

TECHNICAL UPDATE

MC68HC05B4
MC68HC705B5
MC68HC05B6
MC68HC05B8
MC68HC05B16
MC68HC705B16
MC68HC05B32
MC68HC705B32

Technical Update contains updates to documented information appearing in other Motorola technical
documents as well as new information not covered elsewhere.

We are confident that your Motorola product will satisfy your design needs. This Technical Update and
the accompanying manuals and reference documentation are designed to be helpful, informative, and
easy to use.

Should your application generate a question or a problem not covered in the current documentation,
please call your local Motorola distributor or sales office. Technical experts at these locations are eager
to help you make the best use of your Motorola product. As appropriate, these experts will coordinate
with their counterparts in the factory to answer your questions or solve your problems. To obtain the
latest document, call your local Motorola sales office.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. "Typical"
parameters can and do vary in different applications. All operating parameters, including "Typicals" must be
validated for each customer application by customer's technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for
use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any
such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and µ

are registered trademarks of Motorola, Inc. Motorola, Inc.
is an Equal Opportunity/Affirmative Action Employer.

Page 2
MOTOROLA Table of Contents

MC68HC05 B Series Technical Update

TABLE OF CONTENTS

B Series General Information

COP (Computer Operating Properly) Watchdog Timer...........................3

Watchdog Timeout Period.. 3

MC68HC05 CPU Core ...5

Correction to SUB in Applications Guide ... 5

I Bit in CCR During Stop Mode... 5

I Bit in CCR During Wait Mode ... 5

BSET and BCLR are RMW Instructions .. 6

EEPROM1 ..7

Programming the Options Register in the EEPROM1 7

Options Register (OPTR) Location Correction... 7

V

PP

1 Connections, Problems, and Gotchas ... 8

Programmable Timer..10

Output Compares and Flags .. 10

Packaging Types ..18

52-Pin PLCC Pinout... 18

HC05 B Series Part Specific

MC68HC705B5 ..19

Security .. 19

Bootloader for Mask Sets 0D10J, B240T, 4B40T.. 19

MC68HC705B16 ..37

Converting from the MC68HC805B6 to the MC68HC705B16 37

Bootloader Listing... 37

MC68HC705B32 ..63

Mask Set Errata -- EPROM Single-Byte Programming Problem 63

Bootloader for Mask Set DS9J ... 64

Page 3
MOTOROLA COP Watchdog Timer

MC68HC05 B SeriesTechnical Update

TECHNICAL UPDATE

B Series General Information

COP (Computer Operating Properly) Watchdog Timer

COP1MISC

Watchdog Timeout Period

Tracker Number: HC05B4.001 Revision: 1.00
Reference Document: MC68HC05B6/D Rev. 3, page 9-3

Some customers have had problems relating the explanation of the COP timeout to the
watchdog timeout spec.

 Figure 9-2 shows that the watchdog timeout is generated by a divide-by-1024 counter
and a divide-by-8 counter. From that figure, one might think that the minimum timeout is
7168 cycles (7 counts of 1024) and a maximum is 8192 cycles (8 counts of 1024.) The
minimum and maximum counts result because the watchdog is reset somewhere
between count 0 and count 1024 within the first count of the divide-by-8 counter. Refer to
Figure 1 below. These results do not reflect the values given in the reference documents.

In the control timing table, the minimum watchdog timeout is stated as 6144 cycles and
the maximum is 7168 cycles. Figure 9-2 is somewhat misleading. The divide-by-8
counter is a misnomer in that it has eight states from 0 to 7. When the divide-by-8
counter is reset, it is reset to 0. When the divide-by-8 counter reaches state 7, a timeout
occurs. Therefore, the divide-by- 8 counter will count only six full cycles of 1024, giving a
total count of 6144. These six cycles are 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, and 6 to7.
After the 7th state is hit, the timeout occurs. In this manner, the timeout minimum is 6144
cycles and the maximum is 7168 cycles. Refer to Figure 1 below.

COP Watchdog Timer Revision History

Date Revision Description

5/20/94 1 Original release. Includes tracker HC05B4.001.

3/30/95 2 Reformatted

Page 4
MOTOROLA COP Watchdog Timer

MC68HC05 B Series Technical Update

Figure 1. Divide-by-8 and Divide-by-1024 Counters

0 1024

The 1024 counter may be anywhere
in this range when the COP is serviced.

÷ 1024:

0 1 2 3 4 5 6 7

Watchdog will
reset here.

The 1024 counter may
be anywhere in this range
when the COP is serviced.

timeout = (6 X 1024) + (0 to 1024) = 6144 to 7168 count

÷ 8:

Page 5
MOTOROLA HC05 CPU Core

MC68HC05 B SeriesTechnical Update

MC68HC05 CPU Core

HC05CPU_A

The HC05 CPU is the central processing unit that is common to all HC05
microcontrollers. This is the functional block that sets HC05 MCUs apart from others.

Correction to SUB in Applications Guide

Tracker Number: HC05CPU.001 Revision: 1.00
Reference Document: M68HC05 Applications Guide MC68HC05AG/AD
Rev. 1, Page A-62

Replace the C bit description with this:

The C bit (carry flag) in the condition code register becomes set if the absolute value of
the contents of memory is larger than the absolute value of the accumulator. Otherwise,
if this is not the case, the C bit is cleared.

I Bit in CCR During Stop Mode

Tracker Number: HC705C8.017 Revision: 1.00
Reference Documents: M68HC05 Applications Guide MC68HC05AG/AD
Rev. 1, Page 3-93

The flow chart for stop mode shows that the I bit is set when stop mode is entered.
However, this is not true. The I bit actually is cleared when stop mode is entered so that
an external IRQ can release the processor from stop mode.

I Bit in CCR During Wait Mode

Tracker Number: HC705C8.019 Revision: 1.00
Reference Document: M68HC05 Applications Guide MC68HC05AG/AD
Rev. 1, Page 3-93

The flow chart for wait mode does not show that the I bit gets cleared upon entering wait
mode. The I bit is cleared when wait mode is entered. An external IRQ or any of the
internal interrupts (timer, SCI, SPI) can release the processor from wait mode.

HC05CPU Core Revision History

Date Revision Description

6/15/94 1 Original Release. Includes trackers HC05CPU.001,
HC705C8.017, HC705C8.018, HC705C8.019.

3/30/95 2 Reformatted

Page 6
MOTOROLA HC05 CPU Core

MC68HC05 B Series Technical Update

BSET and BCLR are RMW Instructions

Tracker Number: HC705C8.018 Revision: 2.00
Reference Document: HC05 Technical Data books

In many of the databooks, the table of read-modify-write (RMW) instructions in the
instruction set and addressing mode section does not list the BSET and BCLR
instructions. Rather, these databooks list BSET and BCLR only as bit manipulation
instructions. While this is correct, it is not complete, however, since these operations use
an RMW method to accomplish their task. The BSET and BCLR instructions, therefore,
should be included in the table of read-modify-write instructions.

Note:

 These instructions do not use the same addressing modes as the other read-
modify-write istructions. Only direct addressing is valid for BSET and BCLR.

Because BSET and BCLR are read-modify-write instructions, they may not be used with
write-only registers, which read back undefined data. Therefore, a read-modify-write
operation will read undefined data, modify it as appropriate, and then write it back to the
register. Because the original data is undefined, the data written back will be undefined.

Page 7
MOTOROLA EEPROM1

MC68HC05 B SeriesTechnical Update

EEPROM1

EEPROMB256_A

Programming the Options Register in the EEPROM1

Tracker Number: HC705B16.008 Revision: 1.00
Reference Document: MC68HC05B6/D Rev. 3, page 3-6

All HC05B Family devices (except the HC05B4 and HC705B5) have an EEPROM1
array. Address $100 is known as the option register. Bits 0 and 1 are used as the
SECurity and EE1Protect bits, respectively. The remaining six bits are standard
EEPROM cells and can be used to store data if needed. To reduce the possibility of
error by securing the device unintentionally, it is recommended that these bits not be
used.

Options Register (OPTR) Location Correction

Reference Document: MC68HC05B6/D Rev.3, page 3-6

Tracker Number: EEPROMB256_A.001 Revision: 1.00

The first sentence of this sectioncurrently reads:

"This register (OPTR), located at $0010, contains".

However, this is incorrect and should be replaced with:

"This register (OPTR), located at $0100, contains . . . "

EEPROM1 Revision History

Date Rev Description

5/20/94 A01 Original Release. Includes trackers HC705B16.002,
HC705B16.008.

3/30/95 A02 Reformatted. Added EEPROM B256_A.

Page 8
MOTOROLA EEPROM1

MC68HC05 B Series Technical Update

V

PP

1 Connections, Problems, and Gotchas

Tracker Number: HC705B16.002 Revision: 2.00

The following is further clarification on the V

PP

1 pin:

NOTE:

 The EEPROM1 array and V

PP

1 pin are common to all HC05B devices except for
the HC05B4 and HC705B5. The HC(7)05X16 devices also have a V

PP

1 pin and the
EEPROM1 array.

The V

PP

1 pin is the output of the charge pump for the V

PP

1 array. The charge pump is a
capacitor/diode ladder network, which gives a high voltage but with a low drive capability
(for example, a very high impedance output of between 20 and 30 M

Ω

). The charge
pump output is brought to the outside world (via the V

PP

1 pin) for Motorola factory use
only. The charge pump is capable of programming only one byte at a time.

Any leakage path to V

SS

 or V

DD

 on the V

PP

1 pin can load the charge pump and not
allow the pump to reach the needed programming voltage. This could result in the
EEPROM byte not being erased or programmed properly. Typically, placing an
oscilloscope probe of 10 M

Ω

impedance on the V

SS

1 pin will be sufficent to cause this.

The bottom line is: If in-circuit programming of the EEPROM1 array is needed, the V

PP

1
pin should be left unconnected regardless of the V

DD

. This will ensure that no leakage
path to the supplies exists. This pin should never be tied to V

DD

 or V

SS,

 if the user
wishes to program or erase the EEPROM1 in an application. If the user programs the
EEPROM1 array before running a normal day-to-day applicatio, and if the user never
writes or erases the EEPROM1 array, then the pin can be tied to V

DD

.

Connecting V

PP

1 to V

DD

 can be considered as a security feature because the
EEPROM1 array is protected from being erased or programmed in runaway conditions.
(The charge pump output has been clamped to V

DD).

 Doing this, however, will increase
the power consumption.

As stated previously, the V

PP

1 pin is a very high impedance pin. This high impedance
can cause problems with some applications. For example, very high humidity or very
noisy environments can cause programming problems. The following is a quick look at
what to do with V

PP

1 in some of these situations.

For example, if the application does not write to or erase the EEPROM1 array during
normal use, connect the V

PP

1 pin to V

DD

. This will ensure that no noise will influence the
EEPROM circuit.

Also, if the application does write to or erase the EEPROM1 array during normal use,
shield this pin as much as possible. Use plenty of GND track nearby. Some customers
have placed a small capacitor (1 nF) to decouple the V

PP

1 pin. This should not affect the

Page 9
MOTOROLA EEPROM1

MC68HC05 B SeriesTechnical Update

programming in normal use (10 mS programming time) despite slightly lengthening the
rise time of V

PP

1.

Page 10
MOTOROLA Programmable Timer

MC68HC05 B Series Technical Update

Programmable Timer

TIM2IC20CF_A

Output Compares and Flags

Tracker Number: HC805B6.002 Revision: 1
Reference Documents: MC68HC05B6/D Rev. 3, page 5-9

This code snippet shows one method of setting up and distinguishing between output
compares 1 and 2.

Programmable Timer Revision History

Date Revision Description

5/20/94 1 Original Release. Includes tracker HC805B6.002.

3/30/95 2 Reformatted

Page 11
MOTOROLA Programmable Timer

MC68HC05 B SeriesTechnical Update

*
*
*
*
*
*
*
* Program Name: OCB5.ASM
*
* Revision:1.01
*
* Date: August 11, 1992
*
*
*
* Written By: Dan Bernard
*
* Motorola CSIC Applications
*
*
*
* Original Assembly: P&E Microcomputer Systems CASM05
*
*
*
* ******************************
*
* * Revision History *
*
* ******************************
*
* Revision:
*
* 1.00 8-11-92 Original Source Written with 705B5 memory map
*
* 1.01 4-26-93 Modified to run on HC805B6 EEPROM1
*

*

Page 12
MOTOROLA Programmable Timer

MC68HC05 B Series Technical Update

*
* Program Description:
*
*
*
* This program shows one method of handling the Interrupt enable bits
*
* and flags for both OC1 and OC2 Timer Output Compare functions.
*
* Originally written for use on the HC705B5
*
* Also of interest are the 16-Bit addition routines
*
*
*
* Start up conditions=
*
*
*
* When the code first starts to run any pending timer interrupts are
*
* cleared, the current value of the counter timer is retrieved. An offset
*
* is added to it which represents the width of the pulse we want out.
*
* This is done with a 16-Bit addition. These routines may prove useful
*
* for other applications. Do this for both output compare registers.
*
* The timer interrupts are then enabled along with issuing a global
*
* interrupt enable. An endless loop is then entered. Other code can be
*
* inserted at this point to do other things while waiting for an
*
* interrupt. See the comments in the individual routines for additional
*
* information on the operation of this program.
*

*

Page 13
MOTOROLA Programmable Timer

MC68HC05 B SeriesTechnical Update

**************Output Compare Register Equates****************

tcr equ $12 ;Timer Control Register
tsr equ $13 ;Timer Status Register
oc1h equ $16 ;Output Compare 1 High
oc1l equ $17 ;Output Compare 1 Low
tch equ $18 ;Timer Counter High
tcl equ $19 ;Timer Counter Low
atch equ $1a ;Alternate Timer Counter High
atcl equ $1b ;Alternate Timer Counter Low
oc2h equ $1e ;Output Compare 2 High
oc2l equ $1f ;Output Compare 2 Low

*********Bit Equates***********************************

*********TCR***************

folv2 equ $10 ;Force output compare 2
folv1 equ $08 ;Force output compare 1
olv2 equ $04 ;OC2 output level
olv1 equ $01 ;OC1 output level
ocie equ $40 ;Output compare interrupt enable
folv2b equ $04 ;bit 4 of tcr another name for folv2
folv1b equ $03 ;bit 3 of tcr another name for folv1
olv2b equ $02 ;bit 2 of tcr another name for olv2
olv1b equ $00 ;bit 0 of tcr another name for olv1
ocieb equ $06 ;bit 6 of tcr another name for ocie

*********TSR***************

ocf1 equ $40 ;OC1 output compare flag
ocf2 equ $08 ;OC2 output compare flag
ocf1b equ $06 ;bit 6 of tsr another name for ocf1
ocf2b equ $03 ;bit 3 of tsr another name for ocf2

*********Vector Equates********

oci equ $1ff6 ;OC interrupt vector location
reset equ $1ffe ;Reset vector location

*********Memory Equates*******

ram equ $050 ;Beginning of ram
eeprom1equ $101 ;805b6 eeprom1
eeprom6equ $0800 ;805b6 eeprom6
rom equ $800 ;Beginning of main rom area

*********End of Equates**************************************

Page 14
MOTOROLA Programmable Timer

MC68HC05 B Series Technical Update

*********Variables***

 org ram ;start of ram variable area
acch ds 1 ;high byte of 16 bit accumulator
accl ds 1 ;low byte of 16 bit accumulator
temph ds 1 ;high and low byte temp locations
templ ds 1 ;for value to be added to acch
 ;and accl

*********Program Start*************************************

 org eeprom1 ;program starting address

*********Initilize Stuff********

init:
 lda tsr ;do first part of clearing flags
 ldx #tch ;get address of timer counter
 jsr load_acc ;and load 16 bit accumulator
 ldx #temph ;set up to point to second operant
 lda #$00 ;this is the high byte pick what
 sta 0,x ;value you want.
 lda #$ff ;this is the low byte of sec operant
 sta 1,x ;store it
 jsr add_16 ;adds the two numbers in the 16 bit acc
 ;and the temp variable location
 ldx oc1h ;point to OC1 register
 jsr store_res ;store addition to the OC1 register
 ldx oc2h ;point to OC2 register
 jsr store_res ;store addition to OC2 register
 ;This gives us a common starting point
 bset ocieb,tcr ;enable timer interrupts
 cli ;globally enable interrupts

********Main Loop***********

main_loop:
 bra * ;do other stuff here or spin wheels
 nop ;waiting for an interrupt
 nop ;these nop's do nothing they are here
 ;to help the debugger from getting confused

*********Interrupt Handler**
* This routine is entered when one of the Output*
* Compares has a sucessful compare. We first check to*
* see if OC1 generated the intertie if not we test if*
* OC2 did it. From there we change the Output Compare*
* Register so that we can generate a square wave on*
* the output pins*
**

Page 15
MOTOROLA Programmable Timer

MC68HC05 B SeriesTechnical Update

outcmp: ;main entry point
 lda tsr ;get status ck if OC1 caused interrupt
 bit #ocf1
 bne oc1_1 ;go to OC1 routine if so other wise
 and #ocf2 ;ck to see if OC2 caused the interrupt
 bne oc2_2
 bra exit1 ;it must have been an interrupt from
 ;the TOF or Input Capture
oc1_1:
 ldx oc1h ;point to OC1 register
 jsr load_acc ;put data in 16 bit acc
 ldx #temph ;point to temp variable
 lda #$d0 ;this is the high byte of offset
 sta 0,x ;store it
 lda #$00 ;this is the low byte of offset
 sta 1,x ;store it
 jsr add_16 ;do the addition
 ldx #oc1h ;point to OC1 register
 jsr store_res ;store to OC1 register
 brset olv1b,tcr,invert ;check current state of output level
 bset olv1b,tcr ;it must have been a zero
 lda tsr
 and #ocf2 ;before we go let's test OC2 just in
 bne oc2_2 ;case
 bra exit1 ;time to go back
invert:
 bclr olv1b,tcr ;it must have been a one
 lda tsr
 and #ocf2 ;Ck OC2 before leaving
 bne oc2_2
 bra exit1

oc2_2: ;if we are here OC2 must have caused
 ldx oc2h ;point to OC2 register
 jsr load_acc ;put data in 16 bit acc
 ldx #temph ;point to temp variable
 lda #$ff ;this is the high byte of offset
 sta 0,x ;store it
 lda #$10 ;this is the low byte of offset
 sta 1,x ;store it
 jsr add_16 ;do the addition
 ldx #oc2h ;point to OC2 register
 jsr store_res ;store to OC2 register
 brset olv2b,tcr,invert2 ;check current state of output level
 bset olv2b,tcr ;must have been a zero
 bra exit1 ;we're done
invert2:
 bclr olv2b,tcr ;it must have been a one
 bra exit1 ;we're done
exit1:
 rti ;the end of interrupt routine

Page 16
MOTOROLA Programmable Timer

MC68HC05 B Series Technical Update

*********Sixteen Bit Addition routines***************************************

**
* load_acc *
* routine to load 16 bit psuedo acc *
* x index register contains source address *
* of data msb at low address *
* 16 bit accumulator consists of two ram *
* locations "acch" and "accl" *
**

load_acc:
 lda 0,x ;load msb of data
 sta acch ;store in msb of accumulator
 lda 1,x ;get lsb of data
 sta accl ;store in lsb of accumulator
 rts
**
* store_res *
* after 16 bit math this routine stores resultant data in *
* accumulator to the memory location pointed to by the *
* x index register. The x register points to the msb of *
* data *
**

store_res:
 lda acch ;get high byte of data
 sta 0,x ;store it
 lda accl ;get low byte of data
 sta 1,x ;store it
 rts
**
* add_16 *
* acch and accl contain first operant on entry and *
* contains the 16 bit result on exit. The x index *
* register points to the second operant of the 16 bit *
* addition. This would normally be the temp variable *
**

add_16:
 lda accl ;get low byte of first operant
 add 1,x ;add to second operand
 sta accl ;and store in back in accl
 lda acch ;get high byte of first operant
 adc 0,x ;add high bytes together + carry
 sta acch ;from low byte add
 rts

Page 17
MOTOROLA Programmable Timer

MC68HC05 B SeriesTechnical Update

*********Vector Assignments************

 org oci ;Output Compare Vector location
 dw outcmp ;routine address
 org reset ;Reset Vector location
 dw init ;program start address
end:

Page 18
MOTOROLA Packaging Types

MC68HC05 B Series Technical Update

Packaging Types

52-Pin PLCC Pinout

Tracker Number: HC05B6.002 Revision: 1.00

Reference Document: MC68HC05B6/D Rev. 3, page 12-1

Include the following table:

The NC pin 6 is always NC.

Date Revision Description

4/20/95 1 Original Release. Includes tracker HC05B6.002.

Device Pin 15 Pin 40

MC68HC05B4 NC NC

MC68HC05B6
MC68HC05B8
MC68HC05B16
MC68HC05B32

NC VPP1

MC68HC705B5 VPP6 NC

MC68HC705B16
MC68HC705B32

VPP6 VPP1

Page 19
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

HC05 B Series Part Specific

MC68HC705B5

Security

Tracker Number: HC705B5.001 Revision: 1.00

Reference Document: Not applicable

The security bit currently is not available on the HC705B5. The security fuses are
experimental. They will be available to the user only after being characterized by product
engineering.

When programming the option register on the 705B5, make sure the SECE bit is
cleared. In other words, bit 7 of location $1EFE should be a zero.

Do not program the SECE bit for any reason.

Bootloader for Mask Sets 0D10J, 2B40T, 4B40T

Reference Document: Not applicable

Tracker Number: HC705B5.008 Revision: 1.00

Mask Set: 0D10J, 2B40T, 4B40T

**

*

*

* BOOTSTRAP LOADER for the MC68HC705B5

* ====================================

*

* Rev C.01 1989/Nov/15 SPP

*

Date Rev Description

4/7/95 1 Original Release. Includes trackers HC705B5.005 and
HC705B5.001

4/17/95 2

Page 20
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

* Programmer : O. Pilloud

* Updates : M. Bron MOTOROLA GVA

* C. Humbert

*

*

* -----------

* (BOOTSTRAP)

* -----------

* / \

* / \ active

* < SEC ? >---------> (flash red led)

* \ /

* \ /

* : no

* / \

* 1 / \

* +----------------< PD4 ? >

* : \ /

* : \ /

* / \ :0

* / \ 1 :

* < PD3 ? >----+ :

* \ / : :

* \ / : :

* : 0 : :

* : : :

* ----------- : :

* : RAM : : / \ / \

* : BOOT : : / \ 1 / \ 1

* : LOADER : : < PD3 ? >----< PD2 ? >-------+

* ----------- : \ / \ / :

* : \ / \ / V

* +--------+ 0 : 0 : -------------------

* V V : (EPROM Gate stress)

* ----------- ------------ : -------------------

* : SERIAL : : PARALLEL : V

* : ROUTINES: : PROG & : -------------------

Page 21
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

* : : : VERIFY : (EPROM erase check)

* ----------- ------------ -------------------

*

* NOTE : This flowchart is intended only as a mean to outline the

* possible program paths, it is not an exact reflection of

* all the details of program dispatching and routing.

*

**

*

*

* Bootstrap loading can be done either through a parallel port

* using an external EPROM or from any other parallel source,

* using the handshake facility provided.

*

* Bootstrap loading can also be accomplished through the SCI

* in serial form, at 9600 baud for a nominal crystal frequency

* of 4 MHz. The mode selection is as follows :

*

*

*

* PORT D4 : PORT D3

* --------+--------

* 0 : 0 EPROM Bootstrap parallel

* 0 : 1 EPROM erase check

* 1 : 0 RAM Bootloader

* 1 : 1 Serial Bootstrap

*

*

* Dump or serial load is accomplished through the same routine,

* and both functions share a common protocol, as follows :

*

*

*

* - 1) B5 sends back the 4 bytes just programmed as a prompt and also

* for checking by the host (the first and second time this data is

* irrelevant).

*

Page 22
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

* - 2) B5 expects 6 bytes from HOST :

* : ADDRESS HI:LO : DATA(a):DATA(a+1):DATA(a+2):DATA(a+3) :

*

* - 3) B5 takes a nominal 5 ms to programm the data, while the next 6

* bytes are being transmitted as outlined above.

*

* - 4) Loop to 1)

*

*

* Note that the program implements a pipeline structure in that 3

* operations take place simultaneously :

*

* - echo bytes are sent back to the host

* - data is being programmed

* - next data is being received

*

* It is possible to load the RAM (above address XADR)

* with a test program and execute it. Execution is triggered

* by sending a negative (bit 7 set) high address byte. Execution

* starts at XADR.

*

* A mechanism is provided in both the serial and parallel case to blow

* the security fuse if required.

*

*

* I/O and INTERNAL registers definitions

*

 ORG 0

*

PORTA RMB 1 port A

PORTB RMB 1 port B

PORTC RMB 1 port C

PORTD RMB 1 port D

DDRA RMB 1 port A DDR

DDRB RMB 1 port B DDR

DDRC RMB 1 port C DDR

Page 23
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

*

ECONT RMB 1 EPROM control register

ADR RMB 1 A/D data register

ADC RMB 1 A/D status and control register

PLMA RMB 1 pulse length mod reg A

PLMB RMB 1 pulse length mod reg B

MISC RMB 1 miscellaneous register

BAUD RMB 1 SCI baud

SCCR1 RMB 1 SCI control register 1

SCCR2 RMB 1 SCI control register 2

SCSR RMB 1 SCI status register

SCDAT RMB 1 SCI data register

TIMC RMB 1 TIMER control register

TIMST RMB 1 TIMER status register

ICR1 RMB 2 capture register 1 (16 BIT)

OCR1 RMB 2 output compare register 1 (16 BIT)

TIMER RMB 2 TIMER free running counter (16 BIT)

DUALTM RMB 2 alternate counter register (16 BIT)

OCR2 RMB 2 output capture register 2 (16 BIT)

COMP2 RMB 2 compare register 2 (16 BIT)

*

*

* MEMORY MAP DEFINITIONS

*

* Note : TEST is a write only register and its access is

* authorized only when ELAT is cleared. When ELAT

* is set, address $20 (P0EP6) is accessed for writing.

*

*

TEST EQU $20 TEST register

P0EP6 EQU $20 page 0 EPROM 6 start address

RAM EQU $50 RAM start address

STACK EQU $FF top of STACK

EPROM1 EQU $100 EPROM 1 start address

XROM EQU $200 Extra ROM

EPROM6 EQU $800 EPROM 6 start address

OPTR EQU $1EFE OPTION reg

Page 24
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

BOOTR EQU $1F00 BOOTSTRAP ROM start address

BUTVCT EQU $1FE0 BOOTSTRAP ROM vectors

VECT EQU $1FF0 EPROM6 vectors

*

*

* Miscellaneous definitions and equates

*

*

HI EQU 0 hi byte offset

LO EQU 1 lo byte offset

MS20 EQU 38 20 ms timing factor

GSTR EQU %01100000 XCOL and XROW at 1.

LONG EQU $09 long timing factor (5 ms nominal)

SHORT EQU $01 short timing factor (.85 ms nominal)

RED EQU PLMA red LED on PLMA

GREEN EQU PLMB green LED on PLMB

OCF1 EQU 6 output compare 1 flag

EPGM EQU 4 ECONT bit definition

ELAT EQU 5 ECONT

FUSE EQU 7 ECONT 1 = secure

IN EQU 6 Handshake IN line on Port C

OUT EQU 5 Handshake OUT line on Port C

VPP EQU 7 VPP bit in portC

RDRF EQU 5 Receive data ready flag in SCSR

TDRE EQU 7 Transmit DATA Reg Empty

MBIT EQU 4 8 data bits flag in SCCR1

ADON EQU 5 A/D converter control bit

TOF EQU 5 Timer overflow flag

OLVL1 EQU 0 Output level 1

FOLV1 EQU 3 Force output compare 1

*

*

*

*

* Synthesized instructions

*

* Note : In order to circumvent a shortcoming inherent to any

Page 25
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

* 2 pass assembler as the one used here, some DIRECT

* (JSR/LDA/STA/DEC/INC) instructions have been synthesized

* using 2 FCB instructions. This is flagged by a @@@ in

* the comment line.

*

*

LOADA EQU $B6 Load A direct

STORA EQU $B7 Store A direct

GOTO EQU $BC Jump direct

CALL EQU $BD Jump to subroutine direct

DECD EQU $3A Decrement direct

INCD EQU $3C Increment direct

LDAX1 EQU $E6 Load A indexed, 1 byte

STAX1 EQU $E7 Store A indexed, 1 byte

CMPX1 EQU $E1 Compare indexed, 1 byte

*

*

*

*

* PROGRAM Section

* ===============

*

 ORG BOOTR

*

*

* RFLASH: Flash RED LED at about 4 Hz if security fuse blown.

*

RFLASH COM RED toggle LED

 BRCLR TOF,TIMST,* Wait for timer overflow

 LDA TIMER+LO Clear TOF

 BRA RFLASH loop

*

*

*

*

* RAM BOOTSTRAP

Page 26
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

* =============

*

* Note : Transfer a program from an external EPROM into RAM.

* Execution starts as soon as the RAM is full

* (176 bytes transfered), or when PORTD4 goes low.

*

*

BUTRAM BRCLR 4,PORTD,EXERAM short load

 STX PORTB address EPROM

 BCLR OUT,PORTC handshake, ready

 JSR GETPAR get data, with

* handshake

 STA ,X put to RAM

 INCX

 BNE BUTRAM (FF => 00) = end

EXERAM JMP RAM execute in RAM.

*

*

*

*

* ENTRY POINT TO BOOTSTRAP LOADER

* ===============================

*

*

* Note : Port A is the DATA input for MCU programming.

* Port B and the 5 lower bits of port C reflect the

* address being programmed. Port C, bits 5 & 6 provide

* handshake capability while programming the MCU.

* If the handshake is not used, ie: in case DATA

* comes from an external EPROM, these 2 pins

* should be tied together. Pin PORTC7 is used to switch

* Vpp on during programming.

* Program routing (dispatch) is accomplished by the state

* of pins PORTD3 & PORTD4 (Check flowchart for details).

* Led's are driven from the PLM's and will be ON when

* the PLM's are at $00 and (mostly) OFF when they hold an

* $FF value.

Page 27
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

*

*

*

ENTRY BSET OLVL1,TIMC Tell the world, this is a B5

 BSET FOLV1,TIMC by setting TCMP1

*

SETIO LDA #%00100000 init PORTC, hi byte of address

 STA PORTC handshake, and Vpp off.

 COM RED red led off

 COM GREEN green led off

*

 BRSET FUSE,ECONT,RFLASH check SEC bit

 LDX #RAM for both SCINIT & BUTRAM

*

* now let's go as fast as possible to the RAM loader

* if requested to do so.

*

 BRSET 3,PORTD,SCINIT branch if not parallel load

*

 COM DDRB Port B outputs

 LDA #%10111111 IN handshake on port C

 STA DDRC

*

 BRSET 4,PORTD,BUTRAM ready for RAM load and exec

*

*

* Initialise the SCI

*

SCINIT BCLR MBIT,SCCR1 8 data bits

 LDA #%11000000 baud rate 9600

 STA BAUD

 LDA #%00001100 TE / RE

 STA SCCR2 end of init

 STA SCSR clear TDRE & TC bits

*

* Note : Some routines, while programming, must be executing

* from RAM, so let's start by copying them form XROM

Page 28
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

* to RAM. The extended addressing routine BPS must also

* reside in RAM.

*

*

COPYL LDA RAMR-RAM,X transfer part of ROM to RAM and

 STA ,X thus erase it. X has previously been

* set to point to the bottom of RAM.

 INCX

 BNE COPYL until 176 bytes done ($FF - $50)

*

*

 BRSET 4,PORTD,SERIAL serial load

 BRCLR 3,PORTD,PARINIT parallel EPROM prog

 BRSET 2,PORTD,GSTRESS EPROM gate stress setup

*

* Fall into ECHECK

*

* ECHECK: EPROM erase check. Read the whole array, using TABLE, and

* check for zero.

*

ECHECK CLRX

 FCB CALL @@@

 FCB SSADD-OFST Init base addr,

* in RAM to save bytes

MOREC FCB CALL @@@

 FCB BPS-OFST get byte

 BNE REDR if not equal zero

 FCB CALL @@@

 FCB BUMP-OFST next address

 BNE MOREC

 BRA GREENR all A OK

*

*

* GSTRESS: Will put the EPROM in Gate stress mode for

* reliability tests.

*

GSTRESS FCB GOTO @@@

Page 29
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

 FCB GSTRAM-OFST Continue in RAM

*

*

* PARINIT: Parallel EPROM load. Init is in ROM, then jump in

* RAM copy.

*

PARINIT BRSET 2,PORTD,PARSH Program time select

 LDA #LONG Default

 FCB STORA @@@

 FCB DELAYT-OFST In RAM

PARSH LDA #$C7 (STA| extended

 FCB STORA @@@

 FCB BPS-OFST set up BPS

*

 CLRX init address table pointer

 FCB CALL @@@

 FCB SSADD-OFST Init base addr,

* in RAM to save bytes

 FCB GOTO @@@

 FCB PARPROG-OFST program, from RAM.

*

*

*

* SCRD : Routine SCRD services the SCI, it does that by polling

* the RDRF (received data ready flag). It returns with

* the byte of data in ACCA.

*

*

SCRD BRCLR RDRF,SCSR,* Possibly wait for char

GDATA LDA SCDAT get data & clear RDRF

 RTS

*

*

* SCWR : Routine SCWR services the SCI, it does that by polling

* the TDRE (transmit data register empty). It sends the

* byte of data in ACCA over the SCI link.

*

Page 30
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

SCWR BRCLR TDRE,SCSR,* Wait for previous transmission

 STA SCDAT

 RTS

*

*

*

*

* SERIAL: this is the MAIN serial (SCI) routine. It implements

* the basic serial protocol. It is divided over both

* BOOTROM and XROM, for ROM space usage purpose only.

*

*

SERIAL BSET 7,DDRC enable Vpp6 switch control

*

* ECHO & PROG bytes are initialized by COPYL

* (this is the first part of the serial loader loop)

*

SCILP FCB LOADA @@@

 FCB ECHO-OFST First echo byte

 BSR SCWR send it

 FCB CALL @@@

 FCB PROG08-OFST first programming lap

 FCB LOADA @@@

 FCB ECHO+1-OFST

 BSR SCWR send second echo byte

 FCB CALL @@@

 FCB PROG08-OFST second programming lap

 BSR SCRD get new address hi byte

 FCB STORA @@@

 FCB NEWAD+HI-OFST save it

 FCB LOADA @@@

 FCB ECHO+2-OFST third echo byte

 BSR SCWR

 FCB CALL @@@

 FCB PROG08-OFST third programming lap

 BSR SCRD get new address lo byte

 FCB STORA @@@

Page 31
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

 FCB NEWAD+LO-OFST save it too

 FCB LOADA @@@

 FCB ECHO+3-OFST

 BSR SCWR last echo byte

 FCB CALL @@@

 FCB PROG08-OFST fourth programming lap

 BSR SCRD get first (lower addressed) data byte

 FCB STORA @@@

 FCB RX+0-OFST save it

* Free CPU time in RAM

 FCB CALL @@@

 FCB PROG08-OFST fifth programming lap

 BSR SCRD get second data byte

 FCB STORA @@@

 FCB RX+1-OFST save it

* Second free CPU time in RAM

 FCB CALL @@@

 FCB PROG08-OFST sixth & last programming lap

 BSR SCRD

 FCB STORA @@@

 FCB RX+2-OFST get & save third data byte

*

REREAD LDA #$D6 LDA IX2

 FCB STORA @@@

 FCB BPS-OFST set up BPS as LDA indexed 16 bits

 LDX #$3 reread what has just been prog'd

RLOOP FCB CALL @@@

 FCB BPS-OFST

 FCB STAX1 @@@

 FCB ECHO-OFST and save as next echo

 DECX

 BPL RLOOP

 JMP CHKPRG

*

*

REDR CLRA

 STA RED

Page 32
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

 DECA

 STA GREEN

 BRA *

*

GREENR CLRA

 STA GREEN

 DECA

 STA RED

 BRA *

*

*

* BLOW: If bit 7 at the EPROM option address $1EFE is

* programmed, the fuse blowing starts with pulses

* of 20 ms until the fuse is blown.

*

*

BLOW BSET 7,BPA+LO-OFST do not affect green led (DELAYV)

 LDA OPTR

 BPL NOBLOW no need to blow

MBLO BSET FUSE,ECONT

 LDA #MS20 20 ms

 FCB CALL @@@

 FCB DELAYV-OFST

 BRCLR FUSE,ECONT,MBLO not blown yet

NOBLOW RTS

*

*

* ===

* ORG XROM

*

*

* Note : Routines after the label RAMR, will be copied to

* RAM upon initialisation. They must execute in RAM,

* as the ROM is not available when the EPROM latch

* bit (ELAT) is set.

*

*

Page 33
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

*

*

* EXEC : Gives a possibility to load and execute a program

* in high RAM from the SCI. The main SCI loader will

* jump here if the high address byte is ever negative.

*

*

EXEC JSR BLOW if required

 CLR GREEN

 FCB $BC JMP instruction pointing to

 FCB XADR-OFST RAM, for SCI loader execution

*

*

* (this is the second part of the serial loader loop)

*

CHKPRG LDX #$3 compare with what has been prog'd

CLOOP FCB CALL @@@

 FCB BPS-OFST

 FCB CMPX1 @@@

 FCB PROG-OFST

 BEQ NOERR

 CLR RED if error detected

NOERR DECX

 BPL CLOOP

*

MOVE FCB LOADA @@@

 FCB RX+2-OFST transfer RX bytes as next PROG bytes

 FCB STORA @@@

 FCB PROG+2-OFST except fourth one not received yet

 FCB LOADA @@@

 FCB RX+1-OFST

 FCB STORA @@@

 FCB PROG+1-OFST

 FCB LOADA @@@

 FCB RX-OFST

 FCB STORA @@@

 FCB PROG-OFST

Page 34
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

 FCB LOADA @@@

 FCB NEWAD+LO-OFST transfer address

 FCB STORA @@@

 FCB BPA+LO-OFST

 FCB LOADA @@@

 FCB NEWAD+HI-OFST

 FCB STORA @@@

 FCB BPA+HI-OFST

*

 JSR SCRD get last data byte and put it

 FCB STORA @@@

 FCB PROG+3-OFST directly in place

*

 TST BPA+HI-OFST is hi address negative ?

 BMI EXEC if so exec

 JMP SCILP else go on loading

*

*

* VERFP : Verify programming, after PROG6.

* The content of both EPROM's will be verified.

* This routine can execute in ROM.

*

* After PROG6, BPS contains $C7 (STA Extended)

*

VERFP LDA #$FF

 STA GREEN green LED off

 FCB INCD @@@

 FCB BPS-OFST init BPS $C7 => $C8 (EOR)

*

 CLRX init address table pointer

 BSR SSADD set start address

*

MOREV BSR XSFER put address to ports and get data

*

 FCB CALL @@@

 FCB BPS-OFST compare (A| with EPROM6

 BNE NOVERF humm.. no good

Page 35
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

 BSR BUMP next address

 BNE MOREV more to go ...

*

 JSR BLOW blow fuse if required

 JMP GREENR

*

*

NOVERF JMP REDR Red LED on, green LED already off

*

*

*

* Note : The following routines will be executing in RAM,

* being transfered by the BOOTSTRAP LOADER. Some data

* is also initialized at the same time.

*

*

RAMR EQU * start of routines to be copied

* in RAM upon initialisation.

*

* Offset due to the moving into RAM of some XROM routines :

*

OFST EQU RAMR-RAM

*

* NOTE : The bytes affected (as far as assembly goes) by the

* move from XROM to RAM are "corrected" by subtracting

* OFST. This way, the generated addresses will be what

* is required for execution in RAM. As far as reading

* the listing is concerned, this offset can be ignored.

*

* BPS/BPA routine; this routine, residing in RAM, is used to

* access the entire memory space. It is modified by

* software (sorry about that folks), and has the form :

*

*

* : EXTENDED INSTR : 16 BIT OPERAND : RTS :

*

*

Page 36
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

* BPA is initialized to PROG so that on the first loop

* of the serial loader, (dummy) programmed data does not

* provoque an error check. It follows that the last two

* records transmitted dummies, made up of 00 00 00 00's.

*

BPS FCB $C6 (LDA| 16 bit-extended

BPA FDB PROG address counter/argument

 RTS init to non EPROM addr for SCILP

*

*

*

*

* Delay Routine

*

* If entered at DELAYL, the timing will be 5 ms

* If entered at DELAY, ACCA must hold a value of $01 (SHORT)

* for a delay of 850 us.

* The delay routine switches EPGM on upon entry

* except if entered at DELAYV.

*

DELAY FCB LOADA @@@

 FCB DELAYT-OFST From RAM

 BSET EPGM,ECONT start programming

*

DELAYV BSET VPP,PORTC Turn Vpp on

*

 STA TIMER+LO reset timer

 STA OCR1+HI + put OCR1H

 STA TIMST : first part of clear timer status

 LDA #$C0 timer lo byte

 STA OCR1+LO + put OCR1L and 2nd part of clr tim stat

*

 BRCLR OCF1,TIMST,* wait for preset delay

*

 BCLR VPP,PORTC Turn Vpp off

 CLR ECONT end programming

 BRCLR 7,BPA+LO-OFST,*+3 Carry reflects bit tested

Page 37
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

 ROR GREEN Flash green LED at abt 3 Hz

*

 RTS

*

*

* PROG08: Program serially in little bursts of 850 us interleaved

* between SCI services, so as to save time.

*

PROG08 LDA #$D7 STA IX2

 FCB STORA @@@

 FCB BPS-OFST set up BPS as STA indexed 16 bits

 BSET ELAT,ECONT

 LDX #$3 write 4 bytes every time

PLOOP FCB LDAX1 @@@

 FCB PROG-OFST

 BSR BPS

 DECX

 BPL PLOOP

 BSR DELAY

 RTS

*

*

* Note : None of the routines beyond this point will be

* needed by the SCI loader. So if a program is

* loaded in RAM, by the SCI loader, it can start

* at this address.

*

XADR EQU *

*

*

* XSFER Routine

*

* Note : XSFER (transfer) gets the current address from BPA,

* puts it out to the ports, takes care of the handshake

* protocol, and finally gets the data. If the handshake

* is not used, connecting together IN with OUT (resp.

* PORTA 6 & 5) will in effect disable it.

Page 38
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

* Note that if it is required, the OUT line (active

* low) can be used as an Output Enable line to an

* external EPROM.

*

* Note : In the emulator, the end of the erase operation is

* detected by monitoring the first falling edge of

* the handshake OUT (PORTC5) line.

*

XSFER FCB LOADA @@@

 FCB BPA+LO-OFST get low byte of address

 STA PORTB put it out

 FCB LOADA @@@

 FCB BPA+HI-OFST get high byte of address

 STA PORTC put it out & set data request

*

GETPAR BRSET IN,PORTC,* wait for data valid

*

 LDA PORTA get data

 BSET OUT,PORTC acknowledge data

 RTS (A| holds data

*

*

* BUMP/SSADD Routine

*

* Note : The routine must first be entered at SSADD (Set Start

* ADDress), with X cleared. It will initialize from TABLE

* the address for routine BPS (which accesses memory), and

* leave the index pointing to the next table entry, that

* is the end of the current memory segment.

*

* When subsequently entered through BUMP, BPS address

* (at BPA) will be incremented by one, until it is equal

* to the current "end of memory segment" pointed to

* by X. Then the index is incremented, to point to the

* start address of the next segment, and control goes

* to SSADD to initialize the address of the next segment.

*

Page 39
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

* Upon exit from SSADD/BUMP, the Z flag is always cleared,

* except iff the end of table has been reached : in that

* case only, Z is set, signaling that the whole memory

* array has been scanned.

*

BUMP FCB INCD @@@

 FCB BPA+LO-OFST bump lo byte

 BNE NOC no carry

 FCB INCD

 FCB BPA+HI-OFST carry over to high byte

*

NOC FCB LOADA @@@

 FCB BPA+HI-OFST check high byte first

 FCB CMPX1 @@@

 FCB TABLE+HI-OFST

 BNE GOON no match yet

 FCB LOADA @@@

 FCB BPA+LO-OFST check low byte then

 FCB CMPX1 @@@

 FCB TABLE+LO-OFST

 BNE GOON no match

*

 CPX #LAST-TABLE end of table ?

 BEQ GOON Z set upon exit

RETRY INCX

 INCX next table entry

*

SSADD FCB LDAX1 @@@

 FCB TABLE-OFST set high byte of address

 FCB STORA @@@

 FCB BPA+HI-OFST

 INCX

 FCB LDAX1 @@@

 FCB TABLE-OFST low byte of address

 FCB STORA @@@

 FCB BPA+LO-OFST

 INCX

Page 40
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

*

GOON RTS Z set only if end of memory

*

*

*

* PARPROG: Will program all EPROM, by 4 bytes, from an

* external program source. DATA is fetched from

* PORT A, with or without handshake (see XSFER).

*

*

PARPROG EQU *

*

MOREP LDA #$4

 FCB STORA @@@

 FCB COUNTER-OFST

*

 BSET ELAT,ECONT

*

MOREL BSR XSFER put address to port and get data

 BSR BPS store in EPROM latches

 BSR BUMP next address

 BEQ LASTP

 FCB DECD @@@

 FCB COUNTER-OFST

 BNE MOREL

*

 BSR DELAY go program

 BRA MOREP more to go ...

*

LASTP BSR DELAY

 JMP VERFP verify, in ROM.

*

*

* GSTRAM: Sets the EPROM in Gate stress mode with data bytes

* at $00,$00,$00,$00, and holds on with both LED's off.

*

GSTRAM LDA #GSTR R/M/W not possible on $0020

Page 41
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

 STA TEST OK in BOOT and NUM modes

 BSET ELAT,ECONT EPROM data latches are preset

 CLR P0EP6+1 Write in EPROM latch to enable EPGM

 BSET EPGM,ECONT

 BSET VPP,PORTC Signal that VPP can be applied

 BRA *

*

*

*

* The programming delay time is copied in RAM for both

* the serial and parallel EPROM loader.

*

DELAYT FCB #SHORT 850 us

*

*

COUNTER FCB 3 counter by 4

NEWAD FDB 0000 location for next address

*

* lo hi

PROG FCB 0,0,0,0 location for prog bytes

ECHO FCB 0,0,0,0 location for echo bytes

RX EQU * location for RX bytes,

* same address as TABLE,

* not used in same routines.

*

*

* MEMORY MAP TABLE

*

* Note : This table is used by the routine SSADD/BUMP to address

* only relevant memory locations. It contains for each

* EPROM segment its start address and last address +1.

* It must be in RAM for EPROM parallel load.

*

*

TABLE FDB P0EP6 page 0 EPROM 6

 FDB P0EP6+48

 FDB EPROM1 EPROM1

Page 42
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B Series Technical Update

EP1 FDB EPROM1+256

 FDB EPROM6 main EPROM 6

 FDB EPROM6+5888

 FDB VECT EPROM 6 vectors

LAST FDB VECT+16

*

*

 FCB $FF,$FF,$FF,$FF,$FF

*

* ==

*

* VECTORS

*

* The unused vectors point to RAM, so as to be available

* for test purposes (RAM Bootloader, SCI loader). Their

* positionning allows 10 bytes for the stack, that is 2

* interrupt levels, or 1 interrupt and 2 subroutine levels.

*

*

 ORG BUTVCT

*

 FCB $FF,$FF free

*

 FDB STACK-9-18 SCI

 FDB STACK-9-15 TIM OVF

 FDB STACK-9-12 TIM OUT COMP

 FDB STACK-9-9 TIM IN CAP

 FDB STACK-9-6 IRQ

 FDB STACK-9-3 SWI

 FDB ENTRY RESET

*

* The vectors are set to $FF to avoid flashes in ROM.

*

 FCB $FF,$FF

 FCB $FF,$FF

 FCB $FF,$FF

 FCB $FF,$FF

Page 43
MOTOROLA Part Specific — MC68HC705B5

MC68HC05 B SeriesTechnical Update

 FCB $FF,$FF

 FCB $FF,$FF

 FCB $FF,$FF

 FCB $FF,$FF

*

 END

?

Page 44
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

MC68HC705B16

Converting from the MC68HC805B6 to the MC68HC705B16

Tracker Number: HC705B16.006 Revision: 2.00

BACKGROUND

During the past several years, Motorola has reviewed all its processing and
manufacturing methods in search of ways to reduce the negative impact of these
methods on the environment. One of the major results of this study was Motorola’s
decision to eliminate the use of chlorofluorocarbons (CFCs).

In compliance with this corporate policy, Motorola has discontinued the manufacture of
the MC68HC805B6, whose processing used CFCs. While the recommended
replacement for this device is the MC68HC705B16, it is not a drop-in replacement. The
MC68HC705B16 is pin compatible and does support all of the resources found on the
MC68HC805B6.

There are many considerations when converting from the EEPROM-based
MC68HC805B6 to the EPROM-based MC68HC705B16. Careful attention must be paid
to all of the differences to ensure successful migration to the MC68HC705B16.

In cases where the byte-programmable EEPROM is not required, or if the target MCU is
the MC68HC05B4, the MC68HC705B5 provides a virtually transparent replacement for
the MC68HC805B6. This EPROM-based device is also pin compatible and provides a
subset of the resources found on the MC68HC805B6. The only differences are: 1)
replacement of the user program memory and the byte programmable EEPROM with
EPROM, 2) changing the address of the option register (OPTR) from $0100 to $1EFE, 3)
the OPTR and the EEPROM control/E clock register ($0007) have been changed to
support EPROM programming instead of EEPROM, and 4) the watchdog timer has been
changed to include some additional options.

Many resources on the MC68HC705B16 have been implemented exactly as on the
MC68HC806B6. Some resources have been changed, and several new features have
been added. The following is a detailed comparison of the two devices, specifically
emphasizing those subsystems which are different. In addition, any considerations which
apply to converting from the MC68HC705B16 to an MROM device, such as the
MC68HC05B6, will be addressed.

SYSTEM OVERVIEW

Date Rev Description

4/7/95 1 Original Release. Includes trackers HC705B16.006 and
HC705B16.011.

Page 45
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

The MC68HC805B6 is an HCMOS, single-chip, 8-bit microcontroller based on the
Motorola MC68HC05 CPU. The on-chip resources of this part include:

• Fully Static Operation

• On-Chip Oscillator

• Power-Saving Modes: Stop, Wait, and Slow

• 176 Bytes of Random Access Memory (RAM)

• 5952 Bytes of Electrically Erasable Programmable Read-Only Memory
(EEPROM) for User Program

• 256 Bytes of Byte-Erasable EEPROM

• Internal Charge Pump

• Write/Erase Protect Bit for 224 Bytes

• 24 Bi-Directional Input/Output (I/O) Lines

• 16-Bit Free-Running Counter

• Two Input Capture Systems

• Two Output Compare Systems

• Software Force Compare

• Software Reset of Main Counter

• 8-Channel, 8-Bit Analog-to-Digital (A/D) Converter

• Two Pulse Length Modulation (PLM), 8-Bit Digital-to-Analog Converters

• Asynchronous Serial Communications Interface (SCI)

• Programmable Prescaler

• Transmitter Clock Output for Synchronous Transmissions

• External, Timer, and SCI Interrupts

• E-Clock Output Option

• Power-On Reset (POR) Bit to Determine Reset Source

The MC68HC705B16 is actually an MC68HC705X16 device which has been packaged
to be compatible with the MC68HC(8)05Bx Family of MCUs. This device is normally
packaged in a 64-pin PLCC or CLCC package and contains a controller area network
(CAN) interface. The CAN interface is not bonded out when the MC68HC705X16 is
assembled as an MC68HC705B16. The MC68HC705X16 supports all of the resources
listed above, but several changes must be noted, as well as additional resources not
found on the MC68HC805B6. Note that the CAN interface is not available for use in the
MC68HC705B16, but must be considered in the design migration.

The MC68HC705B16 has 352 bytes of RAM, instead of the 176 bytes found in the
MC68HC805B6. The 6-Kbyte EEPROM user memory space has been replaced with a

Page 46
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

16-Kbyte EPROM array.Ports B and C have programmable pulldown resistor options.
Port B also may be configured as a wired-OR interrupt source. These additional
resources are certainly available for use, but if the ultimate goal is to use an MROM
device, care must be taken to ensure that only those resources which will be found on
the target device are used.

CPU-RELATED CONSIDERATIONS

The resources provided by the MC68HC805B6 and the MC68HC705B16 must be
compared carefully to determine what changes need to be made to ensure that the
system will function as desired. The first resource to be considered is the
MC68HC705B16 CPU. In the MC68HC805B6, the address space is limited to an 8-
Kbyte range. Only 12 internal address lines were implemented, and the upper three bits
of the 16-bit program counter (PC) were always read as a zero. The address space in
the MC68HC705B16 has been increased to 16 Kbytes. An additional address line was
required, and the PC now has 13 active bits. The result of this change is that the
MC68HC705B16 user vector table is located from $3FF2 to $3FFF. (See user vector
table section.) The increased memory space also has another significant effect: The
development tools used to support the MC68HC805B6 do not support development of
the MC68HC705B16. (See emulation concerns section.)

Most of the differences between the MC68HC805B6 and the MC68HC705B16 are
enhancements. The rest are changes required by the change from EEPROM-based
user memory to EPROM-based user memory. The on-chip resources and the changes
will now be discussed in a memory map sequence beginning at $0000.

PARALLEL I/O

The I/O port data registers (PORTx) and the port data direction registers (DDRx) remain
at the same address locations ($0000 to $0006) and serve the same functions. But
more flexibility has been added to port B and port C. These ports, when configured as
inputs, now have a selectable pulldown feature. These pulldowns are selected by
programming bits 0 and 1 in the mask option register (MOR) located at $3DFE. When
enabled, a resistive pulldown is applied to any pins of the selected port which are
configured as inputs. The pulldowns provide a sink capability of about 80 µA (62.5 KΩ),
compared to the normal port input current of 1.0 µA (5 MΩ). Port B also has been
enhanced with the capability to interrupt the CPU. This port can now be configured as a
wired-OR interrupt source. This feature also is selected by programming bit 7 (wired-OR
interrupt) in the MOR and is enabled by bit 7 (wired-OR interrupt enable) of the EPROM/
EEPROM/ECLK control register at $0007.

EEPROM/E CLOCK CONTROL REGISTER

The EEPROM/ECLK control register is still located at $0007, but has been renamed the
EPROM/EEPROM/ECLK control register. The bits formerly associated with control and
programming of the user EEPROM space in the MC68HC805B6 now have new

Page 47
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

functions. Bit 7 was E6BW and now is WOIE. Bit 6, which was E6ERA, is now unused
and is always read as zero.

A/D, PLM, SCI, AND TIMERS

The control, data, and status registers for the A/D converter, the PLM D/A converter, the
SCI and the timer systems on the MC68HC705B16 are identical to those found on the
MC68HC805B6 and will not require any system design changes. Also, the
miscellaneous register has no changes. Addresses for these registers are $0008 to
$001F.

PAGE 0 USER EEPROM 6

The page 0 user EEPROM from $0020 to $004F has been replaced with EPROM. No
changes should be required in the system design.

RAM

The RAM area from $0050 to $00FF has been renamed RAM1. No changes should be
required in the system design.

OPTION REGISTER

The option register (OPTR) at $0100 has been renamed EEPROM options register. No
changes should required in the system design.

EEPROM1

The EEPROM1 area from $0101 to $01FF has been renamed EEPROM. There should
be no changes required in the system design.

BOOTSTRAP ROM I

The bootstrap ROM I area from $0200 to $027F has been reduced to 80 bytes ($0200 to
$024F). No changes should be required in the system design.

UNUSED

The UNUSED area from $0280 to $07FF has been replaced with RAM II from $0250 to
$02FF. This is available for use, but, again, care must be taken to exclude this area
when an MROM device is planned. No other changes should be required in the system
design.

USER EEPROM 6

The EEPROM 6 area from $0800 to $1EFF has been replaced with EPROM from $0300
to $3DFD. The additional user memory space is available for use, but again care must

Page 48
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

be taken to use only valid memory space when an MROM device is planned. The
system design should require no changes.

BOOTSTRAP ROM II

The bootstrap ROM II area from $1F00 to $1FEF has been moved and now is located
from $3E00 to $3FEF. There should be no changes required in the system design.

USER VECTOR TABLE

The user vector table from $1FF2 to $1FFF has been moved and now is located from
$3FF2 to $3FFF. One simple solution is to place the user vector table in both locations.
If the goal is a smaller user memory space MROM device, the user vector table for the
MC68HC705B16 should be removed in the final version of the code.

ADDITIONAL CONSIDERATIONS

The MC68HC705B16 has an additional control register, the mask option register
(MOR). The MOR is used to select options which are available in the MROM devices.
This register is located at $3DFE. Bit 7 (WOI) is used to control the wired-OR feature of
port B. Bits 6 and 5 are not used. Bit 4 (RTIM) is used to control the reset startup time
for the oscillator, either 16 or 4096 clock cycles. Bit 3 (RWAT) controls the watchdog
timer’s function after reset. The COP may be set to be enabled immediately out of reset
or to be enabled under program control. Bit 2 (WWAT) controls the watchdog timer’s
function during wait mode. The timer may be disabled or enabled by this bit during wait.
Bit 1 and bit 0 control the pulldown option for ports B and C.

As stated earlier, the MC68HC705B16 contains a CAN interface. A problem with the
existing versions of this device occasionally allows the CAN module to be enabled after
reset. While this event is rare, it is advisable to compensate for this problem by including
a CAN interrupt service routine in the user software. The CAN interrupt vector is located
at $3FF0-$3FF1. The suggested method is to cause a watchdog reset after a CAN
interrupt occurs. The system will then restart, and the CAN module should now be
disabled.

For example:

 ORG $2000

CANIRQ BSET 0,$0C Enable Watchdog

 STOP Cause Watchdog reset to occur

 ORG $3FF0

 FDB CANIRQ

This code stub should be placed in the upper part of the user program space, above
$1FFF, making it easier to remove for migration back to an MROM device. Also, the
CANIRQ vector should be removed at this time.

Page 49
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

EMULATION CONCERNS

When migrating to the MC68HC705B16, another major issue is in development system
requirements. The M68HC05EVM and the M68CDS8HC05, which currently support the
MC68HC805B6, do not readily support MC68HC705B16 development. This includes
programming functions as well as in-circuit emulation. It is necessary to use an
M68HC05X16EVS or M68MMDS05 with an M68HC05X16EM installed to support the
changes in the memory map and resource set. Cables currently used with the
M68HC05EVM to support the MC68HC805B6FN can be used with the
M68HC05X16EVS or the M68MMDS05. Cables used with the M68CDS8HC05 cannot
be used. Neither the M68HC05X16EVS nor the M68MMDS05 supports device
programming. Programming the MC68HC705B16 is only supported on the
M68HC05BPGMR. The M68HC05BPGMR supports both parallel and serial
programming modes. The current versions of the MC68HC705B16 require +15.5 volts
for programming. Attempts to use any other programming solutions previously used with
the MC68HC805B6 will be unsuccessful and may damage the devices.

EMC AND THERMAL PERFORMANCE

The technology used in the manufacture of the MC68HC805B6 is significantly different
than that used in the MC68HC705B16. The device geometrics used in the
MC68HC705B16 are much smaller than those used in the MC68HC806B6. The
EPROM with EEPROM manufacturing process required for the MC68HC705B16 is also
very different from the EEPROM-only process used for the MC68HC805B6. The
MC68HC705B16 will exhibit much faster switching times and also will respond to faster
input signals. System RF performance will be significantly different when using the
MC68HC705B16. The user must take appropriate steps to compensate for the faster
MC68HC705B16 in systems where EMC compliance is required. However, the
MC68HC705B16 will actually perform more like an MROM device than the
MC68HC805B6.

The die size of the MC68HC705B16 is different than that of the MC68HC805B6. The
difference in die size and the change from EEPROM to EPROM will cause the thermal
performance of the MC68HC705B16 to be different than that of the MC68HC805B6.
There should be a net improvement in overall thermal performance with the
MC68HC705B16.

FINAL COMMENTS

Applications currently using the MC68HC805B6 can take advantage of the additional
resources found on the MC68HC705B16. The only drawbackcurrently is the availability
of window EPROM devices, which would allow reprogramming. At this time, only one-
time programmable (OTP) devices are available. The MC68HC705B16 devices should
be available at the same or lower cost as the MC68HC805B6.

Applications which will migrate eventually to MROM devices can be developed
successfully on the MC68HC705B16. Care must be taken to limit the resource usage to
those actually found on the desired MROM device (such as MC68HC05B4,

Page 50
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

MC68HC05B6, and MC68HC05B8). Final versions of the user code must be changed to
remap the user reset vectors and remove the CAN interrupt support.

Page 51
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

Bootloader Listing

Tracker Number: HC705B16.011 Revision: 1.00

**
*
* BOOTSTRAP LOADER for the MC68HC705B16/X16
* ===
*
* Rev B.2 1992/jan/14
*
* Programmer : E. Boulian
*
* -----------
* (BOOTSTRAP)
* -----------
* / \
* 1 / \
* +----------------< PD4 ? >
* | \ /
* / \ \ /
* / \ active | 0
* < SEC ? >-----------------------> (flash red led)
* \ / |
* \ / / \
* | no / \ 1
* | < PD2 ? >-------+
* / \ \ / |
* / \ 1 \ / V
* < PD3 ? >----+ 0 | -------------------
* \ / | | (EPROM Gate stress)
* \ / | | -------------------
* | 0 | / \
* | | /EPROM\ no
* ----------- | <ERASED >-----> (red led on)
* | RAM | | \ ? /
* | BOOT | | \ /
* | LOADER | | |
* ----------- | |<----------+
* | | |
* +--------+ / \ |
* | / \ 0 |
* | < PD1 ? >-------+
* | \ /
* | \ /
* | | 1
* | ---------------------
* | | ERASE EPROM ARRAY |
* | ---------------------
* | |
* | / \
* | 1 / \
* |<---------------< PD3 ? >
* | \ /
* | \ /

Page 52
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

* | | 0
* ----------- ------------
* | SERIAL | | PARALLEL |
* | ROUTINES| | PROG & |
* | | | VERIFY |
* ----------- ------------
*
*
* NOTE : This flowchart is intended only as a mean to outline the
* possible program paths, it is not an exact reflection of
* all the details of program dispatching and routing.
*
**
*
*
* Bootstrap loading can be done either through a parallel port
* using an external EPROM or from any other parallel source,
* using the handshake facility provided.
*
* Bootstrap loading can also be accomplished through the SCI
* in serial form, at 9600 baud for a nominal crystal frequency
* of 4 MHz. The mode selection is as follows :
*
*
*
* PORT D4 | PORT D3
* --------+--------
* 0 | 0 EPROM erase check, RAM EEPROM erase, E/EEPROM Bootstrap parallel
* 0 | 1 EPROM erase check, RAM EEPROM erase, Serial Bootstrap
* 1 | 0 Parallel RAM Bootloader
* 1 | 1 RAM/EPROM/EEPROM Serial Bootstrap
*
*
* Dump or serial load is accomplished through the same routine,
* and both functions share a common protocol, as follows :
*
*
*
* - 1) B16 sends back the 4 bytes just programmed as a prompt and also
* for checking by the host (the first and second time this data is
* irrelevant).
*
* - 2) B16 expects 6 bytes from HOST :
* | ADDRESS HI:LO | DATA(a):DATA(a+1):DATA(a+2):DATA(a+3) |
* When EEPROM1 is addressed, only DATA(a) is relevant but the 6 bytes
* has to be sent.
*
* - 3) B16 takes a nominal 5 ms for EPROM and 10 ms for EEPROM1
* to programm the data, while the next 6
* bytes are being transmitted as outlined above.
*
* - 4) Loop to 1)
*
*

Page 53
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

* Note that the program implements a pipeline structure in that 3
* operations take place simultaneously :
*
* - echo bytes are sent back to the host
* - data is being programmed
* - next data is being received
*
* It is possible to load the RAM (above address XADR)
* with a test program and execute it. Execution is triggered
* by sending a negative (bit 7 set) high address byte. Execution
* starts at XADR.
*
*
* I/O and INTERNAL registers definitions

*
 ORG 0
*
PORTA RMB 1 port A
PORTB RMB 1 port B
PORTC RMB 1 port C
PORTD RMB 1 port D
DDRA RMB 1 port A DDR
DDRB RMB 1 port B DDR
DDRC RMB 1 port C DDR
*
ECONT RMB 1 EPROM/EEPROM control register
ADR RMB 1 A/D data register
ADC RMB 1 A/D status and control register
PLMA RMB 1 pulse length mod reg A
PLMB RMB 1 pulse length mod reg B
MISC RMB 1 miscellaneous register
BAUD RMB 1 SCI baud
SCCR1 RMB 1 SCI control register 1
SCCR2 RMB 1 SCI control register 2
SCSR RMB 1 SCI status register
SCDAT RMB 1 SCI data register
TIMC RMB 1 TIMER control register
TIMST RMB 1 TIMER status register
ICR1 RMB 2 capture register 1 (16 BIT)
OCR1 RMB 2 output compare register 1 (16 BIT)
TIMER RMB 2 TIMER free running counter (16 BIT)
DUALTM RMB 2 alternate counter register (16 BIT)
OCR2 RMB 2 output capture register 2 (16 BIT)
COMP2 RMB 2 compare register 2 (16 BIT)
*
*

Page 54
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

* MEMORY MAP DEFINITIONS
*
* Note : TEST is a write only register and its access is
* authorized only when ELAT is cleared. When ELAT
* is set, address $20 (P0EP6) is accessed for writing.
*
*
TEST EQU $4F TEST register
P0EP6 EQU $20 page 0 EPROM 6 start address
RAM1 EQU $50 RAM1 start address
STACK EQU $FF top of STACK
EEPROM1 EQU $100 EEPROM 1 start address
XROM EQU $200 Extra ROM
RAM2 EQU $250 RAM2 start address
EPROM6 EQU $300 EPROM 6 start address
OPTR EQU $3DFE OPTION reg
BOOTR EQU $3E00 BOOTSTRAP ROM start address
BUTVCT EQU $3FE0 BOOTSTRAP ROM vectors
VECT EQU $3FF0 EPROM6 vectors
*
*
* Miscellaneous definitions and equates
*
*
HI EQU 0 hi byte offset
LO EQU 1 lo byte offset
MS20 EQU 38 20 ms timing factor
GSTR EQU %01100000 XCOL and XROW at 1.
LONG EQU $09 long timing factor (5 ms nominal)
SHORT EQU $01 short timing factor (.85 ms nominal)
LONGEE EQU $14 long EEPROM1 timing factor (10 ms nominal)
SHORTEE EQU $03 short EEPROM1 timing factor (1.9 ms nominal)
RED EQU PLMA red LED on PLMA
GREEN EQU PLMB green LED on PLMB
OCF1 EQU 6 output compare 1 flag
E1PGM EQU 0 ECONT bit definition
E1LAT EQU 1 ECONT
E6PGM EQU 4 ECONT
E6LAT EQU 5 ECONT
SEC EQU 0 0 = secure
IN EQU 6 Handshake IN line on Port C
OUT EQU 5 Handshake OUT line on Port C
VPP EQU 7 VPP bit in portC
RDRF EQU 5 Receive data ready flag in SCSR
TDRE EQU 7 Transmit DATA Reg Empty
MBIT EQU 4 8 data bits flag in SCCR1
ADON EQU 5 A/D converter control bit
TOF EQU 5 Timer overflow flag
OLVL1 EQU 0 Output level 1
OLVL2 EQU 2 Output level 2
FOLV1 EQU 3 Force output compare 1
FOLV2 EQU 4 Force output compare 2
*
*
*

Page 55
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

*
* Synthesized instructions
*
* Note : In order to circumvent a shortcoming inherent to any
* 2 pass assembler as the one used here, some DIRECT
* (JSR/LDA/STA/DEC/INC) instructions have been synthesized
* using 2 FCB instructions. This is flagged by a @@@ in
* the comment line.
*
*
LOADA EQU $B6 Load A direct
STORA EQU $B7 Store A direct
GOTO EQU $BC Jump direct
CALL EQU $BD Jump to subroutine direct
DECD EQU $3A Decrement direct
INCD EQU $3C Increment direct
LDAX1 EQU $E6 Load A indexed, 1 byte
STAX1 EQU $E7 Store A indexed, 1 byte
CMPX1 EQU $E1 Compare indexed, 1 byte
*
*
* ===
*
 ORG XROM
*
*
* Note : Routines after the label RAMR, will be copied to
* RAM upon initialisation. They must execute in RAM,
* as the ROM is not available when the EPROM latch
* bit (ELAT) is set.
*
*
*
*
* EXEC : Gives a possibility to load and execute a program
* in high RAM from the SCI. The main SCI loader will
* jump here if the high address byte is ever negative.
*
*
EXEC CLR GREEN
 FCB $BC JMP instruction pointing to
 FCB XADR-OFST RAM, for SCI loader execution
*
*

Page 56
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

* (this is the second part of the serial loader loop)
*
MOVE FCB LOADA @@@
 FCB RX+2-OFST transfer RX bytes as next PROG bytes
 FCB STORA @@@
 FCB PROG+2-OFST except fourth one not received yet
 FCB LOADA @@@
 FCB RX+1-OFST
 FCB STORA @@@
 FCB PROG+1-OFST
 FCB LOADA @@@
 FCB RX-OFST
 FCB STORA @@@
 FCB PROG-OFST
 FCB LOADA @@@
 FCB NEWAD+LO-OFST transfer address
 FCB STORA @@@
 FCB BPA+LO-OFST
 FCB LOADA @@@
 FCB NEWAD+HI-OFST
 FCB STORA @@@
 FCB BPA+HI-OFST
*
 CMP #$01 check if EEPROM1 selected
 BEQ EESEL
 LDA #$01 if not set DALAYT for .850 mS
 BRA MOV1
EESEL LDA #SHORTEE if yes set DELAYT for 1.90 mS
MOV1 FCB STORA @@@
 FCB DELAYT-OFST
*
 JSR SCRD get last data byte and put it
 FCB STORA @@@
 FCB PROG+3-OFST directly in place
*
 TST BPA+HI-OFST is hi address negative ?
 BMI EXEC if so exec
 JMP SCILP else go on loading
*
*
* VERFP : Verify programming, after PARPROG.
* The content of both EPROM and EEPROM1 will be verified.
* This routine can execute in ROM.
*
* After PARPROG, BPS contains $C7 (STA Extended)
*
VERFP FCB INCD @@@
 FCB BPS-OFST init BPS $C7 => $C8 (EOR)
*
 CLRX init address table pointer
 FCB CALL
 FCB SSADD-OFST set start address
*

Page 57
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

MOREV BCLR OLVL2,TIMC clear A13 out (default)
 FCB CALL
 FCB XSFER-OFST put address to ports and get data
*
 FCB CALL @@@
 FCB BPS-OFST compare [A] with EPROM or EEPROM1
 BNE NOVERF humm.. no good
 FCB CALL
 FCB BUMP-OFST next address
 BNE MOREV more to go ...
*
 JMP GREENR
*
*
NOVERF JMP REDR Red LED on, green LED already off
*
*
* PROG08: Program serially in little bursts of 850 us interleaved
* between SCI services, so as to save time.
*
PROG08 LDA #$D7 STA IX2
 FCB STORA @@@
 FCB BPS-OFST set up BPS as STA indexed 16 bits
 JMP PROG8RAM-OFST continue PROG08 in RAM1
*
 FCB $FF,$FF two free bytes
*
* Following bytes are set to $FF to avoid flashes in ROM.
*
 FCB $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF

 FCB $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF

 FCB $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF

*
*
*==

Page 58
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

*
 ORG BOOTR
*
* Note : The following routines will be executing in RAM,
* being transfered by the BOOTSTRAP LOADER. Some data
* is also initialized at the same time.
*
*
RAMR EQU * start of routines to be copied
* in RAM upon initialisation.
*
* Offset due to the moving into RAM of some XROM routines :
*
OFST EQU RAMR-RAM1
*
* NOTE : The bytes affected (as far as assembly goes) by the
* move from XROM to RAM are "corrected" by subtracting
* OFST. This way, the generated addresses will be what
* is required for execution in RAM. As far as reading
* the listing is concerned, this offset can be ignored.
*
PROG8RAM BSET E1LAT,ECONT
 BSET E6LAT,ECONT
 LDX #$3 write 4 bytes every time
PLOOP FCB LDAX1 @@@
 FCB PROG-OFST
 BSR BPS
 DECX
 BPL PLOOP
 BSR DELAY
 RTS
*
* BPS/BPA routine; this routine, residing in RAM, is used to
* access the entire memory space. It is modified by
* software (sorry about that folks), and has the form :
*
*
* | EXTENDED INSTR | 16 BIT OPERAND | RTS |
*
*
* BPA is initialized to PROG so that on the first loop
* of the serial loader, (dummy) programmed data does not
* provoque an error check. It follows that the last two
* records transmitted dummies, made up of 00 00 00 00's.
*
BPS FCB $C6 [LDA] 16 bit-extended
BPA FDB PROG address counter/argument
 RTS init to non EPROM addr for SCILP
*
*
*
*

Page 59
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

* Delay Routine
*
* If entered at DELAYL, the timing will be as specified by ACCA
* and the EEPROM1 will be programmed or erased.
* If entered at DELAY10, the timing will be 10 mS and EEPROM1
* will be programmed.
* If entered at DELAY, ACCA must hold a value of $01 (SHORT)
* for a delay of 850 us.
* If entered at DELAYX, EEPROM1 will be programmed at 10 mS
* if X=6, EPROM is prorammed at DELAYT otherwise.
* The delay routine switches E1PGM or E6PGM on upon entry
* except if entered at DELAYV.
*
DELAYX CPX #$6 test is EEPROM selected
 BNE DELAY
DELAY10 LDA #LONGEE 10 mS delay
 BRA DELAYL
DELAY FCB LOADA @@@
 FCB DELAYT-OFST From RAM
*
DELAYL BSET E6PGM,ECONT start EPROM programming
 BSET E1PGM,ECONT start EEPROM1 programming
 BSET VPP,PORTC Turn Vpp on
*
 STA TIMER+LO reset timer
 STA OCR1+HI + put OCR1H
 STA TIMST | first part of clear timer status
 LDA #$C0 timer lo byte
 STA OCR1+LO + put OCR1L and 2nd part of clr tim stat
*
 BRCLR OCF1,TIMST,* wait for preset delay
*
 BCLR VPP,PORTC Turn Vpp off
 CLR ECONT end programming
 BRCLR 7,BPA+LO-OFST,*+3 Carry reflects bit tested
 ROR GREEN Flash green LED at abt 3 Hz
*
 RTS
*
*
*
* Note : None of the routines beyond this point will be
* needed by the SCI loader. So if a program is
* loaded in RAM, by the SCI loader, it can start
* at this address.
*
XADR EQU *
*
*
*
* PARPROG: Will program all EPROM, by 8 bytes, from an
* external program source. DATA is fetched from
* PORT A, with or without handshake (see XSFER).
*
* Versions before B.1 program only 4 bytes at a time.

Page 60
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

*
PARPROG EQU *
*
MOREP FCB INCD
 FCB COUNTER-OFST only used if EEPROM1 selected
 CPX #$6 check if EEPROM1 selected
 BEQ PAR1
 LDA #$8 if not set counter for 8 bytes
 FCB STORA @@@
 FCB COUNTER-OFST
*
PAR1 BSET E1LAT,ECONT
 BSET E6LAT,ECONT
*
MOREL BSR XSFER put address to port and get data
 BSR BPS store in EPROM latches
 BSR BUMP next address
 BEQ LASTP
 FCB DECD @@@
 FCB COUNTER-OFST
 BNE MOREL
*
 BSR DELAYX go program
 BRA MOREP more to go ...
*
LASTP BSR DELAYX
 JMP VERFP verify, in ROM.
*
* XSFER Routine
*
* Note : XSFER (transfer) gets the current address from BPA,
* puts it out to the ports, takes care of the handshake
* protocol, and finally gets the data. If the handshake
* is not used, connecting together IN with OUT (resp.
* PORTA 6 & 5) will in effect disable it.
* Note that if it is required, the OUT line (active
* low) can be used as an Output Enable line to an
* external EPROM.
*
* Note : In the emulator, the end of the erase operation is
* detected by monitoring the first falling edge of
* the handshake OUT (PORTC5) line.
*
XSFER FCB LOADA @@@
 FCB BPA+LO-OFST get low byte of address
 STA PORTB put it out
 BRCLR 5,BPA+HI-OFST,XS1 test A13
 BSET OLVL2,TIMC set A13 out if needed
XS1 BSET FOLV2,TIMC
 FCB LOADA @@@
 FCB BPA+HI-OFST get high byte of address
 AND #%00011111 set data request
 STA PORTC put it out

Page 61
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

*
GETPAR BRSET IN,PORTC,* wait for data valid
*
 LDA PORTA get data
 BSET OUT,PORTC acknowledge data
GOON RTS [A] holds data
*
*
* BUMP/SSADD Routine
*
* Note : The routine must first be entered at SSADD (Set Start
* ADDress), with X cleared. It will initialize from TABLE
* the address for routine BPS (which accesses memory), and
* leave the index pointing to the next table entry, that
* is the end of the current memory segment.
*
* When subsequently entered through BUMP, BPS address
* (at BPA) will be incremented by one, until it is equal
* to the current "end of memory segment" pointed to
* by X. Then the index is incremented, to point to the
* start address of the next segment, and control goes
* to SSADD to initialize the address of the next segment.
*
* Upon exit from SSADD/BUMP, the Z flag is always cleared,
* except iff the end of table has been reached : in that
* case only, Z is set, signaling that the whole memory
* array has been scanned.
*
BUMP FCB INCD @@@
 FCB BPA+LO-OFST bump lo byte
 BNE NOC no carry
 FCB INCD
 FCB BPA+HI-OFST carry over to high byte
*
NOC FCB LOADA @@@
 FCB BPA+HI-OFST check high byte first
 CMP TABLE+HI-OFST2,X
 BNE GOON no match yet
 FCB LOADA @@@
 FCB BPA+LO-OFST check low byte then
 CMP TABLE+LO-OFST2,X
 BNE GOON no match
*
 CPX #LAST-TABLE end of table ?
 BEQ GOON Z set upon exit
RETRY INCX
 INCX next table entry
*
SSADD JMP SSAD1-OFST2
*
*
*
*

Page 62
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

* The programming delay time is copied in RAM for both
* the serial and parallel EPROM loader.
*
DELAYT FCB #SHORT 850 us
*
*
COUNTER FCB 3 counter by 4
NEWAD FDB 0000 location for next address
*
* lo hi
PROG FCB 0,0,0,0 location for prog bytes
ECHO FCB 0,0,0,0 location for echo bytes
RX EQU * location for RX bytes,
* same address as TABLE,
* not used in same routines.
*
* ==
*
*
RAM2R EQU * start of table to be copied
* in RAM2 upon initialisation.
*
* Offset due to the moving into RAM2 of some XROM routines :
*
OFST2 EQU RAM2R-RAM2
*
*
* MEMORY MAP TABLE
*
* Note : This table is used by the routine SSADD/BUMP to address
* only relevant memory locations. It contains for each
* EPROM segment its start address and last address +1.
* It must be in RAM for EPROM parallel load.

*
*
TABLE FDB P0EP6 page 0 EPROM 6
 FDB P0EP6+48
 FDB EEPROM1 EEPROM1
EP1 FDB EEPROM1+256
 FDB EPROM6 main EPROM 6
 FDB EPROM6+15104
 FDB VECT EPROM 6 vectors
LAST FDB VECT+16
*
*
*

Page 63
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

* GSTRAM: Sets the EPROM in Gate stress mode with data bytes
* at $00,$00,$00,$00, and holds on with both LED's off.
*
GSTRAM LDA #GSTR R/M/W not possible on $004F
 STA TEST OK in BOOT and NUM modes
 BSET E6LAT,ECONT EPROM data latches are preset
 CLR P0EP6+1 Write in EPROM latch to enable E6PGM
 BSET E6PGM,ECONT
 BSET VPP,PORTC Signal that VPP can be applied
 BRA *
*
SSAD1 LDA TABLE-OFST2,X set high byte of address
 FCB STORA @@@
 FCB BPA+HI-OFST
 INCX
 LDA TABLE-OFST2,X low byte of address
 FCB STORA @@@
 FCB BPA+LO-OFST
 INCX
*
 RTS Z set only if end of memory
*
*
* ==

*
*
*
* PROGRAM Section
* ===============
*
*
*
*
*
* ENTRY POINT TO BOOTSTRAP LOADER
* ===============================
*
*
* Note : Port A is the DATA input for MCU programming.
* Port B and the 5 lower bits of port C reflect the
* address being programmed. Port C, bits 5 & 6 provide
* handshake capability while programming the MCU.
* If the handshake is not used, ie: in case DATA
* comes from an external EPROM, these 2 pins
* should be tied together. Pin PORTC7 is used to switch
* Vpp on during programming.
* Program routing (dispatch) is accomplished by the state
* of pins PORTD3 & PORTD4 (Check flowchart for details).
* Led's are driven from the PLM's and will be ON when
* the PLM's are at $00 and (mostly) OFF when they hold an
* $FF value.
*
*
*

Page 64
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

ENTRY BSET OLVL1,TIMC Tell the world, this is a B5
 BSET FOLV1,TIMC by setting TCMP1
*
SETIO LDA #%00100000 init PORTC, hi byte of address
 STA PORTC handshake, and Vpp off.
 COM RED red led off
 COM GREEN green led off
*
 LDX #RAM1 for both SCINIT & BUTRAM
*
* now let's go as fast as possible to the RAM loader
* if requested to do so.
*
 BRSET 3,PORTD,SCINIT branch if not parallel load
*
 COM DDRB Port B outputs
 LDA #%10111111 IN handshake on port C
 STA DDRC
*
 BRCLR 4,PORTD,SCINIT ready for RAM load and exec
*
*
* RAM BOOTSTRAP
* =============
*
* Note : Transfer a program from an external EPROM into RAM.
* Execution starts as soon as the RAM is full
* (176 bytes transfered), or when PORTD4 goes low.
*
*
BUTRAM BSR SECBIT check SEC bit
BR1 BRCLR 4,PORTD,EXERAM short load
 STX PORTB address EPROM
 BCLR OUT,PORTC handshake, ready
 JSR GETPAR get data, with
* handshake
 STA ,X put to RAM 1
 INCX
 BNE BR1 (FF => 00) = end
EXERAM JMP RAM1 execute in RAM 1.
*
*
* Initialise the SCI
*
SCINIT BCLR MBIT,SCCR1 8 data bits
 LDA #%11000000 baud rate 9600
 STA BAUD
 LDA #%00001100 TE / RE
 STA SCCR2 end of init
 STA SCSR clear TDRE & TC bits
*
* Note : Some routines, while programming, must be executing
* from RAM, so let's start by copying them form XROM
* to RAM. The extended addressing routine BPS must also
* reside in RAM.

Page 65
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

*
*
COPYL LDA RAMR-RAM1,X transfer part of ROM to RAM1 and
 STA ,X thus erase it. X has previously been
* set to point to the bottom of RAM.
 LDA RAM2R-RAM1,X transfer part of TABLE to RAM2 and
 STA RAM2-RAM1,X thus erase it.
 INCX
 BNE COPYL until 176 bytes done ($FF - $50)
*
*
 BRSET 4,PORTD,SERIAL serial load
 BRSET 2,PORTD,GSTRESS EPROM gate stress setup
*
* Fall into ECHECK
*
* ECHECK: EPROM erase check. Read the whole array, using TABLE, and
* check for zero.
*
ECHECK FCB CALL @@@
 FCB SSADD-OFST Init base addr,
* in RAM to save bytes
EC1 CPX #$06 check if eeprom1
 BNE MOREC is addressed
 INCX then skip it.
 INCX
 BRA ECHECK
MOREC FCB CALL @@@
 FCB BPS-OFST get byte
 BNE REDR if not equal zero
 FCB CALL @@@
 FCB BUMP-OFST next address
 BNE EC1
 CLRA all ok
 STA GREEN green LED on
 DECA
 STA RED red LED off.
 BRCLR 1,PORTD,* stop here if PD1 = 0
*

Page 66
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

*
*
* VERF1 : Erasing and verify of EEPROM1. Entry is at E1ERSE.
* If an error is detected during erase, control goes to
* E1ERS1. There, the red led is turned on, and
* a further attempt is made at erasing EEPROM1.
* When EEPROM1 is erased, the red led is turned off, and
* we go on.
*
* BPS still contains ADD extended ($CB)
*
E1ERS1 CLR RED flag erase failure
*
E1ERSE LDA #$80 bulk mode (E1BW)
 STA TEST
ERASE LDA #%00000110 E1LAT+E1ERA
 STA ECONT
 STA EEPROM1+3 any data, address ...x11
*
 LDA #$CC $CC = 104 ms (@ Xtal 4 MHz)
 FCB CALL
 FCB DELAYL-OFST
* CLR ECONT redundant with DELAYL routine (B.1)
 CLR TEST
*
*
VERF1 CLRX set base address : $100 => $1FF
VLOOP LDA #1
 ADD EEPROM1,X
 BNE E1ERS1 this byte not erased
*
 INCX low byte is enough
 BNE VLOOP
 DEC RED Error LED off
*
*
ERDONE EQU * End of erase
*
*
 BRSET 3,PORTD,SERIAL do parallel if clear
*
*

Page 67
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

*
*
*
* PARINIT: Parallel E/EEPROM load. Init is in ROM, then jump in
* RAM copy.
*
PARINIT BRSET 2,PORTD,PARSH Program time select
 LDA #LONG Default
 FCB STORA @@@
 FCB DELAYT-OFST In RAM
PARSH LDA #$C7 [STA] extended
 FCB STORA @@@
 FCB BPS-OFST set up BPS
*
* CLRX init address table pointer
 FCB CALL @@@
 FCB SSADD-OFST Init base addr,
* in RAM to save bytes
 FCB GOTO @@@
 FCB PARPROG-OFST program, from RAM.
** RFLASH: Flash RED LED at about 4 Hz if security bit active.
*
SECBIT LDA EEPROM1
 AND #1 check SEC bit
 BEQ RFLASH disallow serial loader
 RTS
RFLASH COM RED toggle LED
 BRCLR TOF,TIMST,* Wait for timer overflow
 LDA TIMER+LO Clear TOF
 BRA RFLASH loop
*
REDR CLRA
 STA RED
 DECA
 STA GREEN
 BRA *
*
GREENR CLRA
 STA GREEN
 DECA
 STA RED
 BRA *
*
*
*
*

Page 68
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

* GSTRESS: Will put the EPROM in Gate stress mode for
* reliability tests.
*
GSTRESS JMP GSTRAM-OFST2 Continue in RAM
*
*
*
*
* SERIAL: this is the MAIN serial (SCI) routine. It implements
* the basic serial protocol. It is divided over both
* BOOTROM and XROM, for ROM space usage purpose only.
*
*
SERIAL BSR SECBIT check SEC bit
 BSET 7,DDRC enable Vpp6 switch control
*
 LDA #PROG/$100
 STA BPA-OFST restore initial BPA
 LDA #PROG destroied by ECHECK
 STA BPA+1-OFST
*
* ECHO & PROG bytes are initialized by COPYL
* (this is the first part of the serial loader loop)
*
SCILP FCB LOADA @@@
 FCB ECHO-OFST First echo byte
 BSR SCWR send it
 JSR PROG08 first programming lap
 FCB LOADA @@@
 FCB ECHO+1-OFST
 BSR SCWR send second echo byte
 FCB CALL @@@
 FCB PROG8RAM-OFST second programming lap
 BSR SCRD get new address hi byte
 FCB STORA @@@
 FCB NEWAD+HI-OFST save it
 FCB LOADA @@@
 FCB ECHO+2-OFST third echo byte
 BSR SCWR
 FCB CALL @@@
 FCB PROG8RAM-OFST third programming lap
 BSR SCRD get new address lo byte
 FCB STORA @@@
 FCB NEWAD+LO-OFST save it too
 FCB LOADA @@@
 FCB ECHO+3-OFST
 BSR SCWR last echo byte
 FCB CALL @@@
 FCB PROG8RAM-OFST fourth programming lap
 BSR SCRD get first (lower addressed) data byte
 FCB STORA @@@
 FCB RX+0-OFST save it

Page 69
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B SeriesTechnical Update

* Free CPU time in RAM
 FCB CALL @@@
 FCB PROG8RAM-OFST fifth programming lap
 BSR SCRD get second data byte
 FCB STORA @@@
 FCB RX+1-OFST save it
* Second free CPU time in RAM
 FCB CALL @@@
 FCB PROG8RAM-OFST sixth & last programming lap
 BSR SCRD
 FCB STORA @@@
 FCB RX+2-OFST get & save third data byte
*REREAD LDA #$D6 LDA IX2
 FCB STORA @@@
 FCB BPS-OFST set up BPS as LDA indexed 16 bits
 LDX #$3 reread what has just been prog'd
RLOOP FCB CALL @@@
 FCB BPS-OFST
 FCB STAX1 @@@
 FCB ECHO-OFST and save as next echo
* FCB CMPX1 @@@ \
* FCB PROG-OFST | not performed
* BEQ NOERR | in rev. B.1
* CLR RED if error detected /
NOERR DECX
 BPL RLOOP
*
 JMP MOVE
*
*
* SCRD : Routine SCRD services the SCI, it does that by polling
* the RDRF (received data ready flag). It returns with
* the byte of data in ACCA.
*
*
SCRD BRCLR RDRF,SCSR,* Possibly wait for char
GDATA LDA SCDAT get data & clear RDRF
 RTS
*
*
* SCWR : Routine SCWR services the SCI, it does that by polling
* the TDRE (transmit data register empty). It sends the
* byte of data in ACCA over the SCI link.
*
SCWR BRCLR TDRE,SCSR,* Wait for previous transmission
 STA SCDAT
 RTS
*
*
*
*
*

Page 70
MOTOROLA Part Specific — MC68HC705B16

MC68HC05 B Series Technical Update

* VECTORS
*
* The unused vectors point to RAM, so as to be available
* for test purposes (RAM Bootloader, SCI loader). Their
* positionning allows 10 bytes for the stack, that is 2
* interrupt levels, or 1 interrupt and 2 subroutine levels.
*
*
 ORG BUTVCT
*
 FDB RAM2+176-21 CAN
 FDB RAM2+176-18 SCI
 FDB RAM2+176-15 TIM OVF
 FDB RAM2+176-12 TIM OUT COMP
 FDB RAM2+176-9 TIM IN CAP
 FDB RAM2+176-6 IRQ
 FDB RAM2+176-3 SWI
 FDB ENTRY RESET
*
* The vectors are set to $FF to avoid flashes in ROM.
*
 FCB $FF,$FF
 FCB $FF,$FF
 FCB $FF,$FF
 FCB $FF,$FF
 FCB $FF,$FF
 FCB $FF,$FF
 FCB $FF,$FF
 FCB $FF,$FF
*

Page 71
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

 MC68HC705B32
Mask Set Errata

EPROM Single-Byte Programming Problem

Tracker Number: HC705B32.001 Revision: 1.00

Reference Document: MC68HC05B6/D Rev. 3, page G-5

NOTE: The information below is NOT a specification. It is NOT guaranteed.
These are ESTIMATES of what the value will be once the
characterization is complete and the official document is released.

Pertaining to mask set D59J:

Failure

The EPROM programming circuit fully supports the 16-byte simultaneous programming
mode only and does not support single-byte programming correctly.

Description

The fault lies with the design of the EPROM array. A fault in the EPROM write data latch
circuitry causes a latch to be driven to logic zero on both sides when the data bus for
that bit is logic one. When the ELAT signal is removed, there is a race condition with the
EPBS signal which results in the data bus value being copied to all the EPROM latches.

Work Around

Since the16-byte simultaneous programming functions correctly, it is a relatively simple
matter to emulate single-byte programming by first initializing all 16 data latches to $00
and then writing the data to the appropriate address. This problem does not affect user
application software in normal circumstances, since it only applies to programming the
EPROM array. The serial programming software always should simulate 16-byte
programming. The Motorola software for programming the 705X32 from an IBM-
compatible PC is called EPBX32.EXE, written by Dugald Campbell, and functions in 16-
byte programming mode. This program, therefore, programs the EPROM correctly.

A solution to this fault has been identified and shall be implemented on the next pass of
silicon. Consult your local Morotola sales office.

Date Revision Description

4/20/95 1 Original Release. Includes tracker HC705B32.001.

Page 72
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

Application explanation: In normal circumstances, this errata does not affect the user
application software, but only affects software that programs the EPROM array. The
parallel programming bootloader software within the 705X32 ROM performs 16-byte
programming and so functions correctly.

Bootloader for Mask Set D59J

Tracker Number: HC705B32.002 Revision: 1.00

Mask Set: D59J

**

*

* BOOTSTRAP LOADER for the MC68HC705B32/X32

* ===

*

* Rev 1.0 15 Jan. 1993

*

* Rev 1.1 25 Jan. 1993

*

* - check SEC before entry to VERF (verify routine) only

* - during byte erase, toggle pin only if SEC non-active

*

* Programmer : A. Dobbin

*

* Description : B32/X32 bootloader completely re-writen and functions

* modified from earlier B16/X16 version. Parallel

* E/EEPROM programming h/w compatible w/ earlier versions.

*

*

* The 705X32 bootloader differs from the 705X16 as follows :

*

* - Gate stress routine removed.

* - Parallel RAM load removed.

* - Serial RAM load/execute data format altered. Now expects count

* byte, followed by data bytes then jumps to $0051 once 'count'

Page 73
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

* bytes received. If count is larger than 176 then code is also

* loaded into RAM2 then RAM3 until full or until a 5ms idle delay is

* detected.

* - Geneva TALKER05 code added - 4 bytes received serially on PA0.

* - Jump to RAM at $0051 added.

* - Parallel program/verify EPROM only added.

* - Parallel EPROM only or E/EEPROM verify added.

* - EEPROM erase routine changed from bulk erase to byte erase -

* PLMA toggles with each byte erased.

* - Parallel programming routine 'skips' any EEPROM bytes or EPROM

* 16 bytes that are in the erased state to speed up programming

* routine.

* - Vectors now pointing to start of RAM1 area to keep SWI position

* compatible with TALKER05 use.

*

**

*

* PIN DESCRIPTION

* ---------------

*

* Serial modes

*--------------

* PA0 : Receive/transmit pin for TALKER

* RDI : Receive pin for RAM load/execute

*

* Parallel modes

*----------------

* Port A : DATA input

* Port B : Low address byte A0-A7

* PC0-PC4 : Upper address byte A8-A12

* TCMP2 : A13

* TCMP1 : A14

* PC5,6 : Data handshake. Link if external EPROM used.

* PC7 : Switch on Vpp during programming.

* PLMA, PLMB : Red, Green LEDs. (ON when PLM = 00).

* PD0,5,6,7 : Not used.

* PD1,2,3,4 : Mode selection as follows :

Page 74
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

*

*---

* PD4 PD3 PD2 PD1 MODE

*---

* 0 0 0 0 E erase check

* 0 0 0 1 E erase check, erase EE, parallel E/EE 5ms prog/verify

* 0 0 1 0 Parallel E only verify (SEC non active)

* 0 0 1 1 E erase check, erase EE, parallel E only 5ms prog/verify

*---

* 0 1 0 0 TALKER05 (SEC non active)

* 0 1 0 1 "

* 0 1 1 0 Jump to RAM $0051 (SEC non active)

* 0 1 1 1 "

*---

* 1 0 0 0 E erase check

* 1 0 0 1 E erase check, erase EE, parallel E/EE 0.9ms prog/verify

* 1 0 1 0 Parallel E and EE verify (SEC non active)

* 1 0 1 1 E erase check, erase EE, parallel E only 0.9ms prog/verf

*---

* 1 1 X X Serial RAM load/execute (SEC non active).

*---

*

* X = don't care

* I/O and INTERNAL registers definitions

*

 ORG 0

*

PORTA EQU 00 port A

PORTB EQU 01 port B

PORTC EQU 02 port C

PORTD EQU 03 port D

DDRA EQU 04 port A DDR

DDRB EQU 05 port B DDR

DDRC EQU 06 port C DDR

*

Page 75
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

ECONT EQU 07 EPROM/EEPROM control register

ADR EQU 08 A/D data register

ADC EQU 09 A/D status and control register

PLMA EQU $0A pulse length mod reg A

PLMB EQU $0B pulse length mod reg B

MISC EQU $0C miscellaneous register

BAUD EQU $0D SCI baud

SCCR1 EQU $0E SCI control register 1

SCCR2 EQU $0F SCI control register 2

SCSR EQU $10 SCI status register

SCDAT EQU $11 SCI data register

TIMC EQU $12 TIMER control register

TIMST EQU $13 TIMER status register

ICR1 EQU $14 capture register 1 (16 BIT)

OCR1 EQU $16 output compare register 1 (16 BIT)

TIMER EQU $18 TIMER free running counter (16 BIT)

DUALTM EQU $1A alternate counter register (16 BIT)

OCR2 EQU $1C output capture register 2 (16 BIT)

COMP2 EQU $1E compare register 2 (16 BIT)

*

*

* MEMORY MAP DEFINITIONS

*

*

TEST EQU $4F TEST register

RAM1 EQU $50 RAM1 start address

RAMST EQU RAM1

STACK EQU $FF top of STACK

EEPROM1 EQU $100 EEPROM 1 start address

BOOTR1 EQU $200 BOOTROM 1

RAM2 EQU $250 RAM2 start address

RAM3 EQU $300 RAM3 start address

BOOTR2 EQU $3B0 BOOTROM 2

EPROM6 EQU $400 EPROM 6 start address

BOOTR3 EQU $7E00 BOOTROM 3

MOR EQU $7FDE Mask option register

BOOTV EQU $7FE0 BOOTSTRAP ROM vectors

Page 76
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

VECT EQU $7FF0 EPROM6 vectors

*

*

* RAM DEFINITIONS

*

 ORG RAMST

*

SCRAT RMB 4 4 contiguous bytes in ram

*

*

* Miscellaneous definitions and equates

*

RXB EQU 0 Receive bit for TALKER

HI EQU 0 hi byte offset

LO EQU 1 lo byte offset

LONG EQU $09 long timing factor (5 ms nominal)

SHORT EQU $01 short timing factor (0.90 ms nominal)

LONGEE EQU $13 long EEPROM1 timing factor (10 ms nominal)

RED EQU PLMA red LED on PLMA

GREEN EQU PLMB green LED on PLMB

OCF1 EQU 6 output compare 1 flag

E1PGM EQU 0 ECONT bit definition

E1LAT EQU 1 ECONT

E6PGM EQU 4 ECONT

E6LAT EQU 5 ECONT

SEC EQU 0 0 = secure

IN EQU 6 Handshake IN line on Port C

OUT EQU 5 Handshake OUT line on Port C

VPP EQU 7 VPP bit in portC

RDRF EQU 5 Receive data ready flag in SCSR

TDRE EQU 7 Transmit DATA Reg Empty

MBIT EQU 4 8 data bits flag in SCCR1

ADON EQU 5 A/D converter control bit

TOF EQU 5 Timer overflow flag

OLVL1 EQU 0 Output level 1

OLVL2 EQU 2 Output level 2

FOLV1 EQU 3 Force output compare 1

Page 77
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

FOLV2 EQU 4 Force output compare 2

*

*

* START OF CODE

*

 ORG BOOTR3

*

* THIS CODE WILL BE COPIED FROM BOOTROM3 TO RAM1

*

RAM1R EQU * Start of code to run from RAM1

OFST1 EQU RAM1R-RAM1 Ofset for addressing this block of code.

*

* These are variables whose initial values will be transfered into RAM.

*

DELAYT FCB #SHORT 850 us

COUNTER FCB 00 Counter

BLANK FCB 00 Set to 00 if programming data is blank

 (erased state)

SECOPY FCB 00 Copy of EEPROM security byte

BPS FCB $C6 [LDA] 16 bit extended

BPA FDB 0000 16 bit address

 RTS

* MEMORY MAP TABLE

*

* Note : This table is used by the routine SSADD/BUMP to address

* only relevant memory locations. It contains for each

* E/EEPROM segment its start address and last address +1.

* It must be in RAM for EPROM parallel load.

*

TABLE FDB EEPROM1 Start of EEPROM1

 FDB EEPROM1+256 End of EEPROM1+1

 FDB EPROM6 Start address of EPROM

 FDB BOOTR3 End address of EPROM+1

Page 78
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

 FDB VECT Start address of EPROM vectors

 FDB VECT+16 End address of EPROM vectors+1

 FDB MOR Mask option register programmed last so that

LAST FDB MOR+1 exit from PARPROG loop possible once single

* byte latched.

*

*

* THIS CODE WILL BE COPIED FROM BOOTROM3 TO RAM2

*

RAM2R EQU * Start of code to run from RAM2

OFST2 EQU RAM2R-RAM2 Ofset for addressing this block of code.

*

*

* BUMP/SSADD Routine

*

* Note : The routine must first be entered at SSADD (Set Start

* ADDress), with X cleared. It will initialize from TABLE

* the address for routine BPS (which accesses memory), and

* leave the index pointing to the next table entry, that

* is the end of the current memory segment.

*

* When subsequently entered through BUMP, BPS address

* (at BPA) will be incremented by one, until it is equal

* to the current "end of memory segment" pointed to

* by X. Then the index is incremented, to point to the

* start address of the next segment, and control goes

* to SSADD to initialize the address of the next segment.

*

* Upon exit from SSADD/BUMP, the Z flag is always cleared,

* except iff the end of table has been reached : in that

* case only, Z is set, signaling that the whole memory

* array has been scanned.

*

BUMP INC <BPA+LO-OFST1 Bump lo address byte

 BNE NOC No carry

 INC <BPA+HI-OFST1 Carry over to high byte

*

Page 79
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

NOC LDA <BPA+HI-OFST1 Check high byte first

 CMP <TABLE+HI-OFST1,X

 BNE GOON No match yet

 LDA <BPA+LO-OFST1 Check low byte then

 CMP <TABLE+LO-OFST1,X

 BNE GOON No match

*

 CPX #LAST-TABLE End of table ?

 BEQ GOON Z set upon exit

RETRY INCX

 INCX Next table entry

*

* fall into SSADD

*

* This routine copies an E/EEPROM block starting address from TABLE into the

* RAM subroutine address (BPA). Block selected depends on X.

SSADD LDA <TABLE-OFST1,X Get high byte of address

 STA <BPA+HI-OFST1 Store in RAM sub.

 INCX

 LDA <TABLE-OFST1,X Get low byte of address

 STA <BPA+LO-OFST1 Store in RAM sub.

 INCX

*

GOON RTS Z set only if end of memory

*

*

* Delay Routine

*

* If entered at DELAYL, the timing will be as specified by ACCA

* and the EEPROM1 will be programmed or erased.

* If entered at DELAY10, the timing will be 10 mS and EEPROM1

* will be programmed.

* If entered at DELAY, ACCA must hold a value of $01 (SHORT)

* for a delay of 850 us.

* If entered at DELAYX, EEPROM1 will be programmed at 10 mS

* if X=6, EPROM is prorammed at DELAYT otherwise.

Page 80
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

* The delay routine switches E1PGM or E6PGM on upon entry

* except if entered at DELAYV.

*

DELAYX CPX #$2 Test if EEPROM selected

 BNE DELAY

DELAY10 LDA #LONGEE 10 mS delay

 BRA DELAYL

DELAY LDA <DELAYT-OFST1 From RAM

*

DELAYL BSET E6PGM,ECONT Start EPROM programming

 BSET E1PGM,ECONT Start EEPROM1 programming

 BSET VPP,PORTC Turn Vpp on

*

 STA TIMER+LO Reset timer

 STA OCR1+HI Store delay value in OCR1 hi byte

 STA TIMST First part of clear timer status

 LDA #$C0 Timer lo byte

 STA OCR1+LO Store low delay byte and 2nd part of clr tim

* stat

*

 BRCLR OCF1,TIMST,* Wait for preset delay

*

 BCLR VPP,PORTC Turn Vpp off

 CLR ECONT End programming

 BRCLR 0,BPA+HI-OFST1,FLSHG Carry reflects bit tested

FLSHG ROR GREEN Flash green LED at abt 6 Hz

*

 RTS

*

*

*

* PARPROG: Will program all EPROM by 16 bytes, EEPROM by 1 byte from an

* external program source. DATA is fetched from PORT A, with or

* without handshake (see XSFER). If data is in erased state then

* no programming is done on that byte/16 bytes. COUNTER must be 00

* at entry.

*

Page 81
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

PARPROG EQU *

*

MOREP INC <COUNTER-OFST1 Only used if EEPROM1 selected

 CLR <BLANK-OFST1 Clear 'blank data' register initially.

 CPX #$2 Check if EEPROM1 selected

 BEQ PAR1

 LDA #$10 If not set counter for 16 bytes

 STA <COUNTER-OFST1

*

PAR1 BSET E1LAT,ECONT

 BSET E6LAT,ECONT

*

MOREL BSR XSFER Put address to port and get data

 JSR <BPS-OFST1 Store data in E/EEPROM latches

*

 CPX #$2 Check if EEPROM1 selected.

 BNE NOTEE

 COMA Complement to give 00 if EEPROM data

 BRA DONE = $FF (erased state).

NOTEE ORA <BLANK-OFST1 OR all 16 bytes EPROM data to give 00 only if

* all $00(erased state)

DONE STA <BLANK-OFST1 Store value. If = 00, then this data needn't be

* programmed.

*

 BSR BUMP Next address

 BEQ LASTP Z set once end of memory map reached.

 DEC <COUNTER-OFST1

 BNE MOREL Repeat for 16 bytes.

*

 LDA <BLANK-OFST1 Skip programming step if 16 bytes EPROM/1 byte

 BEQ NOPROG EEPROM data to be programmed is in erased state.

 BSR DELAYX Else go program

NOPROG CLR ECONT Reset latch bits to clear data latches.

 BRA MOREP More to go ...

*

LASTP BSR DELAYX

 JMP VERFP Verify, in ROM.

Page 82
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

*

* XSFER Routine

*

* Note : XSFER (transfer) gets the current address from BPA,

* puts it out to the ports, takes care of the handshake

* protocol, and finally gets the data. If the handshake

* is not used, connecting together IN with OUT (resp.

* PORTA 6 & 5) will in effect disable it.

* Note that if it is required, the OUT line (active

* low) can be used as an Output Enable line to an

* external EPROM.

*

* Note : In the emulator, the end of the erase operation is

* detected by monitoring the first falling edge of

* the handshake OUT (PORTC5) line.

*

XSFER LDA <BPA+LO-OFST1 Get low byte of address

 STA PORTB Put it out

 BCLR OLVL2,TIMC Clear A13

 BRCLR 5,BPA+HI-OFST1,XS1 Test A13

 BSET OLVL2,TIMC Set A13 if reqd.

XS1 BSET FOLV2,TIMC Force output on TCMP2

 BCLR OLVL1,TIMC Clear A14

 BRCLR 6,BPA+HI-OFST1,XS2 Test A14

 BSET OLVL1,TIMC Set A14 if reqd.

XS2 BSET FOLV1,TIMC Force output on TCMP1

 LDA <BPA+HI-OFST1 Get high byte of address

 AND #%00011111 Set data request

 STA PORTC Put it out

*

 BRSET IN,PORTC,* Wait for data valid

*

 LDA PORTA Get data

 BSET OUT,PORTC Acknowledge data

 RTS [A] holds data

*

*

Page 83
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

*

* END OF RAM ROUTINES

*

*

*

* ENTRY POINT TO BOOTSTRAP LOADER

* ===============================

*

START EQU *

*

 SEI

 RSP

 BRCLR 3,PORTD,PARAL Parallel modes

 JSR SECBIT Check security before entering serial routines.

 JMP SERIAL Enter serial routines.

*

* Initialise for parallel routines

*

PARAL LDA #%00100000 Init PORTC, hi byte of address

 STA PORTC Handshake, and Vpp off.

 COM RED Red led off

 COM GREEN Green led off

*

 COM DDRB Port B outputs

 LDA #%10111111 IN handshake on port C

 STA DDRC

*

*

* Note : Some routines must run from RAM since BOOTROM disappears while

* programming EPROM. This routine copies code from the start of

* BOOTROM3 into RAM2.

*

*

 CLRX

COPYR1 LDA RAM1R,X Read code from ROM

Page 84
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

 STA RAM1,X and store it in RAM1.

 INCX

 CPX #RAM2R-RAM1R Repeat until start of RAM2R block:

* ROM -> $50-$63

 BNE COPYR1

 CLRX

COPYR2 LDA RAM2R,X Read code from ROM

 STA RAM2,X and store it in RAM2.

 INCX

 BNE COPYR2 Repeat until 256 bytes done: ROM -> $250-$34F

* note - not all 256 bytes required but done anyway.

*

 LDA EEPROM1

 STA <SECOPY-OFST1 Save contents of SECURITY byte

*

 BRCLR 2,PORTD,ECHECK

 BRSET 1,PORTD,ECHECK

 JSR SECBIT Check security non-active before entry to

* verify routines.

 BRCLR 4,PORTD,VERFP Verify EPROM only programmed correctly

 BRA VERFP2 Verify E/EEPROM programmed correctly (X=0)

*

* ECHECK: EPROM erase check. Read the whole array, using TABLE, and

* check for zero.

*

ECHECK LDX #04

 JSR SSADD-OFST2 Init base addr in RAM to start of EPROM

EC1 JSR <BPS-OFST1 Get byte

 BNE REDR if not equal zero

 JSR BUMP-OFST2 Next address

 BNE EC1

 CLRA All ok

 STA GREEN Green LED on

 DECA

 STA RED Red LED off.

*

Page 85
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

 BRCLR 1,PORTD,* Stop here if PD1 = 0

*

*

* E1ERSE : Byte erase EEPROM1 and verify byte erased. Repeated this

* routine till all bytes erased. Red LED toggles with every byte

* erased (only if SEC non-active). This routine is used to clear

* the security byte for access to different modes. The security byte

* must be erased last.

*

* NOTE: X16 code used BULK erase. Changed here to BYTE erase since no external

* Vpp1 is connected on programming boards.

*

*

E1ERSE CLR <BPA+HI-OFST1 This ensures Green LED stays on during DELAY

* routine

 CLRX Set pointer to last byte in array+1

E1ERS1 DECX Check next byte

E1ERS2 LDA #%00000110 E1LAT+E1ERA

 STA ECONT

 STA EEPROM1,X Latch any data

 JSR DELAY10-OFST2 Byte erase for 10ms

* Now verify byte erased

 LDA EEPROM1,X

 INCA

 BNE E1ERS2 Repeat if byte not erased

*

 BRCLR 0,<SECOPY-OFST1,NOFLSH No toggle if SEC bit is 0.

 COM RED Toggle pin to show array condition

NOFLSH CPX #00

 BNE E1ERS1 Repeat until SEC erased.

*

 LDA #$FF

 STA RED Error LED off

*

* End of EEPROM1 erase

*

*

Page 86
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

* PARINIT: Parallel E/EEPROM load. Init is in ROM, then jump in

* RAM copy. X = 00 at entry.

*

PARINIT BRSET 4,PORTD,PARSH Program time select

 LDA #LONG Default

 STA <DELAYT-OFST1 In RAM

PARSH LDA #$C7 [STA] extended

 STA <BPS-OFST1 Set up BPS

*

 BRCLR 2,PORTD,INITBA Default to EEPROM base address

 LDX #$4 Initialise base address for EPROM only

INITBA JSR SSADD-OFST2 Init base addr,

* in RAM to save bytes

 JMP PARPROG-OFST2 Program, from RAM.

* VERFP : Verify programming, after PARPROG.

* The content of both EPROM and EEPROM1 will be verified.

* This routine can execute in ROM.

*

VERFP CLRX Init address table pointer

 BRCLR 2,PORTD,VERFP2 Default to EEPROM base address

 LDX #$4 Initialise base address for EPROM only

VERFP2 JSR SSADD-OFST2 Set start address

 LDA #$C8

 STA <BPS-OFST1 $C8 (EOR) -> BPS

*

MOREV JSR XSFER-OFST2 Put address to ports and get data

*

 JSR <BPS-OFST1 Compare [A] with EPROM or EEPROM1

 BNE REDR humm.. no good

 JSR BUMP-OFST2 Next address

 BNE MOREV More to go ...

*

* Verify complete

*

GREENR CLRA

 STA GREEN Green on

Page 87
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

 DECA

 STA RED Red off

 BRA *

*

REDR CLRA

 STA RED Red on

 DECA

 STA GREEN Green off

 BRA *

*

* SUBROUTINES

*

SECBIT LDA EEPROM1

 AND #1 Check SEC bit

 BEQ RFLASH Hang-up if security bit is 0.

 RTS Return if security non-active

*

RFLASH COM RED Flash RED LED at about 4 Hz if security bit

* active.

 BRCLR TOF,TIMST,* Wait for timer overflow

 LDA TIMER+LO Clear TOF

 BRA RFLASH Loop

*

* SERIAL ROUTINES ENTRY POINT

*

*

SERIAL BRSET 4,PORTD,LDRAM Do serial ram load/execute

 BRSET 2,PORTD,JMPRAM Jump to RAM at $0051

 JMP TALK Do Geneva TALKER05 routine.

*

Page 88
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

*

* SERIAL LOAD RAM AND EXECUTE

*

* The data should be in the form of 1 start-bit, 8 data-bit, 1 stop-bit.

* Baud rate is set to 9600 baud (using a 4MHz crystal).

* The first byte should be a count of the total number of bytes to be

* sent, including that byte. The first byte is loaded into address $0050,

* so the first program byte will be loaded into address $0051.

* That is where program execution will begin.

*

* If the count byte is larger than the size of RAM1, ie, above 176 then

* the code continues to fill RAM2 then RAM3. In this case the count byte is

* ignored and program execution begins once all RAM is filled or if no

* character is received for 5 milli secs. Program execution still begins

* at $0051.

*

* The user must take care when using branches or jumps in their source code!!!

* Since the program overwrites the stack area, the user should send NOPs to

* temporary 'fill up' their required stack area.

*

* This routine does't use stack or RAM so all bytes can be filled.

*

LDRAM EQU *

*

 LDA #$C0

 STA BAUD Set baud rate to 9600

 CLR SCCR1 8 data bits

 BSET 2,SCCR2 Enable SCI receiver

 LDX #RAMST Point to start of RAM1

WAITRX BRCLR RDRF,SCSR,* Wait for receive register to fill

 LDA SCDAT Read data byte

 STA ,X Store the data in RAM

 DEC RAMST Decrement the count byte (1st byte sent)

 BEQ JMPRAM Start executing code in RAM once zero.

 INCX Move to next RAM location

Page 89
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

 BNE WAITRX Continue loading until RAM1 full

* Count byte was bigger than 176, so start filling RAM2 then RAM3 until

* space of 5 millisecs or until RAM3 filled.

 LDX #RAMST Point to start of RAM2

FILLR2 CLR OCR1 Use OCR1 as a variable

 LDA #3 Set for 5msec delay

WAITR2 BRSET RDRF,SCSR,OUT1 [5] Wait for receive register to fill

 DEC OCR1 [5]

 BNE WAITR2 [3]

 DECA

 BNE WAITR2

 BRA JMPRAM Execute code after timeout occurs

*

OUT1 LDA SCDAT Read data byte

 STA $0200,X Store the data in RAM2

 INCX Move to next RAM location

 BNE FILLR2 Continue loading until RAM2 full

* RAM2 filled, start to fill RAM3.

 CLRX Point to start of RAM3

FILLR3 CLR OCR1 Use OCR1 as a variable

 LDA #3 Set for 5msec delay

WAITR3 BRSET RDRF,SCSR,OUT2 [5] Wait for receive register to fill

 DEC OCR1 [5]

 BNE WAITR3 [3]

 DECA

 BNE WAITR3

 BRA JMPRAM Execute code after timeout occurs

*

OUT2 LDA SCDAT Read data byte

 STA $0300,X Store the data in RAM3

 INCX Move to next RAM location

 CPX #$B0

 BNE FILLR3 Continue loading until RAM3 full

Page 90
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

* fall into JMPRAM once RAM3 filled.

JMPRAM JMP RAMST+1 Start executing code in RAM

*

*

* TALKER05 RAM MONITOR FIRMWARE

*

* RAM+ROM size optimised test communication concept for HC05 under test.

* The protocol consists of downloading serially 4 bytes and expecting 1

* byte back as an answer to a command. The first 3 bytes are placed in

* RAM at location 'SCRAT', the 4th byte is placed into Acc, then SCRAT+3

* is written with $81 (RTS). The processor executes the code placed in

* SCRAT as a subroutine and then sends back the accumulator content. Jump

* command can be associated with an acc value for particular test purpose.

* Serial transfer is achieved via port 'PORTTK,RXB' using a software

* serial async routine. Testing of the SCI is possible independently.

*

* Version for 9600 baud @ 4MHz, Bit waste time = fosc / 2 / 104 cycles

 ORG BOOTR2

TALK EQU * TALKER05 STARTING POINT

TLOOP BCLR RXB,DDRA port as input

 LDX #SCRAT point to scratch

**** Get 4 bytes from host ****

GBYTE BRSET RXB,PORTA,* [5]- 5 wait for start bit

 LDA #50 [2] 7 start bit: length 1.5 bit

LP1 DECA [3] waste time

 BNE LP1 [3]307

 LDA #$80 [2]309 prepare memory for receive

Page 91
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

 STA ,X [3]312

GBIT BRCLR RXB,PORTA,GB2 [5]- 5 get bit into carry

GB2 LDA #32 [2] 7 waste time

LP2 DECA [3]

 BNE LP2 [3]199

 ROR ,X [5]204 shift it

 BCC GBIT [3]209 not yet 8th bit

 BRCLR RXB,PORTA,TLOOP wrong stop bit: frame error = reset

 LDA ,X 4th byte in acc

 INX

 CPX #RAMST+4 4th byte?

 BNE GBYTE get next byte

 LDX #$81 opcode RTS

 STX SCRAT+3 into 4th address

LP3 INX waste time till stop bit ended

 BNE LP3 760 cycles = 380 uS

**** Jump into downloaded routine: ****

* A=last value txed, X=0, Z=1, C=0, N=1

 JSR SCRAT execute now

**** Return 1 byte to host ****

 SEC prepare stop bit

 BSET RXB,DDRA port as output

** . start bit: length 1.0 bit

STBIT BCLR RXB,PORTA [5]- 5 - 5 is a "0"

OBIT LDX #32 [2] 7 10 waste time

LP4 DECX [3]

 BNE LP4 [3]199 202

 RORA [3]203 205 shift

 BCC STBIT [3]206 208 check bit value

Page 92
MOTOROLA Part Specific — HC705B32

MC68HC05 B Series Technical Update

 CLC [2]208 210 timing -2 to +2 per bit

 BSET RXB,PORTA [5]- - 5 is a "1"

 BNE OBIT [3] 8 acc not equal 0

 BRA TLOOP loop forever

*

*

*

* BOOTLOADER VECTORS (RESET VECTOR MUST BE AT $7FEE AND 7FEF)

*

*

* VECTORS

*

* The unused vectors point to RAM1, so as to be available for test

* purposes (RAM Bootloader, SCI loader). Their positioning at start

* of RAM1 is consistent with TALKER PC program which assumes SWI vector

* is at RAMST+4.

*

 ORG BOOTV

 FDB RAMST+22 CAN

 FDB RAMST+19 SCI

 FDB RAMST+16 TIM OVF

 FDB RAMST+13 TIM OUT COMP

 FDB RAMST+10 TIM IN CAP

 FDB RAMST+7 IRQ INTERRUPT VECTOR

 FDB RAMST+4 SOFTWARE INTERRUPT (PLACE HERE TO SUIT TALKER)

 FDB START RESET VECTOR

*

 END

?

Page 93
MOTOROLA Part Specific — HC705B32

MC68HC05 B SeriesTechnical Update

	TABLE OF CONTENTS
	B Series General InformationCOP (Computer Operating Properly) Watchdog TimerCOP1MISC
	COP (Computer Operating Properly) Watchdog Timer
	Watchdog Timeout Period

	MC68HC05 CPU Core
	Correction to SUB in Applications Guide
	I Bit in CCR During Stop Mode
	I Bit in CCR During Wait Mode
	BSET and BCLR are RMW Instructions

	EEPROM1
	Programming the Options Register in the EEPROM1
	Options Register (OPTR) Location Correction
	V PP 1 Connections, Problems, and Gotchas

	Programmable Timer
	Output Compares and Flags

	Packaging Types
	52-Pin PLCC Pinout

	HC05 B Series Part Specific
	MC68HC705B5
	Security
	Bootloader for Mask Sets 0D10J, 2B40T, 4B40T

	MC68HC705B16
	Converting from the MC68HC805B6 to the MC68HC705B16
	Bootloader Listing

	MC68HC705B32
	EPROM Single-Byte Programming ProblemEPROM Single-Byte Programming Problem
	Bootloader for Mask Set D59J

