 
is beyond the scope of this application note. However, an 
illustration of one simple linker script and one complex linker 
script presented here is believed to be sufficient to provide an 
introduction to the scatter linker. 

How do you invoke linker-script in a link line of the SGU 
MIPS compiler? 
The following switches are useful when invoking a linker­

script: 
"-elspec" tells the linker that the following element is going 

to be the name of a ASCII-text file containing linker-script 

"-rom" tells the linker not to pad any sections with UNIX­
based page size 

"-elsmap" tells the linker to generate the map of linker script 
to standard output (screen). The output can be redi­
rected to a file. This switch can be used without "-elspec" 
and "-rom". Gives an elaborate description of the layout 
of various sections of all the objects in the linker line in a 
pseudo linker-script form. 

example1: 
Idr4000 -elspec simple_script -rom -elsmap -0 

app1_simple crto.O file1.0 file2.0 > 
simple_script.map 

example2: 
Idr4000 -elspec complex_script -rom -elsmap -0 
app1_complex crtO.o file1.0 file2.0 > 
simple_script.map 



SCATTER LINKER 

How do you create linker script for executable code that has 
one text section and one data section? 

By default, all executable code that is created by the SGII 
MIPS cross compiler has the following set of valid sections: 
1. A ".text" section containing executable instructions. 
2. A ".MIPS.option" section 
3. A ".reginfo" section 
4. A ".rodata" section containing read-only data. Read only 

data include immediate values, char constants, and string 
constants 

5. A ".data" section containing intialized data. Initialized 
data include initialized global variables, initialized vari­
ables with "static" type, and variable with "const" type. 

6. A ".bss" section containing uninitialized data. 
Uninitialized data include uninitialized global variables 
and function names. 

A segment is a collection of sections. Sections 1-4 are 
considered loadable, readable and executable and are grouped 
together and put into a segment with unique attributes. Sec­
tions 5-6 are considered loadable, readable, and writable and 
are grouped together and put into another segment with 
unique attributes. This is the default layout. The programmer 
is free to change the attributes and/or the contents of a 
segment. 

A simple script includes all the default sections. 
The following is an example: 

Example1 (simple_script) : 
# Creates an executable with one text section and one data 

section. 
# It has the text section start at Oxa0020000 and has the 

data section 
# following the text section 
# comment is preceded by a # 
# file: simple_script 

# The following segment contains elements that are 
readable and 

# executable 
beginseg 

segtype LOAD # Makes the segment loadable 
# A segment is considered loadable 
# if its contents can be put in a valid 

section 
# of main memory or cache in the 

target 
# system 

segflags R X # Makes the segment readable and 
# Executable 

vaddr Oxa0020000 # Gives the start address for the 
segment 

# This a valid virtual address in the 
target 

# system 

APPLICATION NOTE AN-133 

segalign Ox1 000 # specifies the UNIX OS based 
page 

contents 

# alignment between the current 
segment 

# and the following segment. It is 
ignored 

# when using "-rom" switch in the 
link line 

# specifies the sections that are 
going to 

# be put in this segment 
# The following link-script command "noheaders" 
# makes sure that the section header information is 
# skipped in the executable code 

noheaders 
default 

endseg 

# Includes are the all the loadable 
# sections that are readable and 
# executable 

# The following segment contains elements that are 
readable and writable 
beginseg 

segtype LOAD 
segflags R W # Makes the segment readable and 

# Writable 
# If you want to make the data section start at a new 

address, 
# then enter the stuff within quotes in the following line 
# ''vaddr <data-start-addr>". 
# where <data-start-addr> is a valid hex number i.e. Ox<8-

hexdigits> 
segalign Ox1000 
contents 
default 

endseg 

How do you create linker script for executable code 
that has more than one text section and more than 
one data section? 
Executable code that is created by SGIIMIPS cross com­

piler has the following set of valid sections: 
1.0ne or more sections containing executable code with 

unique attributes as long as they are all within 256 
MegaByte boundary. Due to the boundary limitation on 
code section, one cannot have a section of 
executable code in Cache and the rest of the executable 
code in Main Memory 

2.A ".MIPS.option" section 
3.A ".reginfo" section 
4.0ne or more sections containing read only data with 

unique attributes. 
5. One or more sections containing initialized data with 

unique attributes. 

230 



SCATTER LINKER 

6.0ne or more sections containing uninitialized data with 
unique attributes. 

Whenever you want to create an application that needs to 
have more than one code section and more than one data 
section, itis necessary that you know the unique attributes that 
identify them. And, iftwo sections have similar attributes, they 
should have different names. Moreover, you can have a code 
section inside a data section or a data section inside a code 
section. 

The executable file format for the executable code is ELF. 
Each one of the ELF sections are identified by 
1.Section type 
2. Section flag 

The following is the list of valid ELF sections with the 
attributes for them: 
1 . code section 

Section type: PROGBITS 
PROGBITS ==> Contents are loaded into the memory 

before execution 
Section flag: ALLOC EXECINSTR 
ALLOC ==> Contents have a valid section of memory 

in the target system 
EXECINSTR ==> Contents are executable machine 

instructions 
2. read only data section 

Section type: PROGBITS 
Section flag: ALLOC 

3. initialized data section 
Section type: PROGBITS 
Section flag: ALLOC WRITE 

4. uninitialized data section 
Section type: NOBITS 
NOBITS ==> Contents are not loaded into the 

memory before execution 
Section flag: ALLOC WRITE 

The following example describes how to create linker script 
that hasmultiple text and data sections for the executable 
code. 
Example2 (complex_script): 

beginseg 
segtype LOAD 
segflags R X 
vaddrOxa0020000 
segalign Ox1t,;\)0 
contents 
noheaders 
beginscn . text 

# scntype specifies section type for code section to be 
PROGBITS 

scntype PROGBITS 
# scntype specifies section flag for code section to be 

ALLOC 
# EXECINSTR 

scnflags ALLOC EXECINSTR 
scnalign 4 

# .text is the name of the section 
# It contains code section for object crto.o 

231 

APPLICATION NOTE AN-133 

# read only data section (.rodata) for all objects 
# .MIPS.options section for all objects 
# .reginfo section for all objects 

section .text in crto.o 
section .rodata 
section .MIPS.options 
section .reginfo 
endscn 

endseg 
beginseg 

segtype LOAD 
segflags R W 
segalign Ox1000 
contents 

beginscn .data 
scntype PROGBITS 
scnflags ALLOC WRITE 
scnalign 4 

# .data is the name of the section 
# It contains data section for object crto.o 

section .data in crto.o 
endscn 

endseg 
beginseg 

segtype LOAD 
segflags R X 
segalign Ox1000 
contents 

beginscn . text2 
scntype PROGBITS 
scnflags ALLOC EXECINSTR 
scnalign 4 

# .text2 is the name of the section 
# It is the second code section 
# It contains text section for object file1.o 
# It contains text section for object file2.o 

section .text in file1.0 
section .text in file2.0 
endscn 

endseg 
beginseg 

segtype LOAD 
segflags R W 
segalign Ox1000 
contents 

beginscn .data2 
scntype PROGBITS 
scnflags ALLOC WRITE 
scnalign 4 

# .data2 is the name of the section 
# It contains initialized data section for object file1.0 
# It contains initialized data section for object file2.0 

section .data in file1.0 
section .data in file2.0 
endscn 

endseg 
beginseg 

segtype LOAD 
segflags R W 



SCATTER LINKER 

segalign Ox1000 
contents 

beginscn .bss 
scntype NOB ITS 
scnflags ALLOC WRITE 
scnalign 4 

# .bss is the name of the section 
# It contains un initialized data section for all objects 

section .bss 
endscn 

endseg 

CONCLUSION: 
In embedded systems with SGIIMIPS R3000/R4000 CPU, 

having some sections of code in Instruction cache and some 
sections of code in Main Memory, and some portion of data in 
data cache and the rest in Main Memory can greatly improve 
performance in data intensive and/or code intensive applica­
tions. The scatter linker is an integral part of the new SGI/ 
MIPS compiler and has the ability to produce such code. 

APPLICATION NOTE AN-133 

232 



(;) SETTING UP THE SGllNDyTM AS TECHNICAL 

A DOWNLOAD PLATFORM FOR NOTE 

IDT'S Rise EVAL BOARDS TN-16 

Integrated Device Technology, Inc. 

By Ketan Oeshpande 

This note explains how to set up the SGIINDYn.t worksta­
tion as a platform for downloading code onto an lOT 
evaluation board. 

You will need the following items: 
1. An SGIINDY workstation running IRIXn.t 5.1.1 or higher, 

with at least one serial port. Two ports are necessary if 
you want to do terminal emulation from the SIM. 

2. A RISC evaluation board from lOT. The board must have 
IDT/SIMn.t 4.0 or later. 

3. A software development tool chain that will produce 
executable code for MIPS RISC processors, and S­
records from that executable code. 

4. The UUCP utility on the INDY workstation. If this is not 
installed, it should be available on one of the CD-ROMs 
containing IRIX software. The UUCP utility is available on 
the IRIX Operating System CD-ROM as package 
eoe2.sw.uucp. 

5. An RS232C cable that plugs into the serial port on an 
INDY. MINI DIN 8 cables can be used. One cable is 
sufficient, two are needed if you want to do terminal 
emulation. 

ASSUMPTION 
It is assumed that: 
1. The software tool chain is set up on the workstation 

properly. 
2. You have created a small software program, and com­

piled and linked it with the appropriate libraries from your 
tool chain. 

3. You also have created S-record files from the execut­
able. You will need to download the S-record file to the 
evaluation board. 

HARDWARE 
To set up the hardware for downloading the S-record file 

from the INDY to the target board, you need to set up a serial 
link between the workstation and the board. This is a one-time 
effort only. 

Locate the serial ports on the back of the INDY. They are 
next to the mouse and keyboard ports, and are marked" 1 " and 
"2". By default, IDT/SIM uses the ttyO port of the board to 
communicate with a terminal. (To display prompts, echo the 
keyboard input, etc.) Hence, this port needs to be connected 
to the host. Locate the ttyO port of the lOT evaluation board. 
Connect it to a serial port on the INDY using the serial cable 
mentioned above. Once the cable is hooked up, connect the 
power supply to the board and switch it on. 

Let us assume for further discussion that the INDY's serial 
port 2 has been connected to the board's ttyO. 

SOFTWARE 

Setting up the serial port 
In the INDY, serial port "n" is associated with the device file 

Idev/ttydn. Make sure the access permissions forthe file Idevl 
ttyd2 are set to "rw-rw-rw-". You can view the current mode 
using "Is -l/dev/ttyd2". If the mode is different, you will need 
to log in as root and use "chmod 666 Idev/ttyd2" to set the 
proper mode. Also, still working as root, in the letc/inittab file, 
look for the line that has ttyd2. If necessary, change it so that 
it the third field is "off", rather than "respawn" or "on". The line 
now should look like this: 

t2:23:off:/sbin/getty -N ttyd2 co_9600 

If you want to do terminal emulation from the SIM (not really 
necessary since you have the capability to open multiple 
windows on the INDY), connect the serial port 1 to tty2 (or 
AUX) on the evaluation board and make sure that the line (in 
letc/inittab) for tty1 looks like the one below: 

tl:23:respawn:/sbin/gatty ttydl co_9600 

After changing the letc/inittab file, type ''telinit q" to make 
those changes known to IRIX. 

Setting up UUCP 
Log in as root on the INDY. This can be done easily by 

opening another window and using the command "su - roof 
or "login root". Change current directory to the UUCP directory 
(/etc/uucp or lusr/lib/uucp). 

Add the following line to the file Systems: 

board Any dev Any 

Add the following line to the file Devices: 

dev ttydl - 9600 direct 

The above two lines inform UUCP that there is a device 
called board of type dev that is directly connected to ttyd1 and 
communicates at 9600 baud. 

The above changes need to be made only once, and now 
it is assumed that there is a working serial connection between 
the INDY and the board. 

Now, working as yourself (not as root), change directory to 
where your S-Record file exists, and at the shell prompt, type: 

cu board 

The lOT logo is a registered trademark and IDT/SIM is a trademark of Integrated Device Technology, Inc. 
INDY and IRIX are registered trademarks of SGI Inc. 

233 



SETTING UP THE SGIINDY AS A DOWNLOAD PLATFORM FOR lOT'S RISC EVAL BOARDS 

The system will respond in a minute, saying "Connected". 
Press <RET> a couple of times. You should see the IDTI 

81M prompt "<IDT>". If you do not see this prompt, the serial 
connection has not been set up properly. Please go over the 
steps mentioned above and check that all steps have been 
taken. You may try resetting the board too. 

To download over the serial port, at the 81M prompt, type: 

load -a ttyO 

The cursor will go to the next line and freeze there. Now, 
type: 

-$cat your-srec-filen~e 

In the process of typing, you will notice that your hostname 
suddenly appears in between the - and the $. This is done by 
cu, and is expected. Another way to download over the serial 
port would be as follows: 

At the SIM prompt, type: 

load -a ttyO 

In another window, type: 

cat your-srec-filen~e > /dev/ttyd2 

After you type in the command and press Enter, there may 
be a pause of a few seconds, and after that you will see rows 
of dots showing that the file is being downloaded. 

After the download is complete, a message like the follow­
ing will be displayed: 

Done. (num) records, initial pc: (address) 

and the <IDT> prompt will return. At this point you can start 
using the SIM commands again. 

To disconnect from the board, type "-" and press Enter. 
This is a tilde (-) followed by a period (.). The display will say 
Disconnected and the shell prompt will reappear. 

234 

TECHNICAL NOTE TN-16 



(;) USING HplS R4XOO TECHNICAL 

DISSEMBLER SOCKET FOR NOTE 

HIW AND SIW DEBUG TN-17 
Integrated Device Technology, Inc. 

By Sami Khan 

INTRODUCTION 
The IDT79R4600Thl is the newest member of IDT's 

RISControlierThl family and provides full applications upward 
compatibility with the earlier members of the MIPS family. 

This note explains the use of Hewlett-Packard Logic Ana­
lyzer preprocessor pod for R4000PC as a debugging tool. An 
important part of system design involves choosing the correct 
design and debugging tools which can help the system 
designers debug their system with ease and efficiency. 

THE HP E2438A PREPROCESSOR 
The HP E2438 Preprocessor provides a complete interface 

for state analysis between any target system and an HP 
1660A"', HP 16540/16541A,DThI

, or HP 16550 Logic Ana­
lyzerThl. The package includes a preprocessor socket and 
system software. The software includes configuration files 
and disassembler software for both little end ian and big 
endian systems. 

SYSTEM SETUP 
The preprocessor socket has two configuration switches. 

Switch SW1 is used to select processor operating frequency. 
If the target system is operating above 35Mhz, SW1 must be 
in the ON position. If the target is operating between 10Mhz 
and 35Mhz, switch SW1 must be OFF. 

( 100/S00MHz LA E ) ( Listing 1 )( 
( ) ( ) ( Markers TrigtoX 

Time o s 

Similarly, switch SW2 is used to select interface clocking 
mode. The ON position is for state-per-clock mode, which 
means that every microprocessor clock cycle will clock the 
logic analyzer. When SW2 is in the OFF position, the interface 
is in state-per-bus-cycle mode, meaning that only valid data 
transfers (microprocessor bus cycles) are clocked into the 
logic analyzer. Note that in the state-per-clock mode, disas­
sembly is not available. 

The setup involves plugging the preprocessor interface 
connector into the microprocessor socket. Please refer to the 
"Preprocessors Interface User's Guide" from HP for connect­
ing the interface socket to the logic analyzer pods. Next, load 
the configuration file into the logic analyzer. This would 
automatically load the inverse assembler file for a big end ian 
system (file I R4K_BE). For a little endian system, load inverse 
assembler file I R4K_LE. If the configuration file is saved to the 
disk with the current inverse assembler, the next time that 
configuration is loaded, the current inverse assembler will also 
automatically be loaded with it. 

Setting up the logic analyzer also involves setting up the 
triggering point. The triggering point depends on the type of 
cycle the system designer is trying to capture. The triggering 
point can be set on any Address, Data, or Control signals or 
any bus activity. 

Invasm ) ( Print ) ( Group Run ) 

) Trig to 0 ( XtoO ) o s o s 

I 
ADDRLO R4000 Inverse Assembly DATA ~ 

Hex I A[7: 0] Mnemonic 

-2 1FC1EE94 94 SW sOO, 3978 (at) 
- 1 1FC1EE98 98 

0 lEQlEE96 RESET: Mode Elit Q 
1 1FC1EE98 RESET: Mode Bit= 1 
2 1FC1EE98 RESET: Mode Bit = 1 
3 1FC1EE98 RESET: Mode Bit=O 
!1 1FC1EE98 RESET: Mode Bit=O 
5 1FC1EE98 RESET: Mode Bit=O 
6 1FC1EE98 RESET: Mode Bit=O 
7 1FC1EE98 RESET: Mode Bit=O 
8 1FC1EE98 RESET: Mode Bit= 1 
9 1FC1EE98 RESET: Mode Bit=O 

10 1FC1EE98 RESET: Mode Bit=O 
11 1FC1EE98 RESET: Mode Bit=O 
12 1FC1EE98 RESET: Mode Bit=O 
13 1FC1EE98 RESET: Mode Bit=O 

Figure 1 

The lOT logo Is a registered trademal1< and RISControlier and R4600 are trademarks of Integrated Device Technology. Inc. 
HP 1660A. HP 16540116541A,D. and HP 16550 Logic Analyzer are trademal1<s of Hewlett-Packard Co. 

235 

Hex ~ 
AC303978 AC 
02000000 02 
EZEQlQ;3E ~Q 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 
F7EC103F 20 

3122 drw01 



USING HP'S R4XOO DISSEMBLER SOCKET FOR HIW AND SIW DEBUG 

DEBUGGING AN R4600 SYSTEM 
Debugging of an R4600 system starts with the debugging 

of CPU's reset interface. This involves debugging of warm 
and cold reset logic, debugging the mode bit interface and 
fetching the reset vector. 

Debugging the CPU reset interface involves getting the 
CPU to read the correct mode bits. To capture mode bits using 
the disassembler software, trigger the logic analyzer on the 
"COLD RESET" signal being low. After 256 mode bits read 
cycles, the processor shou Id fetch the reset vector from virtual 
address OxbfcOOOOO ( Ox1 fcOOOOO physical). Figures 1 and 2 
show the mode bits read sequence atthe reset interface. After 
256 read cycles, the processor fetches the reset vector from 
physical address Ox1 fcOOOOO, as shown in Figure 2. 

The preprocessor interface can then be used for software 
debugging. The instruction can be run cached or uncached. 
For full execution trace, the software must be run uncached, 
so that the disassembler sees all executed instructions. The 
logic analyzer captures all bus activity and every instruction 
executed can be seen on the display. 

Figures 3 and 4 explain the execution trace for uncached 
instructions and data. The code starts executing from physi­
cal address Ox00020000 ( OxA0020000 virtual). Sequential 
fetches can be seen on the bus interface which explains the 
execution flow of the code. 

When configured as a timing analyzer, the timing relation­
ship for CPU signals can be read which is helpful in debugging 
hardware, as shown in Figure 5. 

Code can be run cached, but full execution trace informa­
tion will not be available. Internal caches are used most of the 
time and only external bus activity can be seen by the 
analyzer. Mostly, this external activity corresponds to the 
refilling of the internal caches. Only during the initial filling of 

TECHNICAL NOTE TN-17 

caches, the analyzer can capture all the bus activity. More­
over, this does not guarantee that every instruction fetched is 
executed. For example, CPU supports SUb-block ordering for 
block refill. This only guarantees that the first instruction for a 
block refill will be executed. Figures 6 and 7 explain this fact. 
Figure 6 shows the initial cache refill cycles for the code fetch. 
Once caches are filled, code continues to execute from it and 
the only bus activities that can be captured by the analyzer are 
the data load or store operations or cache refill operations as 
shown in Figure 7. 

Note that whether or not the software is executed through 
the cache, the order of loads and stores seen on the bus will 
be the same as the order in which they are executed by the 
CPU. The R4600 insures strong ordering, which guarantees 
this order. Also note, however, that the R4600 integrates an 
on-chip write buffer. Thus, data being written may not be due 
to the most recent store instruction executed, but rather due 
to a previous store instruction which was executed, and 
whose data was captured by the on-chip write buffer. Once a 
load operation is required, all such pending writes will be 
executed prior to the data load. 

SUMMARY 
The use of HP's preprocessor socket is one example of the 

debugging tools for an R4600 system. The logic analyzer is 
useful for initial debugging of the system and it can be used 
further for software and hardware debug. The Disassembler 
formats logic analyzer state traces into assembly level mne­
monics to allow easier user interpretation. 

When used in conjunction with tools such as an embedded 
monitor program, a ROM emulator, and/or remote target high­
level language debug tools, overall development time can be 
reduced substantially. 

~~(====L=ist=in=g=1==~)(~===I=nv=a=sm====~)~(==~_p_rin_t~~~~)~(===G=r=ou=p=R=un==~) 
'--___ T_ri_g_~_~ _____ ) (",, ___ T_r_ig_~O_~ ____ ) ( X ~ ~ ) 

~=========lll R4000 Inverse Assembly 
~ ________ ~I~IA~[7~:~O~1========~M=ne=m=o=n~iC====~========~ 

RESET: 
RESET: 
RESET: 
RESET: 

Mode Bit-O 
Mode Bit=O 
Mode Bit=O 
Mode Bit = a 

00 J 
04 NOP 
88 LUI 
8C MTCO 
90 MTCO 
94 ADDIU 
98 MTCO 
9C ADDIU 
AO BNE 
A4 ADDIU 
AO BNE 
A4 ADDIU 

01 FC00388 

vOO, 2001 
vOO, SR 
rOO, Cause 
vOO, rOO, 0003 
vOO, r16, rsvd 
vOO, rOO, 0080 
vOO, rOO, 01 FC003AO 
vOO, vOO, FFFF 
vOO, rOO, 01 FC003AO 
vOO, vOO, FFFF 

Figure 2 

236 

STAT ~ 
Hex ~ 

FF1BCBF4 02 
FF1BCBF4 02 
FF1BCBF4 02 
FF1BCBF4 02 
101BFBEO OB 
101BFBE4 00 
101BFBE8 3C 
101BFBEC 40 
101BFBEO 40 
101BFBE4 24 
101BFBE8 40 
101BFBEC 24 
101BFBEO 14 
101BFBE4 24 
101BFBEO 14 
101BFBE4 24 

3122 drw 02 



USING HP'S R4XOO DISSEMBLER SOCKET FOR HIW AND s/w DEBUG TECHNICAL NOTE TN-17 

( 100/500MHz LA E ) ( Listing 1 )( Invasm ) ( Print )( Run ) 

( Markers ) Acquisition Time 
Time 22 Jun 1994 16:56:33 

ADDRLO II R4000 Inverse Assembly STAT ~ 
Hex II A[7:0] Mnemonic Hex ~ 

-1 00001604 08 Nap 001BEFE4 00 
0 00020000 00 MTCO vOO, SR 001BEFEO 3C 
1 00020004 04 LUI vOO, 2001 001BEFE4 3C 
2 00020008 08 ADDIU vOO, ROO, 0003 001BEFE8 40 
3 002000C OC MTCO rOO, Cause 001BEFEC 40 
4 00020010 10 ADDIU vOO, rOO, 0080 001BEFEO 40 
5 0020014 14 MTCO vOO, r16, rsvd 001BEFE4 40 
§ 00020018 18 ADDIU vOO,vOO, FFFF 001BEFE8 14 

7 0002001C 1C BNE vOO,rOO,OOO02001C 001BEFEC 14 

8 00020018 18 LUI vOO, vOO, FFFF 001BEFE8 14 

9 0002001C 1C LUI vOO, rOO, 00002001 C 001BEFEC 14 

10 00020018 18 SW vOO, vOO, FFFF 001BEFE8 14 

11 0002001C 1C ADDIU vOO, rOO, 00002001 C 001BEFEC 14 

12 00020018 18 LW vOO, vOO, FFFF 001BEFE8 14 

13 0002001C 1C SW vOO, rOO, 00002001 C 001BEFEC 14 

14 00020018 18 BEQ vOO,vOO,FFFF 001BEFE8 14 

3122 drw03 

Figure 3 

( 100/500MHz LA E ) ( Listing 1 )( Invasm ) ( Print )( Run ) 

( Markers ) Acquisition Time 
Off 23 Jun 1994 08:45:49 

ADDRLO II R4000 Inverse Assembl:i [ STAT ~ 
Hex II A[7 :0] Mnemonic I Hex ~ 

264 00020020 20 LUI tOO, AAAA 001BEFEO 3C 
265 00020024 24 LUI vOO, AOOO 001BEFE4 3C 
266 00020028 28 SW tOO, 0000 (vOO) 001BEFE8 25 
267 0002002C 2C ADDIU tOO, tOO, 5555 001BEFEC 25 
268 00020030 30 LW t01, 0000 (vOO) 001BEFEO AC 
269 00000000 00 memwrite AAAA5555-·····-- 405BEFCO AA 

~~~ 00020034 38 SW rOO, 0008, (vOO) 001BEFE4 AC 
00000008 08 mem write 00000000 - - - - - - - - 405BEFC8 00

272 00000000 00 mem read AAAA5555-------- 001BEFEO M
273 00020038 38 BEQ t01, tOO, 000020048 001BEFE8 00
274 0002003C 3C Nap 001BEFEC 00
275 00020040 40 BEQ rOO, rOO, 000020040 001BEFEO 00
276 0002004C 4C Nap 001BEFEC 00
277 00020050 50 SW rOO, 0008 (vOO) 001BEFEO AC
278 00020054 54 SW tOO, 0010, (vOO) 001BEFE4 AC
279 00000010 10 mem write FFFFFFFF-------- 001BEFEO FF

3122 drw04

Figure 4

237

USING HP'S R4XOO DISSEMBLER SOCKET FOR H/W AND SIW DEBUG TECHNICAL NOTE TN-17

C __ 10_0_/5_00_M_H_Z_L_A_E __) (Waveform 1) (Acq. Control) C __ P_r_in_t ___) (Group Run)

(

(

Accumulate
Off

states / Div
1

ADDR all
<- 1 F86

ADDRLOail
<- F86C

DATA all
<- 0018

DATA_Ball
<- 0018

STAT all
<- EFEC

ACMD all
18

DCMD all
10

CMD8

(ADDRLO) X .. > 0020000
(Hex) 0 .. > 0020000

~ [Markers
Time

000d2000

00020000

J (X to 0
80 ns

I
I

<-6800 I <-CD80 I <-4DCO I <-89AO I <-0828 I <-0004 I

J
[Trig to X

o s

00002002

00020020

00000000

<-6000 I <-A003 I <-A002 I <-A003 I <-0000 I <-FFFD I <-8320 I
8011 EFEb I <-EFEO I 8011 EFEO I <-EFEO

11

80 I 00 I 80 I 00
I

Figure 5

) [Trig to 0
80 s

I <-24DC

I <-4DCO

I <-4DCO

00000000

I <-EFEO

I 58

I 52

3122 drw 05

100/500MHz LA E) (Listing 1)(Invasm)(Print)(Run)
Markers) Acquisition Time

Off 22 Jun 1994 17:50:17

ADDRLO II R4000 Inverse Assembly STAT ~
Hex II Mnemonic Hex ~

-1 00001604 08 NOP 0018EFE4 00
0 00020000 00 MTCO vOO, SR 8011EFEO 3C

04 LUI vOO, 2001 3C
00020000 08 ADDIU vOO, rOO, 0003 8011EFEO 40

OC MTCO rOO, Cause 40
2 00020000 10 ADDIU vOO, rOO, 0080 8011EFEO 40

14 MTCO vOO, r16, rsvd 40
3 00020000 18 ADDIU vOO, vOO, FFFF 0011EFEO 14

1C 8NE vOO, rOO,00002001C 14
4 00020020 20 LUI tOO, AAAA 8011EFEO 14

24 LUI vOO,AOOO 14
5 00020020 28 SW tOO,OOOO(vOO) 8011EFEO 14

2C ADDIU toO, toO, 5555 14
6 00020020 30 LW t01,0000(vOO) 8011EFEO 14

34 SW rOO,0008(vOO) 14
7 00020020 38 BEQ to1, tOO,000020048 0011EFEO 14

3122 drw06

Figure 6

238

USING HP'S R4XOO DISSEMBLER SOCKET FOR HNI AND SNI DEBUG TECHNICAL NOTE TN-17

(100/500MHz LA E) (Listing 1)(Invasm)(Print)(Run)

(Markers) Acquisition Time
Off 22 Jun 1994 16:30:45

ADDRLO II R4000 Inverse Assembly STAT ~
Hex II A[7: 0] Mnemonic Hex ~

3 00020000 18 ADDIU vOO, vOO, FFFF 0011EFEO 14
1C SNE vOO, rOO,00002001C

4 00020020 20 LUI tOO, AAAA 8011EFEO 3C
24 LUI vOO, AOOO

5 00020020 28 SW tOO, OOOO(vOO) 8011EFEO 25
2C ADDIU tOO, tOO, 5555

§ 00020020 30 LW t01, OOOO(vOO) 8011EFEO AC
34 SW rOO, 0008,(vOO)

7 00020020 38 SEQ to1, tOO, 000020048 0011EFEO 00
3C NOP

8 00000000 00 mem write AAAA5555 ------------- 4058EFCO AA
9 00000008 08 mem write 00000000 ------------- 5058EFC8 00

10 00000000 00 mem read AAAA5555 ------------ 0018EFEO AA
11 00020040 40 SEQ rOo, rOO, 000020040 8011EFEO 00

44 NOP
12 00020040 40 ADDIU tOO, rOO, FFFF 8011EFEO 00

3122 drw 07

Figure 7

239

(;) EMBEDDING ASSEMBLY TECHNICAL

INSTRUCTIONS INSIDE
NOTE
TN-18

C-SOURCE CODE
Integrated Device Technology, Inc.

By Sugan Subramanian

INTRODUCTION
This is a tech note on how to embed assembly instructions

inside C source code. It is targeted towards programmers who
have some knowledge of C-Ianguage and R3000 assembly
language.

In IDT/C"'" 5.0, assembly instructions can be inlined inside
any genuine block of C-code. A genuine block of C-code is a
section of C-code enclosed by open and closed curly braces.
The inlined assembly may include synthetic assembly instruc­
tions. These instructions are expanded during compile/as­
sembly phase of the compiler. The format agreed by the IDT/
C 5.0 compiler depends on whether or not the in lined assem­
bly lines require arguments, and whether these arguments are
read, written, or both.
Specifically there are 4 cases to consider:
- inline without any parameters
- in line with read only parameters
- inline with write only parameters
- in line with read and write parameters

These four cases will be discussed elaborately in the
following sections.

INLINE ASSEMBLY LINES WITHOUT ANY
PARAMETERS

Format:

asm("<asm instrct1> ; <asm istrct2> ; <asm instrct2>;
... <asm instrctn>")

e.g:
unsigned int get_addr{)
{

asm{"li $2,Ox80020000 ; lui $3, 0");
)

Description:

1. "geCaddr" is a function that takes no arguments and
returns an unsigned integer.

2. The in lined portion of the function body computes the
return value == (Ox80020000) that is saved at $2 (or) vO
and initializes $3 (or) v1 with zero.

Constraints:
All assembly instructions including synthetic instructions

are allowed.
All register names should have hardware mnemonics.
Le.:

General registers are $0, $1, .. , $31
Coprocessor 0 registers (has TLB, configuration

The lOT logo Is a registered trademark and IOTIC Is a trademark 01 Integrated Device Technology. Inc.
R3000 Is a trademark 01 MIPS Computer Systems. Inc.

specific registers) are $0,$1, ... , $31
Coprocessor 1 registers (has Floating Point Accelerator
specific registers) are $0, $1, ... , $31
Coprocessor 2 registers are $0, $1, ... , $31
Coprocessor 3 registers are $0, $1, ... , $31

INLINE ASSEMBLY LINES WHICH USE
WRITE-ONLY PARAMETERS

Format:

asm("<asm instrct1> ; <asm istrct2> ; <asm instrct2>; ...
<asm instrctn>"
: "=<write-only_param1 format>" «write-only-param1
name»,
"=<write-only_param2 format>" «write-only_param2
name»,
... "=<write-only_paramk format>" «write-only-paramk
name>));

e.g: int J., J;

void maine)
{

Intialize_Globals{);
printf{"value of i

%d\n",i,j);

void Initialize_Globals{)
{

%d and

asm{"ori %0,$0,3 ; ori %1, $0, 4"
"=r" (i), "=r" (j»;

Description:

j

1. "lnitialize_Globals" is a function that takes no arguments
and returns nothing.

2. The inlined portion of the function body initializes the
global variables "i" and "j". Uses "i" and "j" as write-only
parameters. Parameter "i" is referenced by %0 and "j" is
referenced by %1. "=r" is the format for both "i" and "j".
"=r" specifies that the following write-only parameter has
a general register associated with it.

Constraints:

All assembly instructions including synthetic instructions
are allowed.

All register names should have hardware mnemonics.
In R3000, the following are the possible hardware
mnemonic:
General registers are $0, $1, .. , $31
(has TLB, configuration specific registers)

240

EMBEDDING ASSEMBLY INSTRUCTIONS INSIDE C-SOURCE CODE

Coprocessor a registers are $0, $1, ... , $31
(has Floating Point Accelerator specific registers)
Coprocessor 1 registers are $0, $1, ... , $31
Coprocessor 2 registers are $0, $1, ... , $31
Coprocessor 3 registers are $0, $1, ... , $31
Write-only parameters can be either global or local vari­

ables. Write-only parameters are indexed from a to n-1 , where
n is the number of parameters used in the inlined code. Inside
the in lined code, write_only_parameter1 is accessed by %0,
write_only-parameter2 is accessed by % 1 , and so on. These
are the formats that are allowed for write-only parameters:

"=r" _ Specifies that the write-only parameter has a
general register assigned to it.
"=f" _ Specifies that the write-only parameter has a
floating point register assigned to it.

INLINE ASSEMBLY LINES WHICH USES
READ-ONLY PARAMETERS
Format: asm("<asm instrct1> ; <asm istrct2> ; <asm

instrct2>; ... <asm instrctn>"
:: "<read-only_param1 format>" «read-only-param1
name»,
"<read-only_param2 format>" «read-only_param2

name»,
... "<read-only_paramk format>" «read-only-paramk
name»);

e.g:
void main()
{

print ("INLINE VAL = %d\n", return_3 ());
}

int return_3()

asm("ori $2,$0,%0 ori $3, $0, %1"
•• lin" (3), "n" (4»;

TECHNICAL NOTE TN-18

Coprocessor a registers (has TLB, configuration specific
registers) are $0, $1, ... , $31
Coprocessor 1 registers (has Floating Point Accelerator
specific registers) are $0, $1, ... , $31
Coprocessor 2 registers are $0, $1, ... , $31
Coprocessor 3 registers are $0, $1, ... , $31
Read-only parameters are indexed from a to n-1, where n

is the number of parameters used in the inlined code. Inside
the in lined code, Read-only_parameter1 is accessed by %0,
Read-only_parameter2 is accessed by %1, and so on. These
are the formats that are allowed for read-only parameters:

"r" _ Specifies that the parameter has a general
register assigned to it.
"f" _ Specifies that the parameter has a floating point
register assigned to it.
"n" _ Specifies that the parameter is an immediate
value.
"m"_ Specifies that the parameter is a memory ad­
dress.
"0" _ Specifies that the parameter is an offsettable
memory address.
"X" _ Specifies that the parameter can be any of the
above.

INLINE ASSEMBLY LINES THAT USES
WRITE-ONLY AND READ-ONLY PARAM­
ETERS

Format:

asm("<asm instrct1> ; <asm istrct2> ; <asm instrct2>; ...
<asm instrctn>"
: "=<outpuCvar1 format>" «outpuCvar1 name»,
"=<outpuCvar2 format>" «outpuCvar2 name»,
... "=<output_vark format>" «outpuCvark name»
: "<inpuCvar1 format>" «input_var1 name»,
"<input_var2 format>" «inpuCvar2 name»,
... "<inpuCvark format>" «input_vark name»);

e.g:

Description:
1. "return_3M is a function that takes no arguments and

returns integer value 3.
2. The inlined portion of the function computes the return

value.
3. Whenever we use read only parameters without write

only parameters, we have to use two colons "::" preced­
ing them to specify that there are no write only param­
eters.

Constraints:
All assembly instructions including synthetic instructions

are allowed.
All register names should have hardware mnemonics.
i.e.

General registers are $0, $1, .. , $31

241

#define ARRAY_SIZE IN BYTES 40
int b[20];
void main()
{

int a[10];
int i,j,k;
{asm

.set noreorder
Ii $11,%2;
addiu %0,%3;

1:;
sw $11,0(%0);
addiu $11,-4;
bnez $ll,lb;
addiu %0,-4;
Ii %1,%4;

.set reorder"

EMBEDDING ASSEMBLY INSTRUCTIONS INSIDE C-SOURCE CODE

:: "r" (a), "r" (j), "n"
(ARRAY_SIZE_IN_BYTES),

"nn (10*4), "m" (b)
: "$11");}

printf ("return val %d\n",j)i
i=-li

while (++i < 10)
printf("a[%d] = %d\n",i,a[i])i

Description:
1. This program initializes an integer array of 10 with values

starting from 0 through 36 by an increment of 4 and
displays the array.

2. The in lined portion not only initializes the array but
demonstrates one peculiar inline feature, how to use
read-write parameter.

3. We are allowed to use registers inside inlined assembly
lines as long as we declare that they will be clobbered.
This is done by giving register name(s) preceded by
three colons (":::") if there are no write-only and read-only
parameters, a colon (":") following the read only
parameter(s) if there are read-only parameters, and two
colons ("::") following the write only parameter(s) if there
are only write-only parameters.

Constraints:
All assembly instructions including synthetic instructions

are allowed.
All register names should have hardware mnemonics.

i.e.
General registers are $0, $1, .. , $31
Coprocessor 0 registers (has TLB, configuration specific
registers) are $0, $1, ... , $31
Coprocessor 1 registers (has Floating Point Accelerator
specific registers) are $0, $1, ... , $31
Coprocessor 2 registers are $0, $1, ... , $31
Coprocessor 3 registers are $0, $1, ... , $31
Whenever a parameter is used for reading and writing,

declare such parameters to be either read-only or write-only
and not both. This convention eliminates a lot of confusion. In
the previous example, parameter "j" and "a" are declared to be
read-only and used for both reading and writing. It is appropri­
ate because both "j" and "a" are of type "r" (have general
registers associated with them). Only read-only parameters
that have registers associated with them are writable.

TECHNICAL NOTE TN-18

GENERAL RULES WHILE INLINING ASSEM­
BLY LINES

Always enclose your in lined assembly lines by a block of
".set noreorder" and ".set reorder" directives so that compiler
leaves the inlined assembly lines untouched even if the entire
code is optimized. However, some harmless warning mes­
sages are generated by the assembler (I OTIC 5.0) when the
synthetic assembly instructions are expanded; they can sim­
ply be ignored.

Declare all your variables that are read from and the
immediate values that are used inside in lined assembly to be
read-only parameters. Declare all variables that are written to
as write-only parameters. Whenever a temporary register is
used inside inlined assembly code always make sure it gets
declared as clobbered.

SUMMARY
Inlining assembly lines inside of c-code is a boon in itself if

the only way of optimizing your c-code is through having
different sections of it in assembly. In IDTIC 5.0, inlining
assembly lines is complemented by the ability to use local and
global variable names as aliases to the registers assigned to
them.

242

G IOT/e™ BINARY UTILITIES TECHNICAL
NOTE
TN-19

Integrated Device Technology, Inc.

By Evelyn Zhan

INTRODUCTION
This note briefly explains the most important binary utilities

of IDT/C'" 5.0. This technical note lists all valid switches in
each utility, and is intended to be useful as a quick reference
card.

gar: Create, modify and extract from archives.

gar -rc archive member1 member2 ...
Create an archive library whose contents are member1
member2 ... that can be linked with different application
programs.

gar -t archive
List contents of an archive.

gar -x archive member1 member2 ...
Extract member1, member2 ... from an archive. If no
member is specified, then all files in the archive are
extracted.

gar -d archive member1 member2 ...
Delete member1, member2 ... from the archive. If no
member is specified, the archive is untouched.

gar -r archive member1 member2 ...
Insert member1, member2 ... into archive with replace­
ment of the original members.

gar -q archive member1 member2 ...
Quick append the member1, member2 ... to the end of the·
archive without checking for replacement.

gnm: Generate symbol table for the object file.

gnm objectfile > outfile.nm
This lists the symbol table for objectfile, sorted by symbol
name, into file outfile.nm.

gnm -n objectfile > outfile.nm
This lists the symbol table for objectfile, sorted by symbol
address, into the file outfile.nm.

Note: objectfile above can be any of the following:
ecoff-file, object-file, or an archive of ecoff-file.

objcopy: Used to convert ecoff files to S-record.

The lOT logo Is a registered trademark and IDTIC is a Ira demark of Integrated Device Technology, Inc.

objcopy -0 srec objectfile outfile.srec
This converts the ecoff objectfile to Motorola S3 record
format, for downloading to the evaluation boards or
PROM programmers.

objcopy -0 srec -b num objectfile outfile.srec
-b num option is always used with "-0 srec" option. It is
useful when programming EPROMS for boards which
require bytewide EPROMS.
-b 0 creates S-record files corresponding to the oth byte
slice of 4-byte word.
-b 1 creates S-record files corresponding to the 1 st byte
slice of 4-byte word.
-b 2 creates S-record files corresponding to the 2nd
byte slice of 4-byte word.
-b 3 creates S-record files corresponding to the 3rd byte
slice of 4-byte word.

objcopy -0 srec -b num -i bytenum objectfile outfile.srec
-i option is only applicable when creating S-records (with
the "-0 srec" option), and must be used in conjunction
with the -b option. It is useful for programming EPROMS
for boards that require interleaved EPROMS.
-i 1 interleave one byte.
-i 2 interleave two bytes. etc.

objcopy -0 srec -p -b num objectfile outfile.srec
-p option is used to create prom mabie S-records. It
should be used with -b to create bytewide PROMS. It
orders the sequence of sections to be .text, .data and
.bss, and sets the address fields of the S-records created
to begin from OxOOOOOOOO.

Note:objcopy only supports S-records now.

objdump: Display information about ecoff files.

objdump -h objectfile > outfile
Display summary information from the section headers of
the objectfile, such as
.text, .rdata, .data, .sdata, .sbss and .bss.

objdump -d objectfile > outfile
Display the assembler mnemonics for the machine
instructions from objectfile.

objdump -t objectfile > outfile
Print the symbol table entries from objectfile.

243

IOTIC BINARY UTILITIES

ranlib: Generate an index to the contents of an archive and
stores it in the archive.

ranlib archive
An archive with such an index speeds up linking to the
library and allows routines in the library to call each other
without regard to their placement in the archive.

gsize: Create a table of starting address and size for
various sections of the code (.text, .data, .bss).

gsize [-d I -0 I -x I radix=number] objectfile ... > outfile
Lists the section sizes, and the total size for each of the
objectfile or archive in its argument list into outfile. The
size of each section is given in decimal ('-d', or 'ra­
dix=10'); octal ('-0', or 'radix=8'); or hexadecimal ('-x', or
'radix=16').

TECHNICAL NOTE TN-19

244

(;) IDT/SIM™ 5.1 SOURCE CODE TECHNICAL
NOTE
TN-20

Integrated Device Technology, Inc.

By Upendra Kulkarni

This Technical Note offers a quick overview of the source
code environment of 10T/SIMThi (System Integration Man­
ager) (version 5.1).

lOT offers a number of RISC evaluation boards each with
a variety of unique features. Consequently, the 10T/SIM on
each board has some features which are uniquely tailored for
that specific board and some features which are common to
all boards. The source code for 10T/SIM for all boards is
maintained in a single directory tree structure.

Source code for 10T/SIM (version 5.1) is expected to be
used by individuals who have designed boards using a
memberof lOT's RISCont~ollerThi family and are in the process
of modifying 10T/SI M to achieve compatibility with their boards.
The capabilities of lOT /S I M are described in its data sheet and
user's manual.

A good number of source files are common to all SIMs;
there is absolutely nothing specific to a particular board in
these files. There are other files which are common but have
parts of code in them which are unique to specific boards - a
feature implemented using "#if definedO" or "#ifdef" condi­
tional compilation directives. There is a third variety of files
which bear the same name but exist in different directories;
this indicates that the files contain code which performs
similar tasks for different target boards, but the implementa­
tions are so different that conditional compiling would lead to
confusion instead of ease of understanding. Finally there are
files which are entirely specific only to one particular board.
These files have no conditional compile statements, no
equivalents in any other subdirectory, and are called for
compilation and linking only for one specific SIM for one
specific board.

Evaluation boards currently supported are 79S385"',
79RS381"", 79S341 ThI, and 79S460Thl

• Specific "Makefiles" for
each board are provided.

From the top-most level of directories, there are 3 main
directories - COMMON, SIM3000, SIM4000.
COMMON directory has two subdirectories:
• header - contains common header (#include) files used

by all SIMs for all evaluation boards.
• c_asm - contains "C" and "assembler" files which are

common to all versions of SIM for all evaluation boards.
Most of these files use conditional compiling for different
boards.
SIM3000 directory contains source code specific to boards

designed with R3000 derivatives in mind. Currently, these
boards include 79S385, 79S381, and 79S341. There are a
number of subdirectories containing "Makefile"s specific for
each evaluation board and possibly different tool-chains. The
directory names are suggestive of which tool-chain or which

evaluation board the Makefile in that directory supports.
For example, a directory name "_RS385C50" suggests

that there is a Makefile in this directory which will create a SIM
for the 79S385 board and will use 10T/C'" 5.1 tool-chain for
compiling, etc. Oirectory names are appropriately abbreviated
for ~OS. In addition to the directories for Makefiles, there is
also a "header" directory containing header (#include) files
related to R3000-derivative based boards.

After making changes to the source code, the user needs
to go into the directory appropriate for the intended target
board and tool-chain, and simply run "make" (or "gmake" in
case of OOS). All of the object files, and s-record files are built
in the same chosen directory. The name(s) ofthe final product
file(s} can be obtained by studying the Makefile(s}. Typically,
for a board using four ROMs (79S385, 79S381) the file names
of the final s-record files are idtmonbO, idtmonb1, idtnionb2,
and idtmonb3. For the 79S341 board, the final s-records are
in file "idtmon.prm". Each Makefile also creates a version of
code which can be run out of RAM on the target board. (the
RAM-version). The RAM-version allows the user to debug or
test modifications to SIM without actually having to program a
new set of ROMs every time a change is made to the source
code. The board may contain older version of SIM in its ROM,
and the user downloads the newly created RAM-version into
the RAM using the "load" command as if the RAM-version
were a user application program. Issuing a "go" after the
download is completed invokes the new RAM-version SIM.

The SIM4000 directory is similarto the SIM3000 directory;
the only difference is that the code pertains to R4000 deriva­
tives. Currently the 79S460 board is supported. The Makefile
for this board can be found in the directory "IOTELF64".

Following is a list of global symbols which are used exten­
sively in the source files to achieve conditional compiling for a
specific CPU or a specific evaluation board. Please review
these symbols in the context of the files you are likely to
modify. Conforming to these conditional compiling rules is
critical to a successful port of the SIM code to a new board
design. Additional symbols can be defined in the Makefiles
with "-0" switches and can be used to uniquely identify and
support specific features of specific boards in future. Although
new global symbols can also be defined in the source files, it
is highly recommended that they be defined in the Makefiles
to facilitate easy access to software developers other than the
creator of the symbols.

CPU_R4000: to identify code specific to R4000 and its
derivatives.

CPU_R3000: to identify code specific to R3000 and its
derivatives.

The IDT logo Is a registered trademark and IDTISIM, RISController, 79S385, 79S38t, 79S341, 79S460, and IDT/C are trademarks of Integrated Device Technology, Inc,

245

IDTISIMN 5.0 SOURCE CODE

R381: to identify code specific to 79RS381 board.
RS341 : to identify code specific to 79S341 board.
P4000: to identify code specific to 79S460 board.
INET: to indicate code to be executed only if ethernet

support is available on the target board.
PROM: to indicate that networking code is running out of

PROM.
IOTSIM: to indicate modifications to industry standard

ethernet drivers for IOT-SIM compatibility.
KERNEL: related to ethernet drivers.
XOS: IOTIC 4.1.1 compatibility-specific code modifications.

Obsolete.

TECHNICAL NOTE TN-20

246

Integrated Device Technology, Inc.

INTRODUCTION

DEVICE DRIVERS
CONTAINED IN IDTISIM™
FOR IDT ORION™ and
RISCONTROLLER™ FAMILIES

TECHNICAL
NOTE
TN-24

This technical note describes the various device drivers currently available from IDT in IDT/sim and IDT/kitTM.
Of course, these software tools are constantly being enhanced, and additional drivers implemented. For current informa­

tion, IDT recommends you work with your local sales representative.
In addition, many third-party companies provide additional software support, including real-time operating systems, net­

work protocol support, and device drivers. Information on these products is available through the Advantage-IDT program.

Device Drivers Listing
All drivers listed below can currently be found in IDT/sim 5.1 source code. Overall, support for 9 different devices is cur­

rently available.
In addition to shortening development time for systems using the specific devices listed here, these functions can also be

used as templates for systems requiring identical functions, but using different peripheral devices to implement them.
Finally, note that this listing does NOT include a listing of devices for which initialization-only functions are available in

IDT/sim. Examples of these include start-up routines for the CPUs themselves, initialization of external DRAM controller
devices (such as the one found on the '381 board), and memory sizing routines. While these functions tend to be system­
specific, firmware engineers can use the source code provided with IDT/sim as a template for these functions.

8251:
Serial I/O device driver.
Source code in: SIM3000/drivers/drv_8251

8254:
Programmable interval timer driver: Contains code to install the driver (call to instaILnew_dev() - SIM function}, as well
as the driver itself. Since this device does not trasnsfer any data, there are no read/write functions. As such it is not the
most representative driver - However it is an i-o device present on the original R3000A evaluation board, the 7RS382.
Source code in: SIM3000/drivers/drv_8254

8530:
SCC Driver. (Serial Communications Controller). This driver implements the standard asynchronous UART functions
contained in the 8530/85C30.
Source code in: SIM4000/drivers/drv_8530 and SIM3000/drivers/drv_8530

Centronics Driver.
Parallel port driver for old IBM/PC centronics interface. The driver works with the hardware implementation of Centronics
found in the 79S385A evaluation system, which uses a parallel register/FIFO structure to receive data.
Source code in: SIM3000/drivers/drv_centron

SCSI Driver.
Source code in: SIM4000/drivers/scsi & SIM3000/drivers/scsi

PC Backplane ISA va 16-bit Driver.
This driver was implemented to support the use of the '341 board in a PC/AT. There is a support program called
pci015.exe, which allows the PC/AT to act as a terminal for the '341 board.
Source code can be found in: COMMON/c_asm: pci016asm.S pci016asm.s pci016drv.c

The lOT logo Is a registered trademark and Orlan. IDT/sim. IDTlkit and RISControlier are trademarks of Integrated Device Technology, Inc.

247

DEVICE DRIVERS TECHNICAL NOTE TN-24

68681/2681 :
DUART driver. A function called timer_startO sets tty1 (for all R3000 based boards except '381) to 9600 baud. A function
called timer_stopO calculates elapsed time based on baud rate. It changes the baud rate of the unit in io->icb_di­
>dev_unit. This also has timecstart and timer_stop that are subsets of those in the c_asm dir.
Source code can be found in: COMMON/c_asm/s68681 cons.c
Code can also be found in SIM3000/drivers/drv_68681

SONIC:
Ethernet Controller. Implements UDP protocol. Source code for this function is found in SIM4000/netlnetinetludp*. Ether­
net address resolution protocol code is found in SIM4000/netlnetinetliCether.c
The driver supports the "ping" command using the "ICMP" protocol; source code for this is found in SIM4000/netlnetinetl
icmp
TFTP routines in SIM4000/netlcmdsi/tftplib.c
Source code can be found in SIM4000/netldrivers
Support functions are in SIM4000/netlnet

uPD72001 (NEC):
Serial (DUART) I/O controller. This Duart is contained in the 79S460 evaluation system for the R4600.
Source code is found in SIM4000/mpsccons.c

248

