N C R

NCR/32
GENERAL
INFORMATION

PRELIMINARY

This document contains the latest information available at the time
of publication. However, NCR reserves the right to modify the contents
of this material at any time. This data is supplied “As-Is”; NCR makes
no warranty, express or implied, including but not limited to any
implied warranty or merchantability or fitness for a particular purpose.
Also, all features, functions and operations described herein may
not be marketed in all parts of the world. Therefore, before using
this document, consult your NCR Microelectronics Division Repre-
sentative or NCR Microelectronics Division VLSI Product Marketing
for the information that is applicable and current.

This is a revised edition of the General Information
Manual. Changes made since the last edition are
identified by bars in the applicable page margins.

“Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in U.S.A.

CONTENTS

GENERAL INFORMATION MANUAL

CONTENTS
GENERAL INFORMATION. 11
INTRODUCTION. e e e 1-1
SYSTEM ARCHITECTURE. 2-1
Chip Capabilities. i i 2-1
NCR/32-000 Central Processor Chip (CPC)............... 2-1
NCR/32-010Address Translation Chip (ATC). 2-4
NCR/32 System Structure.coviuriinnnenn.. 2-4
Main Memory. oot e 2-4
Scratch Pad............. 2-5
ISUMEmMOry. ... oot e e e e e 2-5
NCR/32 System Addressing.cccinnin... 2-5
System Clock. i 2-5
Processor Bus Structure. 2-7
ISUBUS. . ..o 2-7
PM Bus. ... e 2-7
PMCHKBuS. ...ttt e ii e 2-7
PM Bus Priority Control Logic. 2-7
Address Translation Function. 2-8
CPC Programming Model. 2-9
Microinstruction Set. i 2-12
PROCESSOR-MEMORYBUS........................ 31
General. e 3-2
Logic Conventions.cocuveii ... 3-2
Common PM Bus Signals............................ 3-2
External Register Messages.covivieinn... 3-3
External Register Transfer Signal. 3-3
External Register Message Transfers. 34
Real Memory Messages. e 34
Real Memory Transfer Signals. 34
Real Memory Message Transfers. 3-6
Virtual Memory and Memory Refresh Messages. 39
Processor PM Bus Transfers.covvuu.... 39
Processor Signals Related to PM Bus Transfers. 39
Processor PM Bus Access.ocoviiiiinniinnn.. 3-11
CPC Accesstothe PMBus., 3-11
Special Request PM Bus Access.covevieen.... 3-11
‘ Copyright 1984, NCR Corporation i

Dayton, Ohio
All Rights Reserved Printed in U.S.A.

GENERAL INFORMATION MANUAL

CONTENTS (CONTINUED)
Double Error Detection. 3-12
ATC Intervention During Message Transfers............. 3-12
Virtual Memory Operations. 3-12
Real Memory Operations.ccovvvinennn... 3-12
ATC Refresh Operations. 3-14
PMBusTiming.ttt 3-14
Virtual Message Transfer Timing. 3-14
Virtual Memory Fetch Timing. 3-15
Virtual Memory Full Store Timing. 3-17
Virtual Memory Partial Store Timing. 3-17
Real Memory Transfer Timing. 3-20
CPC Real Memory Fetch Timing. 3-20
CPC Real Memory Full Store Timing. 3-22
CPC Real Memory Partial Store Timing. 3-22
External Register (ERU) Timing. 3-25
Processor Interrupt Message. 3-26
Memory Interface. 3-26
CENTRAL PROCESSORCHIP(CPC) 41
CPCOVerview e 4-1
SIGNAL DESCRIPTION 4-1
DATA ORGANIZATION INMEMORY 4-7
ISUMemory. i 4-7
MainMemory 4-8
THREE-STAGE PIPELINE 4-9
ARITHMETIC LOGICUNIT(ALU) 49
ArithmeticOperations 4-10
Special Decimal ALU Logic........................... 4-10
REGISTERDESCRIPTION 4-11
Register Storage Unit (RSU) 4-11
External Registers(ERUs) 4-13
Internal Register Unit (IRU) 4-14
Jump Registers (IRUO-IRU7) 4-14

i

CONTENTS

GENERAL INFORMATION MANUAL

CONTENTS (CONTINUED)
Restore Field (IRUS). 4-16
State Register (IRU9). 4-17
Bits1-5 — Field Array Bits 4-18
Bits 7-10 — Byte WriteTagBits 4-18
Bits11-14 — RSU AddressBits 4-19
Bits 15-16 — Protection Check Code Bits 4-19
Indicator Array (IRU16) 4-20
Virtual Indicators (IRU17). 4-22
Tally Register (IRU18) 4-22
Operand Pointers (IRU24) 4-23
Stack Pointer (IRU26) 4-24
SetupRegisters. 4-24
Setup Register #1 (IRU19) 4-24
Setup Register #2(IRU20) 4-25
Setup Register #3 (IRU-10) 4-25
Setup Register #4 (IRU11) 4-25
Setup Register #5 (IRU18) 4-25
Control Array #1 (IRU27). 4-26
MARS6 Write Tags (IRU28) 4-27
WRITE TAGOPERATION 4-28
SCRATCHPADACCESS i 4-28
Access Via the Operand Pointers 4-29
Access ViatheStack Pointer. 4-30
Scratch Pad Access ViaERU Registers 4-31
Scratch Pad Access ViaFLandSL 4-31
INTERRUPTS/TRAPS i 4-33
Interrupt/Trap Recognition........................... 4-33
Interrupt/Trap Servicing 4-33
Saving the MachineState 4-34
Restoring From Interrupts/Traps 4-34
PROCESSOR STATE DURINGRESET 4-35

ifi

GENERAL INFORMATION MANUAL

CONTENTS (CONTINUED)
PMBUSACCESS i 4-35
SETUP ASSIST 4-36
Setup Register Applications 4-36

Setup Register #1 Application 4-36
Setup Register #2 Application. 4-37
Setup Register #3 Application 4-38
Setup Register #4 Application 4-38
Setup Register #5 Application 4-39
Scratch Pad Virtual Machine Operation........... 4-44
Operand Pointer #1 4-44
Operand Pointer #2 4-44
Stack Pointer 4-46
Map IndicatorLogic 4-46
PROGRAMMING CONSIDERATIONS 4-46
FieldOperands 4-46
Single Field Operand Instructions 4-47
Multiple Field Operand Instructions. 4-48
Fetching FromISU 4-49
DelayedJumps., 4-50
LockOnFetch 4-50
Store Operations 4-50
FetchOperations 4-51
PROGRAMMING RESTRICTIONS 4-51
ADDRESS TRANSLATIONCHIP(ATC) 5-1
ATCFUNCTIONAL DESCRIPTION. 5-7
Memory Operations 5-7
Virtual Memory Operations (Address Translation) 5-8
Real Memory Operations 5-9
Memory Refresh Operation 5-9
Error Check/Correction and
Syndrome Bit Generation (ECC) 5-10
ECC Generation During Memory Store 5-11

iv

CONTENTS

GENERAL INFORMATION MANUAL

CONTENTS (CONTINUED)
Error Check and Correction During Memory Fetch 5-11
Multi-Work Fetch/Correction 512
External Register Unit Operations 5-12
Time Of Day/Interval Monitoring 5-13
Virtual Address Monitoring 5-13
Breakpoint (Fetch for Execute) Monitor —CA2....... .. 5-14
Address Monitor (Stores) —CA3 5-14
Fetch for Execute Monitor (Stores) — CA3,4 5-14
Trace (Store) Monitor —CA8 5-14
DYNAMIC ADDRESS TRANSLATION UNIT 5-14
OVEIVIBW . . . o oottt e e et 5-18
Operation oo 5-18
Translation 5-18
Memory Protection. 5-19
Invalid Register (IR). 5-20
Changed Page(CP), 5-20
Register Referenced(RR) 5-20
Protection it 5-21
Page FrameNumber., 5-21
Virtual Page Number 5-22
Interrupts 5-22
EXTERNAL REGISTER DEFINITIONS 5-22
Special Purpose ERUs, 5-23
Control Array #2 oot i e 5-23
Control Array Definition 5-24
Interrupt/Trap Arrayoo oo 5-26
Trap and Interrupt Operation 5-26
Trap and Interrupt Definition 5-27
Interrupt Mask Register (IMR) 5-30
Interval Timer/Monitor Register (ITMR) 5-30
Time-Of-Day Register/Counter (TOD)................. 5-30
Address Monitor Register (AMR) 5-31
Bus Interrupt Register (BIN) 5-31
Syndrome Register (SR), 5-31

GENERAL INFORMATION MANUAL

CONTENTS (CONTINUED)
Memory Data/Processor Data Register MD/PD). 5-32
Virtual Operation ERUs 5-32
Virtual Address Register (VAR) 5-32
Real Address Register (RAR) 5-33
Descriptor Data Register(DDR) 5-34
Associative Memory and Page Descriptor Registers 5-35
ASSOCIATIVE MEMORY COMMANDS 5-35
Write Page Size (WPS) 5-36
Read Page Size (RPS). 5-36
Invalidate Associative Memory (IAM) 5-36
Enable and Set Page Frame (ESPF) 5-36
Restrictions. 5-37
Write Virtual Page (WVP) 5-37
Read Page Frame(RPF)............... 5-38
Write and Set Page Frame (WSPF) 5-38
Restriction 5-39
Clear Associative Memory (CAM) 5-39
Purge Selective (PS) 5-39
Restrictions. 5-40
Write Purge Mask (WPM) 5-40
Read PurgeMask (RPM) 5-41
Purge Selective with Mask (PSM) 5-41
Restrictions. 5-42
Read Virtual Address (RVA) 5-42
Read Real Address (RRA) 5-42
Translate Virtual Address (TVA) 5-44
Restrictions. 5-45
ATCSTATE OPERATION 5-45
StateFlow 5-47
SPECIAL ATC CONSIDERATIONS 5-47
PM BusContention 5-47
Refresh 5-47
Time-Of-Day............ 5-48

vi

CONTENTS

GENERAL INFORMATION MANUAL
CONTENTS (CONTINUED)

Bus Interrupt Register Interrupts. 5-48
Associative Memory Command Sequencing. 5-48
Monitor Operations. niinnieennns 5-48
ECCDisable. e et 5-48
ECC Generate/Syndrome Register. 5-49
Real Address Register Byte/Descriptor Data Register. 5-49
24/32 Bit Operations. ooo it e 5-49
Associative Memory Results. i 5-49
TIMING CYCLE DESCRIPTIONS., 5-49
Real Memory Operations.ouiiuinnainnnn. 5-49
Real Full Store. . ..o oo i e e 5-50
Real Partial Store. ii i 5-50
Real Fetch. i i e 5-50
Virtual Memory Operations., 5-51
Virtual Full Store (CA9=0).. ...t 5-51
Virtual Partial Store (CA9=0). it 5-52
Virtual Fetch (CA9=0). i i 5-52
Virtual Full Store (CA9=1). ottt 5-53
Virtual Partial Store (CA9=1). it 5-53
Virtual Fetch (CA9=1).ottt 5-53
Refresh Operation. i, 5-54
MICROINSTRUCTIONSET. i, 6-1
Microinstruction Set Format. 6-1
LField Function.ottt 6-1
KField Function.ttt i 6-1
JField Function.ttt 6-2
IField Function. it i 6-2
HField Functions.ttt et i e e e 6-2
GField Functions.o ittt i et 6-2
Instruction Nomenclature. ooty 6-2

GENERAL INFORMATION MANUAL
CONTENTS (CONTINUED)

InstructionOperands 6-4
FullWordOperands 6-4
Half WordOperands 6-5
ByteOperands 6-5
Condition Selector, 6-6
FieldOperands............. 6-6
Single Field Operand Instructions 6-7
Multiple Field Operand Instructions 6-7
LiteralOperands 6-8
FourBitLiteral 6-8
EightBitLiteral 6-8
Sixteen Bit Literal 6-9
DigitOperands 6-9

Instruction Descriptions 6-9
Memory Instructions 6-9

Instruction Index by Function. 6-9

Instruction Indexby OpCode 6-15

Instruction Index by Mnemonic. 6-20

APPENDICES A-1

Appendix A, Glossary of Terms A-l

AppendixB,Setup Flows B-1

Appendix C, Breakpoint Operation C-1

Appendix D, Memory Retries. D-1

Appendix E, Fetching fromISU E-1

Appendix F, Non-Interruptible Instructions F-1

Appendix G, Array Matrices G-1

Appendix H, PBCD and UBCD Setting H-1

Appendix I, Instruction Emulation Example. I-1

viii

GENERAL INFORMATION

CHAPTERI|
GENERAL INFORMATION

CONTENTS
INTRODUCTION. o e e e 1-1
MICROPROGRAMMING DESIGN. 1-2
Microprogramming Definition. e 1-2
Microcontrol Section Organization. 1-3
Architectural Features.c i, 1-4
CPC ChipFunction.ccoiiii i, 1-4
Instruction-set Partitioning. 1-5
Performance Considerations., 1-6
CPC DESIgN. . . o vttt ettt e e e et e 1-6
Other Chipset Features. uu... 1-6

Copyright 1984, NCR Corporation
Dayton, Ohio .
All Rights Reserved Printed in U.S.A. I

GENERAL INFORMATION

CHAPTER |
GENERAL INFORMATION

The NCR/32 VLSI chipset introduces a new generation of program-
mable building blocks for the implementation of high-performance
digital systems. This new generation combines the best features of
cell library technology and microprocessor programmability with
flexible, 32-bit power. For you, the system designer, external micro-
programmability means that you can instruct the system both in
what to do and how to do it. The NCR/32 family makes VLSI
technology cost-effective in mainframe computer replacement for the
first time.

Traditionally, the use of VLSI has been inversely proportional
to the performance of a given computer system. The extremely high
speeds, and the associated power dissipation, of common bipolar
semiconductor technologies made VLSI devices of more than a few
thousand gates impractical. In addition, packaging technologies had
not been developed to provide sufficient interconnect capacity.

Several strategies are available today to increase the impact of
VLSI in high-performance systems. NCR has adapted the design
concepts learned from three product generations of large mainframe
computers to the potentials offered by current VLSI technology.
The NCR/32 semiconductor family provides new VLSI mechanisms
for off-chip microcoding, instruction-set partitioning, and microcode
primitives. These features offer a significant increase in performance,
as well as substantially higher levels of integration.

The approach of maximizing synergism between NCR systems
expertise and in-house microelectronics technology is the corner-
stone of NCR’s emergence as a leading merchant semiconductor
vendor. We are now entering an expanding commercial market where
NCR expects increased revenue and profit from our past R&D and
capital equipment investments. This market also represents a fast-
growing high-technology business that will keep us responsive to the
demand for high quality and competitive prices.

All NCR Microelectronics products embody a three-pronged
strategy for serving our customers. First, we are concentrating on
MOS technology as the implementation vehicle for all products.
Second, we specialize in quick-turn fabrication for semi-custom and
custom logic products. And third, we emphasize custom solutions
through microprogramming and cell library logic. NCR has selected

1-1

GENERAL INFORMATION

penetration of the microelectronics market as a fundamental strategy
for continued corporate growth and investment in the future.

MICROPROCESSOR DESIGN

Figure 1-1 shows the main functions of a computer and its critical
information flows. The control (CTL) section is responsible for
determining the order, timing, and direction of information flow be-
tween functional blocks. When executing a stored program, the CTL
section puts in sequence the operations of FETCH, DECODE,
change controls, and change state.

In first generation microprocessor designs, the control section
was implemented in the Microprocessor Unit (MPU) as random logic,
with flip-flops and timers sequencing the execution of MPU instruc-
tions. Late in the second generation, some MPU designs began to
apply microprogramming techniques internally; and most third
generation 16/32 bit MPU products incorporate some form of in-
ternal microprogramming (to conserve space and increase the number
of features). The NCR/32 family is the first commercially available
32-bit MPU to offer external microprogram capability to the user.

e

~7
& O
‘\ o’ o’
': "
s ALU c'
AN g
A
AN ['0
<, 4
- ORDER
- TIMING
- DIRECTION
Figure 1-1 Computer Functions

MICROPROGRAMMING DEFINITION

To understand how microprogramming differs from programming
an MPU, imagine that a program for an MPU directs the computer
system in what to do while a microprogram tells the MPU how to
do it. This capability, not traditionally available to the programmer,

1-2

GENERAL INFORMATION

is defined by Samir S. Husson in Microprogramming: Principles
and Practices:

“Microprogramming is a technique for designing and im-
plementing the control function of a system as a sequence
of control signals, to interpret fixed or dynamically changing
data processing functions. These control signals, organized
on a word basis and stored in a . . . control memory,
represent the states of the signals which control the flow
of information between the executing functions and the
orderly transition between these signal states.”

This means that any machine instruction of an MPU is es-
sentially a “closed” subroutine executed by microinstructions fetched
from the closed store.

Microcontrol Section Organization

Several design approaches are possible for implementing a micro-
control subsystem, and two types of organization have been de-
veloped: horizontal and vertical.

In order to achieve maximum performance with a given data
path organization, the microcontrol section must provide a high
degree of parallelism. Since many control signals are not mutually
exclusive, a very wide microinstruction word is required to specify
the state of all control signals during a given microcycle. This wide
microinstruction is called horizontal microcode (Figure 1-2). When it
is feasible to encode the control signals less densely, the microword
organization can be very narrow; this is called vertical microcode
(also Figure 1-2). Because of the encoding inherent in the vertical micro-
coding, more words are required to execute the same function, and
vertical control stores require larger address spaces. However, this
allows reduced pin count and ease in debugging.

—
é f (inst cnt/cmplx, intrpt, etc)
&
s
HORIZONTAL
F (parallelism)
Figure 1-2 Microstore Organizations

GENERAL INFORMATION

ARCHITECTURAL FEATURES

As shown in Figure 1-3 the NCR/32 chipset consists of functional
building blocks which address the design problems of computer
systems. Consisting of a microprogrammed processor (the CPC),
a memory manager (the ATC), a series of performance booster cir-
cuits (such as the EAC), and an I/O controller (the SIC/SIT/SIR),
the NCR/32 family can be used in a variety of applications. These
range from mainframe and super-minicomputer emulation to dedicated
control functions. Each building block can be used separately or in
conjunction with other family members to provide a rich library
of capabilities.

PERFORMANCE ADDRESS
BOOSTER TRANSLATOR
1 - .
X] |
| exc]_'J [Ac IJ‘I R 1
1 | SIT
I
su KO cre PMBUS (32) sic
': SR
'L
MEMORY -
SYSTEM
SYSTEM INTERFACE
CONTROL
[
LOCAL MEMORY
Figure 1-3 NCR/32 Family
CPC Chip Function

Figure 1-4 illustrates the data path organization of the CPC and the
pipeline implementation. The CPC uses two levels of microcoding.
An off-chip vertical microinstruction is fetched from the Instruction
Storage Unit (ISU) to begin execution of each microcycle. On-chip,
the CPC uses a small horizontal control memory to provide the con-
trol signals necessary for data flow and execution. By using the two
levels of microcoding and a three-stage pipeline, the CPC completes
one external microinstruction approximately every 150 nanoseconds.

A 16-bit multiplexed data/address bus (ISUBUS) provides the
communications path for vertical microinstructions into the CPC.
Each ISU word is divided into fields (Figure 1-5) for easy decoding.
The G field is used as the control store address for the on-chip
horizontal microinstruction memory, selecting the control and in-
formation flow during the execute state of the pipeline. The H and I
fields provide operand selection specification during certain micro-

1-4

GENERAL INFORMATION

[] L] []
1 i 1
! i !
FETCH] INTERPRET [] EXECUTE]
] = i
] i []
| H =
uCODE oP]]
STORE o » DECODE > WW
- > P
R R
1 (E; P
R | M| A M
2 > S U L > s |
T X U U
E
R S
! S
¢l %
Figure 1-4 CPC Pipeline
G H 1 J K
L (OPTIONAL)
Figure 1-5 ISU Fields

instructions, when an extended op-code is needed or a non-RSU opera-
tion will be executed. The J and K fields are register specifiers that
determine which operands are used for execution. The L field provides
a 16-bit literal operand during some microinstructions.

Instruction-set Partitioning
Microcode primitives are provided by special hardwired logic and
internal registers that, in conjunction with the external scratch-pad
memory, define the virtual machine architecture and decode virtual
instructions. These primitives, called macroinstruction set-up com-
mands, speed execution by replacing multiple microinstructions re-
quired to load registers with the contents of virtual instruction fields.
Modifications can be made to the CPC on-chip to optimize this
special logic for particular virtual machine emulation. Current imple-
mentations support IBM 370 and NCR mainframe instruction sets.
Instruction-set partitioning is implemented by the addition of
special performance booster chips, such as the EAC. Depending on
the performance boost required, these chips may monitor all in-

1-5

GENERAL INFORMATION

struction fetches from memory and control the CPC, or act as
“slaves” to the CPC, receiving all operands and commands under
CPC control. Several different combinations have been used to ex-
cellent advantages in equipment designs.

PERFORMANCE CONSIDERATIONS

System performance can vary widely based on your particular imple-
mentation strategy. Each NCR/32 building block offers several choices
you should evaluate while considering the best hardware/firmware
trade-offs for your application. In designing your system, make sure
you consider functional partitioning, memory utilization, and 1/0
interfacing. (These areas equate roughly to the degree of parallelism
and amount of bandwidth inherent in your system design.)

CPC Design

The CPC design is crucial to ISU organization and sequencing for
your system. The 16-bit microinstruction word length and the in-
ternal control register define the minimum implementation required
for an NCR/32 system. Beyond that, you have considerable flexibility
in choosing the optimum scheme for your performance needs. Expand-
ing the word length can provide additional control bits to assist in
parallel execution of mutually exclusive functions. For emulation,
performance can be improved dramatically by overlapping instruction
fetch and decode, operand set-up, and execution. Similarly, supple-
menting the CPC control register and jump logic with external cir-
cuitry can increase the range of control decision and expand the total
ISU addressing range.

Other Chipset Features

When your system performance dictates specialized hardware to im-
prove speed, the NCR/32 chipset offers building blocks that support
functional partitioning of the execution task. The EAC provides
specialized hardware for floating point arithmetic and can improve
speeds by an order of magnitude compared to in-line firmware im-
plementations. Careful instrumentation of dynamic system perform-
ance can identify the critical bottlenecks that specialized hardware
can overcome to meet your system goals.

Your memory organization and performance can also vary widely,
depending on the features that you use. Both ECC logic and ad-
dress translation logic can be disabled to allow you to choose
mechanisms for implementing these functions. Transfers of data
over the PM bus can take one or more sytem cycles to complete,
allowing you to control both the cost and the performance of your
memory subsystem. Fast caching techniques can further improve

1-6

GENERAL INFORMATION

performance for specific applications.

Finally, I/O interfacing techniques can be optimized to suit
your cost and performance goals. Using DMA block transfers will
minimize CPC overhead, but will cost more for intelligent 1/0
control logic. Using the SIC/SIT/SIR subsystem will provide a
high-bandwidth serial data link for low-cost peripheral interfaces.
Other interfaces to popular I/0 environments such as Multibus can
be easily accommodated by NCR/32 family building blocks.

All of these choices provide greater flexibility in meeting the
particular application requirements of your system design. In con-
trast to other microprocessor families, the NCR/32 family provides
uncommitted system building blocks which allow customization, when
necessary, to suit your needs. NCR is also committed to continued
refinement and expansion of the entire NCR/32 family.

This General Information Manual provides the technical in-
formation you will need to help you determine if the NCR/32 family
can fulfill your application needs. Additional technical details on
electrical and mechanical features of the individual chips are pro-
vided in data sheets available from your local NCR Microelectronics
sales representatives. Questions about particular application con-
cerns are fully supported by our applications engineers.

SYSTEM ARCHITECTURE

CHAPTER 1l
SYSTEM ARCHITECTURE
CONTENTS
Chip Capabilities.o v i i 2-1
NCR/32-000 Central Processor Chip (CPC)................ 2-1
NCR/32-010 Address Translation Chip (ATC).............. 2-4
NCR/32 System Structure., 2-4
Main Memory.ttt e 2-4
Scratch Pad. oot e e e 2-5
ISUMEIMOTY. . o o oot e et ettt it e e e 2-b
NCR/32 System Addressing. 2-5
System Clock. 2-5
Processor Bus Structure.ttt 2-7
ISU BUS. & ot v ottt et e e e e e e 2-7
PM BUS. .t o e e e e e e 2-7
PMCHEK BUS. . ot oot ittt et e ettt e eeae e 2-7
PM Bus Priority Control Logic. 2-7
Address Translation Function. 2-8
CPC Programming Model. 2-9
Microinstruction Set.ot e 2-12

“Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in US.A.

SYSTEM ARCHITECTURE

CHAPTER lI
SYSTEM ARCHITECTURE

This chapter provides a general description of the NCR/32 Processor
system. The features of the Central Processor Chip (CPC) and Ad-
dress Translation Chip (ATC) are described, as well as how these two
devices interact in a system. The CPC, ATC, and Main Memory are
interfaced via the Processor-Memory Bus (PM Bus). The PM Bus is
described in detail in Chapter III. Detailed descriptions of the CPC
and ATC are provided in Chapters IV, V, and VI. Figure 2-1 shows a
block diagram of the NCR/32 system.

CHIP CAPABILITIES

The following paragraphs provide a general description of the CPC
and ATC and are followed by discussion of the NCR/32 system.

NCR/32-000 Central Processor Chip (CPC)

The Central Processor Chip (CPC) is a self-contained, 32-bit archi-
tecture, microprocessor element that provides the logic to execute
an NCR/32 Processor user microinstruction program stored in the
Instruction Storage Unit (ISU) memory. The CPC can operate at
three levels of programming. In level one, the microcode instructions
are fetched from ISU and executed directly to perform program
functions (e.g., executing a high level language directly from micro-
code or performing a controller function like a graphics controller).
In level two, groups of instructions in ISU are fetched to execute
software instructions stored in main memory. This level is used when
the CPC is emulating a virtual machine. The virtual machine instruc-
tions are located in main memory while the CPC microinstruction
routines to emulate each virtual machine instruction are located in
ISU. A third level of programming is available in which the software
fetched by ISU microinstructions access microcode subroutines and
look-up tables stored in the ISU.

A breakdown of a 32-bit word is shown in Figure 2-2.
The major features of the CPC include:

* True 32-bit internal/external architecture
¢ External microprogrammablility

©Copyright 1984, NCR Corporation
Dayton, Ohio 2
All Rights Reserved Printed in U.S.A. -1

cc

64K

Memory
Interface
Circuitry

Bus ATC
Priority
PMCHK Bus
Control /\ (7 Bits — ECC Code)
1Su Control
Memory K Addpata Y crc K >
IBSu l; PM Bus
P o (16 Bits) (32 Bits)
Address/Data/Control >
Clock U I\/I
110
EAC Device
Figure 2-1 NCR/32 System Configuration

I 16M
128 Scratch
Words ! Pad
|
oo |
|
| Main
| Memory
.
|
|
|
=
3913332 1j0
——
Optional ECC
Code Supplied
by ATC
GIM2318A

SYSTEM ARCHITECTURE

32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 1

R R

[/ ——
Nibble Nibble

\ A J
v v
Byte O Byte 1 T
A

Byte 2 Byte 3

~ v

Left Half Word Right Half Word

,
Q
f- >
4
—> ——

v

Word
GIM2103AAA

Figure 2-2 32-Bit Word Breakdown

Two independent external data paths

* 32-bit Processor-Memory Bus (PM Bus)

* 16-bit Microinstruction Storage Bus (ISU Bus)

Sixteen 32-bit true general purpose registers (RSU)

32-bit ALU

* Digit (nibble), byte, halfword, word, and field (string) data types
¢ Decimal, binary, and boolean operations

Addressing Range

* 4 Gigabytes of direct virtual memory

» 16 Megabytes of direct real memory

» 128 Kilobytes of direct microinstruction memory

179 microinstructions and variants with register to register format
95% of instructions execute in one clock cycle

3-stage microinstruction pipeline

8 addressable 16-bit microinstruction jump registers

3 main memory scratch pad pointers

Special hardware for opcode cracking when emulating virtual
machines

NMOS silicon gate technology

2-3

SYSTEM ARCHITECTURE

NCR/32-010 Address Translation Chip (ATC)

The Address Translation Chip (ATC) is an optional device which
provides memory management assistance to the CPC. It contains an
address translation unit, a memory data syndrome bit generator,
syndrome bit checker and data correction logic, a time-of-day
counter/register, memory refresh circuitry, and special registers
available to the CPC.

The major features of the ATC include:

—Full support of virtual to real addressing including full or par-
tial word stores

—Virtual address monitoring

—Sixteen address translation registers

—Supervisor/user modes with four levels of protection in each

—Memory refresh/scrubbing functions

—Syndrome (check) bit generation (ECC) for all memory stores

— Error check and correction for memory fetches

—Time-of-day and time interval monitoring

— Variable byte page sizes (1k, 2k, and 4k)

The ATC supports three types of memory operations:

-

Real memory operations generated external to the ATC.

2. Virtual memory operations (address translation plus resulting
real memory operation).

3. Virtual equals real memory operations (real memory operation

generated from untranslated virtual address).

NCR/32 SYSTEM STRUCTURE

The NCR/32 Processor Family, when interfaced as a system, forms a
general-purpose microprocessor system and virtual machine emulator.
The CPC, through its vertical microinstruction set, supports virtually
all mainframe opcode functions and data handling capabilities. This
section provides a general functional description of how the NCR/32
Processor Family of chips may be assembled to function in a system.

Main Memory

The Main Memory serves as a data and software storage area. It
consists of RAM (typically Dynamic) chips connected to the CPC
via the memory interface and PM Bus. The main memory is organ-
ized into 32-bit wide words (39 if ECC is used) and can be expanded
to 16M bytes. The CPC scratch pad is located at the top of main
memory.

24

SYSTEM ARCHITECTURE

Scratch Pad—The NCR/32 system architecture was heavily in-
fluenced by advances made in state-of-the-art software technology.
High level languages as well as code produced from high level languages
must run efficiently on new generation processor systems. Efficient
high level language generation or emulation of high level language
machines requires that parameters be easily transferred between and
within software modules. The NCR/32 processor system allows this
with a powerful yet easy to use scratch pad function.

A 128-word by 32-bit scratch pad is located at the top of main
memory. Special addressing registers inside the CPC simplify the
emulation of register and stack oriented machines. The scratch pad
is intended to be used as operand stack and virtual registers for
data manipulation and parameter passing. The first 64 words of
scratch pad can be explicitly addressed with special memory (literal)
instructions. They can also be addressed indirectly through operand
pointer registers, as can all of the 128 words. These pointer registers
are located in the CPC. See Chapter IV for a more complete descrip-
tion of the scratch pad.

ISU Memory

The Instruction Storage Unit (ISU) contains the CPC user micro-
code programs and subroutines using the CPC 16-bit microcode in-
struction set. The ISU memory is organized as a 64k x 16 memory
space and is addressed by the CPC via the ISU Bus.

NCR/32 System Addressing

The NCR/32 Family of chips, including the CPC and ATC, are part
of a system that is interfaced via the PM Bus. CPC support chips
are not located in the memory address space of the CPC (see Figure
2-3). Registers inside the ATC and other support chips in the system
are referred to as External Registers since they are external to the
CPC, and are accessed by a special set of single cycle external reg-
ister transfer instructions. Details on the external register transfers
are provided in Chapter I11.

System Clock

The system clock is a two-phase non-overlapping clock. The first half
of each cycle is called phase 0, and the second half of each cycle is
called phase 1. In text “X0” will be used to indicate phase 0, and
“X1” to indicate phase 1.

When data transfer operations are initiated, the ISU Bus and/or
the PM Bus transfer an address during X0, and the system control
lines are set to address-related states. During X1 the data to be
transferred is asserted on the bus, and the system control lines are
set to data/read/write-related states.

2-5

SYSTEM ARCHITECTURE

Main Memory
Address Locations (Hex)
FFFFFC
Scratch
Pad
Main FFFEQO
Memory
Address
Space Program
Storage
000000
External Register
Address Space (Hex)
7F
* ATC Registers
External e |/O Ports
Register (ERU) e Reserved locations
Address for future
Space support chips
20

NOTES:

2-6

Accesses to/from the main memory address space use real and virtual
memory fetch and Store instructions. See chapter VI—“Instruction
Set” for details. The only exceptions are ERU transfers to scratch pad
(through ERU locations 20-26 Hex). See chapter IV—“CPC” for details.

Accesses to/from the External Register Address Space use Transfer in
External (TIE) and Transfer Out External (TOE) instructions. These are
single cycle operations which use a special PM Bus control signal
(EREP—External Register Enable/Permit) to distinguish them from
transfers to/from main memory. The only exceptions are ERU transfers
to Scratch Pad (through ERU locations 20-26 Hex) which assert real
memory operations on the PM Bus.

Figure 2-3 System Address Partitioning on the PM Bus

SYSTEM ARCHITECTURE

When the Address Translation Chip (ATC) is performing a memory
store operation, the ATC holds the data on the PM Bus for several
system clock cycles until the destination device (memory) has re-
ceived the data.

Processor Bus Structure

The Processor Bus Structure connects the various devices in the
NCR/32 Family as shown in Figure 2-1. The major busses, the ISU
Bus and the PM Bus, each transfer address and data on the same
lines. The PMCHK Bus transfers only the syndrome (check) bits.

ISU Bus—The 16-bit bi-directional ISU Bus connects the CPC to
the Instruction Storage Unit. During X0 of the system clock the
CPC asserts the address of the next microinstruction (covered in
detail in Chapter IV) on the bus. During the following X1 the ISU
asserts the addressed microinstruction on the ISU Bus, and the CPC
loads it into an internal Instruction Register (IR).

PM Bus—The 32-bit bi-directional PM Bus interfaces the CPC to
all devices in the system. Memory fetch and store operations occur
in two basic steps. During X0 the address is asserted on the bus,
then the following X1 the CPC reads the bus or asserts data on it.
Fetch/store control signals establish which is to occur and latch the
data into the appropriate register or memory location. The ATC
controls the PM Bus in the same fashion as the CPC when the ATC
is directed to transfer data. A complete description of the PM Bus
is provided in Chapter III.

PMCHK Bus—The 7-bit bi-directional PMCHK Bus interconnects
the ATC and main memory. It transfers the syndrome (check) bits
that are used by the ECC logic in the ATC to ensure validity of
the data transferred on the PM Bus.

PM Bus Priority Control Logic

The Bus priority logic is user-designed hardware that controls the
time sharing (arbitration) of the PM Bus. It consists of circuitry
that encodes during X0 the Request lines (REQO to REQn) from
individual system chips requiring access to the PM Bus. During X1
the Bus Priority logic asserts the appropriate Select line (SEL1 to
SELn) to enable the selected chip during the next clock cycle.
SELO, reserved for the ATC, is not used because the ATC has high-
est priority and should be guaranteed the bus on the next cycle after
asserting REQO. An example of a simplified eight-input version of
the circuitry is shown in Figure 2-4.

2-7

SYSTEM ARCHITECTURE

The ATC typically is assigned the highest priority (REQO) for
PM Bus access. The lowest priority is normally assigned to the
CPC.

The REQS line from the ATC must override all REQn signals to
give the PM Bus to the CPC on a cycle steal basis when required.
In the Bus Priority logic an active REQS must force BAV active
(high) and disable all SELN signals. Otherwise, in the absence of a
Bus request, the BAV signal should default to an active (high) state,
allowing the CPC to have access to the bus.

A block diagram of a Bus priority circuit is shown in Figure 2-4.

— REQO —P» ————p n.c.
— REQ1 —P» 8t03 s o 3t08 |}— SELT —p
— REQ2 —P —— l— SEL2 —p
— REQ3 —P» Encode Decode }— SEL3 —Pp
— REQ4 —P» — SEL4 —p
— REQ5 —» — SELS5 —pp
— REQ6 —P — SEL6 —Pp
— REQ7 —p» — SEL7 —p
<All §> =
EN EN

—REQS

BAV—p»

n.c. = Not Connected

Note: The circuitry in this figure provides for up to 8 devices to be connected
to the PM Bus. If the CPC and ATC are the only devices then REQ1 -
REQ7 and SEL1-SEL7 are not used.

GIM2104AA

Figure 2-4. Bus Priority Logic (example circuit)

Address Translation Function
The ATC adds memory access partitioning and virtual address trans-
lation capabilities to the CPC system. The ATC is completely pro-
grammable from the PM Bus, and the CPC and other active devices
can direct the ATC to perform data transfers with error checks,
perform just the error checks, or remain inactive.

The ATC performs two types of fetch/store message operations:
Real Memory operations and Virtual Memory operations. When a

2-8

SYSTEM ARCHITECTURE

real memory fetch or store operation is initiated, the ATC performs
no operation on the address, and the address is applied directly to
memory followed by the data transfer.

When the ATC is active, memory store operations will begin
during X1 and continue through as many cycles as required to meet
the access time of the main memory RAMs. The ATC holds the data
on the PM Bus until the memory interface asserts the DIE signal.
The ATC also sends Byte Write Enables to gate the data into the
addressed memory during store operations.

When a virtual memory fetch or store operation is initiated, the
virtual address is latched into the ATC and translated into a real ad-
dress during X0. The virtual to real address translation, in brief
terms, consists of concatenating the virtual (relative) address to a
reference point (page start) address previously loaded into the Page
Frame Number (PFN) register and addressed by one of the Virtual
Page Number (VPN) registers. If it is to be a store operation, while
the translation is being accomplished the data to be transferred is
clocked into the ATC during X1. During the next X0 the resulting
real address is asserted on the PM Bus by the ATC and the data
transfer is initiated the following X1.

During real and virtual memory fetch operations, the ATC
performs automatic error checks (ECC) and corrects erroneous
data if possible. When an error is uncorrectable the data is passed
with an asserted Memory Data Enable/Error (MDEE) signal indi-
cating that the data on the PM Bus is invalid. NOTE: The MDEE
signal from the ATC is reserved for use by I/O devices on the PM
Bus. The ATC informs the CPC of uncorrectable errors via a trap
(TRAP line). :

The ATC provides the necessary timing, signals, and data trans-
fers for memory refresh operations to the memory interface. In addi-
tion, the Time-Of-Day Register/Counter (TOD) in the ATC may be
read via the PM Bus or used to generate timed interval interrupts.
When memory refresh operations are required, the TOD is used to
determine when they are to occur.

CPC Programming Model

A very powerful set of data and address registers inside the CPC
makes programming easier, faster, and more reliable. The Register
Storage Unit (RSU) consists of sixteen 32-bit general purpose regis-
ters. All sixteen registers are word and halfword addressable while
the first four are also byte addressable, as shown in Figure 2-5(A).
In the general sense the RSU contains operands for manipulation
(digit, byte, halfword, and word) by the CPC ALU and is a storage
unit for data transfers to/from main memory.

2-9

N

-
S

(a) Register Storage Unit (RSU) as a general purpose
register set

RSU

o]

32 2928 2524 2120 1716 1312 938

54

(b) Register Storage Unit (RSU) as Memory Assist
Register Set (MARS) for memory or field instruc-

tions.
1
N\ -
MARSO
Digit, Byte, Haif-
¥ word and Full- ¢
word Addressable
MARS1 L
3 3
MARS2
MARS3
>
MARS4
Halfword and
> Fullword
Addressable
MARSS5
>
MARS6
>
J MARS7

Figure 2-5

RSU O

13

14

15

Programming Model

32

26 24

17 16 98

Address

Data

Address

Data

Address

Data

Address

Data

- Address

Data l

Data l Data —[

Data

Address

Data |

Data | Data I

Data

Address

Data J

Data I Data l

Data

Address

Data 1

Data ’ Data l

Data

e

\ ey

) Fetch Operand

on Field
Instructions

Fetch Operand
on Field
Instructions

Store Operand
on Field
Instruction

Virtual
Instruction
References

JHNLO3LIHOHY WILSAS

SYSTEM ARCHITECTURE

During field (string) operations the RSU locations 8-15 are organ-
ized into even-odd register pairs. When operating on field data the
RSU is referred to as the MARS (Memory Assist Register Set)
registers. The even register contains the field data address, while the
associated odd register contains the field data. Special pointers,
MARS byte pointers, automatically keep track of word boundaries
and inform the CPC when the next field data word should be fetched
from memory.

During virtual machine emulation two of the RSU registers
function as Virtual Control Registers. RSU14 is the virtual machine
program counter, and RSU15 is the virtual machine instruction reg-
ister. A more complete description of the RSU is provided in Chap-
ter IV. A model of the MARS registers is presented in Figure 2-5(B),
and RSU characteristics are presented in Table 2-1.

Transfers !
RSU # | Word | Halfword | Byte* | Digit | MARS Function Field Usage
0 X X X X MARSO Addr
1 X X X X MARSO Data
2 X X X X MARS1 Addr
3 X X X X MARS1 Data
4 X X MARS2 Addr
5 X X MARS2 Data
6 X X MARS3 Addr
7 X X MARS3 Data
8 X X MARS4 Addr Operand
9 X X X MARS4 Data Fetch
10 X X MARSS Addr Operand
1 X X X MARSS5 Data Fetch
12 X X MARS6 Addr | Operand
13 X X X MARS6 Data Store
14 X X MARS7 Addr | Virtual Control
15 X X X MARS7 Data Registers

*Byte transfers on RSU 9, 11, 13, and 15 are during field operations only

GIMTE2320

Table 2-1 RSU Characteristics

2-11

SYSTEM ARCHITECTURE

Microinstruction Set

In general, the 16-bit CPC microinstructions store operands in the
RSU, perform operations on the operands, and place the result back
into the RSU. Each microinstruction consists of an 8-bit opcode and
either two 4-bit RSU register pointers, an 8-bit control code, or an
8-bit literal. Some microinstructions require an additional 16-bit
literal.

The simplicity of the CPC lets most instruction execution follow
the same pattern: (1) read one or two registers, (2) perform an opera-
tion with the contents, and (3) store the result in a register. This
results in a significant reduction in decision making, and allows
faster program execution.

The general categories of microinstructions in the CPC instruc-
tion set are: Memory Transfer, Logical, Arithmetic, Jump, and Spe-
cial. The microinstructions, depending on their type, operate with
4-bit nibbles (digits), 8-bit bytes, 16-bit halfwords, 32-bit words, and
fields of bytes, where a field consists of one to (64K—1) bytes.

The memory instructions include various combinations of real
and virtual memory fetch and memory store operations with literal
or register addresses. The instructions allow memory store opera-
tions of words, halfwords, or individual bytes by using the Byte
Write Enable for each of the four bytes in a word.

The transfer instructions include byte, half word, word, and field
(string) operations. A group of logical and arithmetic instructions
are also included. During field operations the Tally Register inside
the CPC keeps track of the remaining bytes in the field. The Tally
Register Decrements to zero when all of the field bytes have been
transferred.

The logical instructions perform the Boolean operations: OR,
AND, and EXCLUSIVE OR on bytes, halfwords, words, and fields.

The arithmetic instructions include add, subtract, and shift,
for various data types. They can operate with packed and unpacked
decimal on bytes and fields, and in binary on bytes, halfwords, words,
and fields.

The special instructions include setup commands, special load
commands, and instructions for setting, resetting, and restoring flag
bits.

The jump instructions can be either delayed, skip, or immediate
operations. The delayed jumps allow the next two instructions to be
executed before the jump. The skips jump the next two instructions
if the conditions are met. The delayed and immediate jumps can
be conditional or unconditional to direct, register, or relative ad-
dresses. There are also conditional returns to add program flexibility.

An immediate program branch (e.g., immediate jump) voids the

2-12

SYSTEM ARCHITECTURE

CPC 3-stage pipeline. The delayed jump increases efficiency by allow-
ing the next two instructions already loaded in the pipeline to exe-
cute. The efficient programmer is able to maximize performance
by using delayed jump and return instructions.

The memory fetch sequence is supported by an implementation
which allows either performance optimization or coding simplifica-
tion. A fetch microinstruction is required to initiate the memory
fetch operation, and a RCV instruction to load the fetched data into
a destination RSU. The efficient programmer is able to analyze each
fetch sequence which requires more than two processor cycles to
complete and code it uniquely (e.g., F, TW, RCV). The instructions
between the FETCH and RCV must not reference the PM Bus or,
of course, the data being fetched. The code conscious programmer
merely develops a standard macro (FETCH-RCV) and lets the CPC
automatically compensate for the actual number of cycles required,
determined by the assertion of DIE.

2-13

PROCESSOR-MEMORY BUS

CHAPTER IlI
PROCESSOR-MEMORY BUS

CONTENTS
General. e 3-2
LogicConventions. 3-2
Common PM Bus Signals. 3-2
External Register Messages.o..... 3-3
External Register Transfer Signal....................... 3-3
External Register Message Transfers. 3-4
Real Memory Messages.ttt e 3-4
Real Memory Transfer Signals. 3-4
Real Memory Message Transfers. 3-6
Virtual Memory and Memory Refresh Messages. 3-9
Processor PM Bus Transfers. 3-9
Processor Signals Related to PM Bus Transfers............ 3-9
Processor PM Bus Access.o oviv it 311
CPC Accesstothe PM Bus. 311
Special Request PM Bus Access. 311
Double Error Detection. 3-12
ATC Intervention During Message Transfers. 3-12
Virtual Memory Operations. 3-12
Real Memory Operations.cooviiurrnnnn.. 312
ATC Refresh Operations.0oviinnn... 3-14
PMBusTiming.t 3-14
Virtual Message Transfer Timing. 3-14
Virtual Memory Fetch Timing. 3-15
Virtual Memory Full Store Timing. 3-17
Virtual Memory Partial Store Timing. 3-17
Real Memory Transfer Timing. 3-20
CPC Real Memory Fetch Timing. 3-20
CPC Real Memory Full Store Timing. 3-22
CPC Real Memory Partial Store Timing. 3-22
External Register (ERU) Timing. 3-25
Processor Interrupt Message. 3-26
Memory Interface. 3-26

* Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in U.S.A. i

PROCESSOR-MEMORY BUS

CHAPTER Il
PROCESSOR-MEMORY BUS

The Processor-Memory Bus (PM Bus) is the communication path
between the NCR/32 Family devices and main memory that is used
to transfer addresses, data, and control information. This chapter
describes the PM Bus operation including PM Bus message for-
mats, real memory transfers, virtual memory transfers, and external
register transfers.

The PM Bus is a 32-bit bidirectional multiplexed bus which
utilizes two non-overlapping clocks for each bus cycle. Figure 3-1
shows a typical NCR/32 system configuration including the PM
Bus control signals.

1/0 Interfaces

EREP MAE
Requests Sele:f_ti K/I_D-E-E
REQ SEL
N K A
 / I
N
Bav | Bus M
Control E ¢ Main
Logic M al
CPC vy 9 C (o] ? Memory
EREP MDEE | R A
<« Y C
MAE MAE E
DIE DIE
Y REQO | EREP 3
4 REQS' Y PR p—| ™
A 4 MDEE 'MAE‘ DIE
PMWTO-3
PVT 7 PMCHK7 -1
'qup ATC :/
INT TOD Oscillator

Note: Common signals not shown in diagram.
1: PM Bus 32-01
2: Clocks (X0, X1)
3: Reset (PMRST)
GIM304 1

Figure 3-1 Typical PM Bus Configuration

“Copyright 1984, NCR Corporation
Dayton, Ohio 3-1
All Rights Reserved Printed in U.S.A.

PROCESSOR-MEMORY BUS

GENERAL
The PM Bus and its associated control lines consist of a number of
uni-directional and bi-directional TTL compatible lines. These lines
are available to all devices.

There are three general categories of messages transferred over

the PM Bus:

—External Register Unit (ERU) messages
—Real Memory messages
—Virtual Memory messages

The PM Bus operates in two stages. During the first stage a
device is selected (granted access to the bus), and during the second
stage a transfer takes place. All active devices (devices which can
initiate a message transfer) gain access to the bus during the cycle
preceding the message transfer by asserting REQ. Each device in
the NCR/32 Family, except the CPC, has a Request/Select signal
pair associated with it. The ATC, though, does not monitor its select
signal since, as the highest priority requestor, it can “take” the PM
Bus. The highest priority requestor is granted a one cycle access to
the PM Bus by the bus priority logic and, if necessary conditions
are met, transfers a message in the subsequent bus cycle. The Bus
priority control logic must be implemented external to the NCR/32
Family devices. The CPC does not have a Request/Select signal
pair, but rather is granted access to the PM Bus, via BAV, in the
absence of any bus requests.

Logic Conventions
The PM Bus is a negative logic bus. Thus a binary (logical) 1 is rep-
resented by a low voltage (0 volts) on the bus, and a binary (logical) 0
by a high voltage (5 volts) on the bus. If a barred term (e.g., EREP)
is described as being active, activated, or asserted, it is at a low level
(0 volts) on the PM Bus. If a barred term is described as being inac-
tive, negated, or not asserted, it is at a high level (5 volts) on the Bus.
If a term is not barred (e.g., BAV) it is active, activated, or as-
serted at a high level (5 volts) on the PM Bus. Likewise, it is inactive
or not asserted at a low level (0 volts) on the Bus.

Common PM Bus Signals

The signals defined below are available to all PM Bus devices. Those
signals relating to a particular message transfer, and signal timing
relationships, are described in later sections. All barred signals are
active low.

PROCESSOR-MEMORY BUS

CLOCK (X0 AND X1)
These clock lines are driven by the system clock. CLOCK 0
(X0) is the first phase clock of the bus cycle, and CLOCK 1 (X1)
is the second. All devices send and receive messages on the bus
synchronous to these clocks.

PMRST (PM BUS RESET)
This signal, when active, holds all appropriate logic in a reset
state. PMRST is usually driven by the system power control
logic.

PMBUS32—PMBUSO01 (PROCESSOR-MEMORY BUS)
These bidirectional lines are used to transfer up to 32 bits of
information from one device on the PM Bus to another. Address
information (a memory address or an ERU address) is trans-
ferred from a device that has been granted the PM Bus to a
destination device during clock X0. Data information is trans-
ferred between the devices during X1. During memory operations
between the memory interface and the ATC, data may also be
transferred during XO.

REQ0O—REQn (REQUEST)
These signals are used for gaining access to the PM Bus through
the bus priority logic and are not needed in a system utilizing
only the CPC and ATC. They are reserved for use when 1/0
devices are added to the NCR/32 system.

SEL0—SELn (SELECTS)
These signals are used for gaining access to the PM Bus through
the bus priority logic and are not needed in a system utilizing
only the CPC and ATC. They are reserved for use when 1/0
devices are added to the NCR/32 system. '

NOTE: The Requests and Selects are generalized to REQX and
SELX when referenced.

EXTERNAL REGISTER MESSAGES

There are up to 96 external register locations available to the CPC
(ERU32-ERU127). There are an additional 32 registers (IRU0-IRU31)
which occupy the first 32 address locations. These registers, however,
are internal to the CPC and therefore are not accessible through the
PM Bus. The ERU register locations are implemented external to
the CPC and are accessed over the PM Bus. See Chapter IV for the
specific allocation of these register locations.

External Register Transfer Signal
The following signal is used by those PM Bus devices which receive
or transmit External Register messages.

3-3

PROCESSOR-MEMORY BUS

EREP (EXTERNAL REGISTER ENABLE/PERMIT)
This signal is generated by the CPC to enable the transfer of an
External Register message over the PM Bus. All PM Bus de-
vices that are capable of receiving External Register messages
monitor the PM Bus during X0, when EREP is asserted.

This signal has a second use when I/0 devices are connected
to the PM Bus. The EREP signal is monitored during clock
X1 by I/0 devices which are attempting to transfer an External
Register message to the Bus Interrupt Register (BIN) in the
ATC (I/0 devices send status information to the CPC via the
BIN register in the ATC). If EREP is set active (low) by the
ATC during X1, indicating that the BIN is full, then External
Register message transfers are not permitted to this register
until EREP is inactive (high) during a subsequent XI1.

External Register Message Transfers

An External Register transfer is a three-stage operation consist-
ing of (1) bus arbitration leading to device selection, (2) register
selection during X0, and (3) data transfer during X1. The CPC pre-
paring to initiate an External Register message transfer formats
the information as indicated in Figure 3-2. The 7-bit External Register
number field is set to specify the proper destination External
Register. The Direction of Transfer bit (PM Bus bit 8) specifies
whether the destination External Register is to receive or transmit
data during clock X1. If the bit is true (PMBUSO8 active, low)
the destination External Register receives data from the selected
device; if the bit is false (PMBUSO08 inactive, high) the destination
External Register sends data to the selected device. As an example,
if the CPC sends a TOE (Transfer Out External) command to ad-
dress Hex 2C (the Time-of-Day register in the ATC), the first 7
address lines will be Hex 2C and the 8th bit will be low (logical 1)
indicating that data will be transferred from the CPC to the TOD
Register.

REAL MEMORY MESSAGES

All PM Bus devices accessing main memory initiate Real Memory
Fetch, Real Memory Full Store, and Real Memory Partial Store
operations by transferring Real Memory messages as described in
this section. The Refresh message is described in the Memory Inter-
face section of this chapter.

Real Memory Transfer Signals
The following signals are used by those PM Bus devices which trans-
fer Real Memory messages.

3-4

PROCESSOR-MEMORY BUS

(a) PM Bus at clock X0 (ERU address to destination device)

Byte O Byte 1 Byte 2 Byte 3
Bit | 32 25 | 24 17 {16 918
8 8 8 1 7
t————AII Zeros (High on the Bus) ————-—J ’
Direction of Transfer
External Register Number
(b) PM Bus at clock X1
Byte O Byte 1 Byte 2 Byte 3
Bit | 32 25| 24 17116 918 1
8 8 8 8
T Data to be sent to/from the selected T
device. Format is a function of the
particular external register.
External Register Messages use the PM Bus during both Clock X0 and X1
GIM3024A

Figure 3-2 External Register Message Format

MAE (Memory Address Enable)
This signal is generated by the selected device (the active device
that has been granted the PM Bus during the previous cycle via
REQX and SELX) during X0 to enable the transfer of a Real
Memory message over the PM Bus. The memory interface and
the ATC monitor the PM Bus during X0 for MAE active (low).
MDEE (Memory Data Enable/Error)
This signal must be asserted by the memory interface during
the X0 clock phase of PM Bus data transfer cycles only in sys-
tems utilizing the System Interface Controller (SIC), an NCR/32
Family device currently available. MDEE need not be asserted
by the memory interface in systems utilizing only the CPC and
ATC. MDEE assertion by the memory interface is therefore not
shown in the timing diagrams presented in this chapter.
This signal is also asserted during X1 by the ATC when an
uncorrectable (double bit) memory error is detected during a

3-5

PROCESSOR-MEMORY BUS

fetch operation. Although this signal is generated during X1 by
the ATC, it is only used at this time by I/0O devices and can be
ignored when the CPC and ATC are the only devices on the PM
Bus. MDEE is monitored by the PM Bus I/0 device that initiat-
ed the Real Memory Fetch message. MDEE, if active during the
X1 that the data is available, invalidates the data transferred.
This signal is also generated during X1 by the ATC whenever an
uncorrectable (double bit) memory error is detected during a
Partial Store or a Refresh operation. MDEE is monitored by the
memory interface during X1, and if active, the subsequent Full
Word Store which normally occurs during the Partial or Re-
fresh operation is aborted. If the CPC originated the transfer,
the ATC informs the CPC of the double bit error through a trap.

Real memory messages potentially use the PM Bus during both
clock X0 and X1. The formats differ for Real Fetch, Real Full Store,
and Real Partial Store operations. Figures 3-3, 3-4, and 3-5 show the
format for these message transfers.

Real Memory Message Transfers

A Real Memory operation consists of a sequence of PM Bus trans-
fers. That sequence involves a device (such as the CPC or ATC)
initiating the Real Memory message transfer, the ATC maintaining
the integrity of the data, and the memory interface sourcing/receiving
the data.

A Real Memory message transfer is in effect a two-bus cycle opera-
tion: the first cycle for selection, and the second cycle for message
transfer. A PM Bus device preparing to transfer a Real Message for-
mats the information as indicated in Figures 3-3, 3-4, and 3-5. The four
Byte Write Enables (PMBUS28-25) are appropriately set to indicate
into which bytes in the addressed memory location the data will be
written (e.g., PMBUS28 active enables a write by byte 0).

Having been granted bus access, the selected device gates the
appropriate X0 message onto the PM Bus and activates the MAE
line during X0. During the following X1 of Memory Full Store or
Memory Partial Store operations, the data information to be stored
into memory is transferred onto the PM Bus by the selected device.

During Memory Fetch operations, the selected device does not
use the PM Bus during the X1 following the Memory Fetch message
transfer. The memory interface should assert DIE during the first
X1 clock during which memory is ready, and hold DIE asserted
through the following X0 clock. The memory interface may be re-
quired by certain I/0 devices on the PM Bus to assert MDEE during
the first X0 clock during which memory is ready. The ATC latches

3-6

PROCESSOR-MEMORY BUS

(a) PM Bus at clock X0 (word address to memory)
Byte O Byte 1 Byte 2 Byte 3
Bit |32 31 25 | 24 17 | 16 918 32 1

1 7 8 8 6 2

? l 22 Bit Memory |

Word Address

Don't Cares

Zeros (High Level)
on PM Bus)

Scratch Pad Access Bit

(b) PM Bus at Clock X1

Not Used

Note: The device issuing the Memory Fetch message cannot gate information
onto the PM Bus during clock X1.

GIM3025A
Figure 3-3 Real Memory Fetch Message Format
(a) PM Bus at Clock X0
Byte O Byte 1 Byte 2 Byte 3
Bit |32 312928 25|24 17 | 16 918 321
1 3 4 8 8 6 2
' t— 22-Bit Memory Word Address —J
Ones (Low on the PM Bus) Don’t Cares
Zeros (High on PM Bus)
Scratch Pad Access Bit
(b) PM Bus at Clock X1
Byte O Byte 1 Byte 2 Byte 3
Bit | 32 25|24 17116 918 1
8 8 8 8
? Data word to be written into the j
memory location specified by the

word address in the clock X0
information.

Figure 3-4 Real Memory Full Store Message Format

3-7

PROCESSOR-MEMORY BUS

(a) PM Bus at Clock X0

Byte O Byte 1 Byte 2 Byte 3
Bit| 32 31 2928 25|24 17 |16 918 321
1 J 3] 4 8 8 6 I 2
4 N
22-Bit Memory Word Address—?
Don't Cares

Bit 25 = Byte 3 Write Enable
Bit 26 = Byte 2 Write Enable
Bit 27 = Byte 1 Write Enable
Bit 28 = Byte 0 Write Enable

Zeros (High on
the PM Bus)

(b) PM Bus at Clock X1

Byte O
32 25

Byte 1 Byte 2

16 9

Byte 3
1

Bit 8

‘ Data bytes to be written into the memory locations specified by the l
word address in the clock XO information. Only those bytes with a

corresponding write enable on will be written into memory.

Notes: 1. When all Byte Write Enables (PMBUS28-25) are on (active low)
the memory operation by definition becomes a Memory Full Store.

2. Bitsin the bytes that are not to be written into memory during Partial
Stores may be either ones or zeroes.

GIM3027A

Figure 3-5 Real Memory Partial Store (Message Format)

the data during this X0 clock period and checks it for errors. Then,
during the following X1, the device reads the information that is on
the PM Bus, which at this time is checked/corrected memory data.
If an uncorrectable memory error was detected by the ATC during
the check/correction phase, then the data read is invalid. The Memory
Data Enable/Error (MDEE) line is then asserted by the ATC during
X1 to indicate the invalidity of the data to the receiving device.
The function of this signal during X1 is reserved for use by I/0
devices, such as the SIC. In the case of the CPC initiating the
transfer, the ATC asserts TRAP for the CPC. The MDEE signal
is still generated by the ATC but not used by the CPC.

During Memory Fetch and Memory Full Store operations, the
device which initiates the message transfer sets bit 32 of the X0
message to the appropriate logic level. If the memory access is
referencing the Scratch Pad portion of the main memory via an “all
ones” address, then PMBUSS?2 is set active (low). Otherwise, it is

3-8

PROCESSOR-MEMORY BUS
set inactive (high).

VIRTUAL MEMORY AND MEMORY REFRESH MESSAGES
Figures 3-6 and 3-7 show the Virtual Memory message and Memory
Refresh message formats. Virtual Memory accesses are essentially
Real Memory accesses preceeded by an address translation cycle;
Memory Refresh accesses are essentially Real Memory accesses dis-
tinguished by the assertion of PMBUS29 in the message (see PM
BUS TIMING and MEMORY INTERFACE).

PROCESSOR PM BUS TRANSFERS

The Processor system referred to in this section includes the CPC,
ATC, and a memory interface. The transfers described assume that
the ATC is used.

The NCR/32-000 processor is capable of performing External
Register transfers, Real Memory transfers and Virtual Memory
transfers. The CPC initiates all these message transfers through a
mechanism different from that of other active PM Bus devices. That
mechanism is described in this section. The ATC initiates Real
Memory transfers and Memory Refresh transfers through the stan-
dard Request/Select protocol.

Processor Signals Related to PM Bus Transfers

The following signals are used by the devices in the Processor sub-
system to perform transfers via the PM Bus, including Virtual
Memory transfers. All barred signals are active low.

BAV (BUS AVAILABLE)
This signal is sourced by the Bus Control logic (circuitry exter-
nal to the NCR/32 Family devices) to the CPC to indicate
whether the PM Bus will be available for the CPC in the next
bus cycle. If there are no Requests present at the Bus Control
logic (all REQX high), then BAV will be high and the bus will
be available.

PVT (PROCESSOR VIRTUAL TRANSFER)
This signal is generated by the CPC during clock X0 to enable
the transfer of a Virtual Memory message to the ATC over the
PM Bus. The ATC begins a Virtual Memory operation when
PVT becomes active. The signal is also generated by the CPC
during X1 of all CPC memory transfers via the PM Bus to iden-
tify the CPC as being the sender of the message.

PMWTO0-3 (PROCESSOR-MEMORY WRITE TAGS)
These lines are asserted by the CPC during X0 when executing
Virtual Memory Store transfers to the ATC to indicate which

3-9

PRO

CESSOR-MEMORY BUS

bytes of the data word (following on the PM Bus during X1)
are to be written into memory. These lines are functionally
equivalent to the Byte Write Enables (PMBUS28-25) used during
Real Message transfers, but are unique lines apart from the 32
PM Bus lines. PMWTO enables byte 0, etc.

PMCHK?7-1 (PROCESSOR-MEMORY CHECK BITS)

DIE

These lines transfer the Check Bits used by the error check/
correction logic in the ATC to maintain the integrity of the
memory data which is transferred over the PM Bus. During Fetch
and Partial Store operations, the Check Bits are sourced by the
memory interface to the ATC during the X0 that fetched data
is on the PM Bus. During Full Store operations, the Check Bits
are sourced by the ATC to the memory interface during the X0
that the stored data is on the PM Bus.

(DATA INPUT ENABLE)

This signal is asserted by the memory interface for use by the
ATC and CPC during the X1 time immediately preceding the X0
during which data is asserted onto the PM Bus by the memory
interface during Fetch operations. DIE acts as an early indi-
cator that the data is arriving for operations, and that the ATC
must use it during the next cycle.

Figures 3-6 and 3-7 show ‘the Virtual Memory message and

Memory Refresh message formats.

(a)

Bit| 32

PM Bus During Clock XO.

Byte O Byte 1 Byte 2

25|24 17

(b)

30-bit Virtual Address

|

Data Formats during X1 are identical to Data Formats during X0. Data transferred

00 = Virtual Fetch
01 = Virtual Store
10 = Virtual Fetch for Linkage

11 = Virtual Fetch for Execution

Logic
Levels

PM Bus During Clock X1.

during X1, however, is received only by the ATC.

3-10

GIM3028A

Figure 3-6 Virtual Memory Message Format (PVT Active)

Bit

PROCESSOR-MEMORY BUS

(a) PM Bus at Clock X0

Byte O Byte 1 Byte 2 Byte 3
32 29 25 17|16 918 32 1
3 1 4 8 8 6 2
t—-—— 22-Bit Memory Word Address——J
Zeros
Ones (Low on Bus) (High on Bus)

Refresh (Low on Bus)

Zeros (High on Bus)

(b) PM Bus at Clock X1
Not Used

Note: The device (ATC) issuing the Refresh message must not gate
information onto the PM Bus during X1.

GIM3029A

Figure 3-7 Memory Refresh Message Format (MAE Active)

Processor PM Bus Access
The CPC mechanism for gaining PM Bus access and the ATC asser-
tion of the Special Request signal are detailed in this section.

CPC Access to the PM Bus—The CPC is granted access to the
PM Bus, under normal circumstances, only if there are no requests
pending for the bus. All active devices generating a request do so at
the beginning of X0. If no requests are present at the Bus Control
logic at this time, the BAV signal will be seen active (high) by the
CPC. During X1 the CPC will determine from BAV whether the PM
Bus is available for use in the next cycle.

Under certain conditions the CPC may require use of the PM
Bus unconditionally during a given cycle. In this case the ATC
asserts the Special Request signal (REQS) for the Bus Control logic,
overriding any requests that might be present from other devices.
The Bus Control logic then activates BAV for the CPC to enable the
next cycle transfer.

Special Request PM Bus Access—The ATC generates the Special
Request (REQS) signal to the Bus Control whenever the CPC re-

3-11

PROCESSOR-MEMORY BUS

quires immediate access to the PM Bus. As long as REQS remains
active the requests from other devices will be ignored by the Bus
Control, and no selects will be issued.

Certain conditions, such as uncorrectable memory errors de-
tected during CPC-initiated Fetches, require CPC intervention prior
to allowing other transfers on the PM Bus. In these cases the ATC
asserts REQS.

DOUBLE ERROR DETECTION
The ATC performs error check/correction during memory operations.
When the ATC detects a double-bit error in the fetched data during a
Real Memory Fetch or a Partial Store operation, it asserts the Memory
Data Enable/Error signal (MDEE) during X1. An asserted MDEE
during X1 is reserved for use by the SIC. The ATC reports uncorrect-
able errors to the CPC through a trap.

However, MDEE should be used by the memory interface dur-
ing partial store and refresh operations to abort writes into memory
when a double-bit error is detected by the ATC.

ATC INTERVENTION DURING MESSAGE TRANSFERS

The ATC, when enabled, intervenes in all memory operations. During
virtual memory operations the ATC receives a Virtual memory mes-
sage from the CPC, then sends a Real Memory message to the memory
interface. During real memory operations the ATC receives a Real
Memory message from a device, then sends data to the memory inter-
face (if a store) or returns data to the initiating device (if a fetch).

Virtual Memory Operations

The ATC performs the required address translation during virtual
memory operations. The ATC translates the virtual address in the
Virtual memory message into a real memory address, and sends a Real
Memory message to the memory interface. The translation process
is performed during the bus cycle that the Virtual Memory message is
transferred over the PM Bus. Virtual message translation is shown
in Figure 3-8.

Real Memory Operations

The ATC performs the check bit verification/generation, when en-
abled, during all (real) memory operations. During Fetch operations
the ATC receives the accessed word from the memory interface and
verifies the integrity of the data by using Check Bits. The ATC cor-
rects single bit errors, and asserts MDEE during X1 if it detects a
double bit error. If the ATC detects a double bit error during a CPC-
initiated transfer, it will also force a CPC trap. In all cases, the ATC

3-12

Bit | 32

Byte O
25]

24

Byte 1

17

PROCESSOR-MEMORY BUS

Byte 2

Byte 3
321

Byte Write Tags
(PMWT3-0)

Optional

6 2

LIMEIE

*

A4

Byte Write Enables

Address
Translation
(ATC)

24/32 Bit Virtual Memory Address

00 = Virtual Fetch
01 = Virtual Store
10 = Virtual Fetch w/Linkage —
11 = Virtual Fetch for Exec. ——

22 Bit Real Memory
Word Address
Refresh Enable
from ATC
Zeros~—|
3 |1 4 8 8 6 2
Bit |32 29 25| 24 17116 321
Byte O Byte 1 Byte 2 Byte 3.
T Memory Message Format T
GIM3031A
Figure 3-8 Virtual Address Translation (Virtual Memory Message

conversion to real Memory Message Format)

passes data to the initiating device. During Full Store operations, the
ATC receives the data word to be stored from the initiating device, and
then generates the appropriate Check Bits for that data pattern. The
ATC then transfers the data and Check Bits to the memory interface.

During Partial Store operations the ATC receives the data word
containing the bytes to be stored from the initiating device. The ATC
then receives from the memory interface the current contents of the
memory location where the data bytes aré to be stored. This data word
is checked and single bit errors corrected. The data bytes that are to
be written into memory are then substituted into the checked/corrected

3-13

PROCESSOR-MEMORY BUS

data word, and a new set of Check Bits are generated by the ATC for
the resulting word. A double-bit error detected during the check
cycle will force MDEE active during X1, inhibiting the normal write
into memory by the memory interface. A subsequent Fetch of the
same memory word will again result in a double-bit error.

ATC Refresh Operations

The TOD (Time-of-Day) Counter in the ATC is used to generate the
timing and the memory addresses used for refresh operations. The
refresh message is transferred to the memory interface at intervals
determined by the refresh rate of the Dynamic RAM used in the
memory array. The refresh message enables the memory interface
to refresh all memory cells within one row address for all banks of
memory, and to place the data word specified by the entire refresh
address onto the PM Bus. By this scheme the memory is constantly
refreshed and periodically verified at every memory location.

The ATC receives and checks the memory word, single-bit er-
rors are corrected and reported with the assertion of MEMERR,
double-bit errors reported. The Check Bits are regenerated, and if a
double error was detected, MDEE is activated during X1. The ATC
then transfers the data and Check Bits to the memory interface
where a full word is stored (unless MDEE was activated due to a
multiple bit error).

The timing of a Refresh operation is identical to that of a Real
Partial Store. However, the Refresh message has all Byte Write En-
ables asserted. The Refresh Enable bit in the Refresh message (Re-
fresh Enable = PMBUS29, active) forces the memory interface to per-
form a Fetch followed by a Full Store as is required for a Partial
Store. Table 3-1 presents a summary of message control signals.

PM BUS TIMING

This section shows and explains PM Bus timing for each type of PM Bus
message transfer. The ATC and CPC technical information publications
(data sheets) should be referred to for precise timing parameters.

Virtual Message Transfer Timing

All Virtual Memory operations are 1 cycle longer than their real mem-
ory counterparts. The additional cycle is required for the translation
of the virtual address into a real memory address. Virtual Fetches are
nominally 3 cycles as are virtual full stores. Virtual Partial Stores are
4 cycles. All memory operations, virtual or real, may require additional
cycles when slow memory devices are used. Table 3-2 summarizes the
number of bus cycles required to complete each of the virtual memory
operations.

3-14

PROCESSOR-MEMORY BUS

Controls (Unprimed) Source Destination
_ | Byte Pm Bus Operation
MAE| EREP| PVT| Enable | 02, O1 CPC|ATC|{MEM|CPC |ATC
X All Off 0, O | Real Memory X X X X
Fetch*
X All On 0, O | Real Memory X X X X
Word Store
X 1,2, 0, O | Real Memory X X X
or 3 Part. Store
X | All Off 0, O | Trans. Virt. X X
w/Read Check
X 11,23, 0, 1 | Trans. Virt. X X
or 4 On w/Write Check
X | All Off 1, 0 | Trans. Virt. X X
w/Link Check
X | All Off 1, 1 | Trans. Virt. X X
w/Exec Check
X Not Used > Trans. Out/In X X
to Ext. Reg.
X Al On 0, O | Refresh X X

*Data is returned to source device, and to ATC where Check/Correction is
performed

**PMBUSO08 active indicates a transfer out from the source. PMBUSO08 inactive
indicates a transfer in to the source. PM Bus bits 02 and 01 are used for the
ERU address

GIMTE3030A

Table 3-1 Summary of Message Controls

Virtual Memory Fetch Timing—Figure 3-9 shows the timing
relationships of the control signals used during a Virtual Memory
Fetch operation.

The CPC must first be granted access to the PM Bus (BAV as-
serted). The CPC initiates the Virtual Memory Fetch during X0 by as-
serting PVT. At this time the CPC asserts the virtual address on the
PM Bus, and forces all PMWTO0-3 inactive to define the operation
as a Fetch.

If the address translation is successful, then the ATC asserts the
real memory address on the PM Bus (PMBUS24-03) during the follow-
ing X0 and asserts MAE, forcing the memory interface to perform
a fetch operation.

If the address translation is unsuccessful, the ATC does not
assert MAE and instead interrupts the CPC. If the ATC cannot cor-
rect a data error in the fetched data, the ATC will trap the CPC.

3-15

PROCESSOR-MEMORY BUS

X0 1 I 1 [1 1
X1 1 1 [1 1 I

pmBUS 32.01 LYAJ LA it [S
pPMCHK1-7 X XXX X XX XXX XX XX CM IO XK K

A E KX

h)
<
=
=
@
w
r
jw
L
r
lw
L
r-
lw
L
r
|w
L
r
|w
(.

7 ™
- kﬂ/ Qﬂ‘ ‘4‘7J/

REQO

- wal

MDEE L5]

INT L4_ 7 (_4__7
TRAP _5 _,7
MEMERR L8

EREP

VA = Virtual Address from CPC

A = Real Address from ATC

CM = Check Bits from Memory Interface

DU = Data unchecked from Memory Interface
DC = Data checked from ATC

. Asserted by CPC to initiate virtual transfer.

. Asserted by CPC to indicate CPC-initiated memory transfer.

. Asserted/read by CPC for BKPTWE, BKPTE, VPBSY, and BCT functions.

. If address translation is unsuccessful, ATC does not assert MAE, aborting the
memory operation. ATC asserts INT if enabled.

. ATC asserts MDEE and TRAP if it detects an uncorrectable error.

. ATC asserts MEMERR if it detects either a correctable (single bit) or uncorrectable
(multiple bit) data error.

7. ATC negates INT and TRAP during X1.

A ON =

oo

GIM3042

Figure 3-9 Virtual Memory Fetch Timing

PROCESSOR-MEMORY BUS

MDEE is asserted by the memory interface for use by I/O
devices during X0 to indicate that a memory operation is about to
be completed (see MDEE description, page 3-5).

MDEE is asserted by the ATC during X1 if it detects an uncor-
rectable data error, forcing an abort of write into memory. MEMERR
is asserted by the ATC during X1 if it detects either a correctable
(single bit) or an uncorrectable (multiple bit) data error. The states
of MDEE and MEMERR at this time allow the system to determine
whether (1) there was no data error, (2) there was a corrected data
error, or (3) there was an uncorrectable data error.

Virtual Memory Full Store Timing—The diagram in Figure 3-10
shows the timing relationships of the control signals used during
Virtual Full Store transfers on the PM Bus. The timing diagram
assumes that the CPC has been granted access to the bus and is in-
itiating the transfer. The ATC performs an address translation on the
virtual address received in the message and issues a Real Memory
message. Table 3-2 summarizes the number of bus cycles required
to complete each of the virtual memory operations.

The CPC transfers a 30-bit virtual address on to PMBUS32-03,
asserts the write enable signals (PMWTO0-3), and asserts the Proc-
essor Virtual Transfer signal (PVT) during X0. The Write Enable sig-
nals are asserted seperately on PMWTO0-3, since the address is ex-
panded to 30 bits. After address translation to a 22-bit word address,
the Write Enable Signal functions are transferred to PMBUS28-25.

If the address translation is successful, then the ATC asserts MAE
the following X0, allowing the memory interface to perform the store
operation. If the translation is unsuccessful, the ATC generates an
interrupt, does not assert MAE, and releases the bus (deactivates
REQO).

During slow memory operations the memory interface does not
assert DIE until one cycle (or more) later than usual. This suspends
the ATC in the proper state to either remain transmitting data (if a
store), or to keep waiting for data (if a fetch).

Virtual Memory Partial Store Timing—Figure 3-11 shows the
timing relationships of the control signals used during a Virtual
Memory Partial Store operation.

The CPC first gets access to the PM Bus, then initiates the
virtual operation by asserting PVT. At this time (X0) the CPC
asserts the virtual address on the PM Bus, and asserts one, two,
or three of the write enables (PWMTO0-3) to define the operation
as a partial store. The CPC asserts the data to be written on the
PM Bus the following X1.

3-17

PROCESSOR-MEMORY BUS

X0 L L l'_l 1
X1 ML 1 [1 [1 1
mmBUS 3201 LAS L2 LA 2) —

PMCHK1-7 XX XXX X X X XX X X XD

PVT Iy
pmwtoaL 3y (LA L3)

BAV _I_\> /r__S_—_l{ —————

= T
MAE .
REQO \‘l/ \f 57

— 1 T 1 T
INT L_S5_46,_585_,6¢6 5 |6

QXXX XX

EREP
CATC = Check Bits from ATC

VA = Virtual Address from CPC

A = Real Address from ATC
D = Data from CPC

D! = Data from ATC

1. Asserted by CPC to initiate virtual transfer.
2. Asserted by CPC to indicate CPC-initiated memory transfer.
3. Asserted/read by CPC for BKPTWE, BKPTE, VPBSY, and BCT functions.
4. All PMWT strobes asserted.
5. If address translation is unsuccessful, ATC does not assert MAE, aborting the
memory operation. ATC asserts INT if enabled.
6. ATC negates INT during X1.
Figure 3-10 Virtual Memory Full Store Timing
Virtual Real Total
Transfer Transfer c ola
Virtual Operation (Cycles) (Cycles) ycles
Virtual Memory Fetch 1 2 3
Virtual Memory Full Store 1 2 3
Virtual Memory Part. Store 1 3 4
NOTE: The cycle counts are minimum, assuming no memory wait states.
GIMTE3032A

Table 3-2

3-18

Virtual Memory Operation Cycle Counts

PROCESSOR-MEMORY BUS

X0 1 [1 1 1

X1 1 1 1 1 1
mBusazor LA Lo LAl LY D' 1
DO XX XXX X XX XK CM XX
Ao e

PMCHK1-7

: —

MDEE L6

-_— T 1 T 1 1
INT L_5__18 5 8, _25

MEMERR Tl

EREP
VA = Virtual Address from CPC D = Data from CPC
A = Real Address from ATC DU = Data Unchecked from Memory Interface
CM = Check Bits from Memory Interface D' = Data from ATC
CATC = Check Bits from ATC

. Asserted by CPC to initiate virtual transfer.

. Asserted by CPC to indicate CPC-initiated memory transfer.

. Asserted/read by CPC for BKPTWE, BKPTE, VPBSY, and BCT functions.

. One, two, or three PMWT strobes asserted.

. If address translation is unsuccessful, ATC does not assert MAE, aborting the
memory operation. ATC asserts interrrupt if enabled.

. ATC asserts MDEE if it detects an uncorrectable data error.

. ATC asserts MEMERR if it detects either a correctable (single bit) or
uncorrectable (multiple bit) data error.

8. ATC negates INT during X1.

AN =

~N O

GIM3044
Figure 3-11 Virtual Memory Partial Store Timing

PROCESSOR-MEMORY BUS

The ATC performs a virtual address translation and, if the
translation is successful, asserts MAE the following X0 and asserts
a real (translated) address on the PM Bus. If the translation is un-
successful, the ATC does not assert MAE and instead interrupts
the CPC.

The ATC reads the addressed data word (DU) the following
X0, performs error check/correction on the data word, substitutes
the new byte(s) into the data word, and asserts the new data word
(D) onto the PMBUS the following X1. The ATC, after internal
logic delay, then asserts the data check bits.

The ATC asserts MDEE during X1 if it has detected an uncor-
rectable data error to alert the memory interface to abort the mem-
ory operation, and asserts MEMERR if it has detected any memory
error.

Real Memory Transfer Timing

Figures 3-12, 3-13, and 3-14 show the timing relationship of the con-
trol signals used during Real Memory message transfers on the PM
Bus. The timing diagrams assume that the requesting device has
been granted access to the bus and is initiating the transfer. The
ATC performs a check/correct on all data from the memory inter-
face, and generates check bits for all data stored to memory. An in-
sert is performed during Partial store operations for those bytes to
be written into memory. Table 3-3 summarizes the number of bus
cycles required to complete each of the real memory operations.

CPC Real Memory Fetch Timing—Figure 3-12 shows the timing
for a Real Memory Fetch by the CPC. The 2-cycle timing is the
minimum number of cycles during which a memory fetch can be
performed. An asserted BAV gives the CPC access to the PM Bus.
The 22-bit word address is asserted on PMBUS24-03 by the CPC,
the Write Enable Signals are deactivated by the CPC (PMBUS28-25
are high), and the Memory Address Enable (MAE) is activated
during X0 by the CPC. MAE forces the ATC to secure the bus
through the remainder of the Memory Fetch via the highest priority
request (REQO). The memory interface activates DIE during the X1
preceding the transfer of the memory data to advance the ATC
state sequencer. The memory interface activates MDEE during the
subsequent X0 as an enable for I/O devices. The unchecked data
(DU) on the PM Bus during X0 is checked and a single-bit correction
performed, if required, by the ATC. The checked/corrected data (DC)
is asserted on the bus by the ATC during the following X1 and re-
ceived by the CPC. A multiple-bit error detected by the ATC will
activate MDEE during X1. The ATC state transition forced by DIE

3-20

PROCESSOR-MEMORY BUS

x0 1 1 1
x4 1 1 1
=] ou [oo
TTE SO O OTe EETD 07070 T0TTOI0T02¢

REQO

DIE

I T
MDEE L3_.

— | 1
TRAP __3__1°5

MEMERR L=

EREP
A = Real Address from CPC

DU = Data Unchecked from Memory Interface

DC = Data Checked from ATC
CM = Check Bits from Memory Interface

1. Asserted by CPC to indicate CPC-initiated memory transfer.

2. Asserted/read by CPC for BKPTWE, BKPTE, VPBSY, and BCT functions.

3. ATC asserts MDEE if it detects an uncorrectable data error; asserts TRAP if the
memory cycle was CPC initiated.

4. ATC asserts MEMERR if it detects either a correctable (single bit) or
uncorrectable (multiple bit) data error.

5. ATC negates TRAP during X1.

Figure 3-12 CPC Real Memory Fetch Timing
3-21

PROCESSOR-MEMORY BUS

Read Check/ Insert/
Real Memory Access Correct Gen. Write Total
Operation (Cycles) (Cycles) (Cycles) (Cycle) Cycles
Fetch 1 1 —_ —_ 2
Full Store — —_ 1 1 2
Part. Store 1 1/2 1/2 1 3
Refresh* 1 1/2 1/2 1 3

*Refresh timing is identical to the Partial Store timing. A refresh operation per-
forms a “zero” insert, that is, all fetched bytes are returned to memory.

GIMTE3033A

Table 3-3 Real Memory Operation Cycle Counts

deactivates REQO and releases the PM Bus.

I/O device Real Memory Fetch is similar. However, the I/0
device uses REQX/SELX handshaking to secure the Bus, and PVT
is not asserted.

CPC Real Memory Full Store Timing—Figure 3-13 shows the
timing for a CPC Real Memory Full Store Operation. The 2-cycle
timing is the minimum number of cycles during which a memory
store can be performed. The CPC initiates the store only after the
availability of the bus has been guaranteed (BAV high) during the
previous cycle. The 22-bit word address is asserted onto PMBUS24-03,
the Write Enable Signals are all activated (PMBUS28-25 are low)
and the Memory Address Enable (MAE) is activated during X0. The
data to be written into memory is asserted onto the PMBUS32-01
lines during the following X1. Asserted MAE and the decode of the
Memory Write Enables force the ATC to begin generating a 7-bit
ECC code for the write data, and force the memory interface to begin
the memory cycle. The ATC holds the data on the bus during the
following X0, and transfers the check bits on the PMCHK Bus
(PMCHKT"-1) to the memory interface. The memory interface acti-
vates the DIE during the X1 preceding the transfer of the data
from the ATC.

I/0O device full store is similar. However, the I/O device uses
REQX/SELX handshaking to secure the Bus, and PVT is not
asserted.

CPC Real Memory Partial Store Timing—Figure 3-14 shows the
timing for a CPC Real Memory Partial Store operation. The 3-cycle
timing is the minimum number of cycles during which a Partial
Word Store (less than four bytes) can be performed. The operation is

3-22

PROCESSOR-MEMORY BUS

X0 1 1 1

I e [1 L T 1
— LAt o

[EREF OO OO0 GCTCD 970707070 ¢

T L

BAV _— k>
MAE | /

REQO

DIE

EREP

A = Real Address from CPC D' = Data from ATC

D = Data from CPC CATC = Check Bits from ATC

1. Asserted by CPC to indicate CPC-initiated memory transfer

GIM3046
Figure 3-13 CPC Real Memory Full Store Timing

a Read-Modify-Write function in order to generate the proper ECC
code for the combination of modified and unmodified data bytes in
the memory word. The CPC, having secured the bus, asserts the
22-bit word address onto the bus (PMBUS24-03), activates the
appropriate Write Enable Signals (PMBUS28-25) corresponding to
the bytes to be written, and activates MAE during X0. The data is
asserted onto the bus by the CPC during the following X1. The mem-
ory interface recognizes the Partial Store, transfers the data word at
the addressed location during the next X0, and asserts it (and the
ECC bits) onto the busses. The ATC receives the data and checks and,
if required, corrects the data as during a normal fetch at this time.
During the next X1 the ATC substitutes the bytes to be written into
memory for those bytes which had been fetched from memory and

3-23

PROCESSOR-MEMORY BUS

X0 L L 1

xi 1 1 1 1
messseor LoJ L2 L[] o' |
emcriT-7 K _em XX __cate

VT L]

BAV I;

MAE
REQO
5E | X / I
—_ o
MDEE L
L] L
MEMERR L3
EREP

A = Real Address from CPC
D = Data from CPC
CM = Check Bits from Memory Interface

DU = Data Unchecked from Memory Interface

D1 Data from ATC

CATC = Check Bits from ATC

1. Asserted by CPC to indicate CPC-initiated memory transfer
2. ATC asserts MDEE if it detects an uncorrectable data error
3. ATC asserts MEMERR if it detects either a correctable (single bit) or
uncorrectable (multiple bit) data error
GIM3045

Figure 3-14 CPC Real Memory Partial Store Timing

3-24

PROCESSOR-MEMORY BUS

are to be replaced. The resulting data word has a new ECC pattern
generated for it, and is transferred to the memory interface during
the following XO.

The memory interface activates DIE during the X1 preceding
the data transfer from memory to the ATC, and during the following
X1 to acknowledge that memory is ready for the data from the ATC.

I/0 device Real Memory Partial Store timing is similar. How-
ever, the I/0 device uses REQX/SELX handshaking to secure the
Bus, and PVT is not asserted.

The memory interface recognizes a refresh operation when the
Refresh Enable bit is asserted in the real message (PMBUS29).

The ATC generates a refresh message with the same timing as a
Real Partial Store message. The difference is that after the data
word is read from memory, no byte substitution is made. The entire
word that is read is rewritten back into memory after the ECC code
is checked and any single-bit errors corrected. Each refresh message
both stimulates the memory interface to perform a dynamic RAM
row refresh, and accesses an individual memory word for error
check/correction (scrubbing).

External Register (ERU) Timing—Figure 3-15 shows the timing
for both 1-cycle and 2-cycle ERU operations.

VR SR R A N I N
X1 111 | L1 | J 1 1
2

1

PMBUS32-01 \»N\of
4
BAV 3] \ \ 3

EREP

1 Cycle ERU
A = Address D = Data Transfer

1. PMBUSO7-01 contain the 7-bit ERU address and PMBUSO8 contains the
direction of transfer.

PMBUS pulled-up (pre-charged).

BAV may be low (bus not available) due to other bus activity such as refresh.
Bus is now available.

PN

GIM3038A

Figure 3-15 External Register Message Timing

1-CYCLE ERU REFERENCE: The CPC gains access to the
bus to perform an External Register Unit (ERU) reference only in

3-25

PROCESSOR-MEMORY BUS

the absence of requests from any other devices on the bus (BAV
high). The CPC asserts the 7-bit ERU address onto PMBUS07-01,
activates PMBUSO08 (low) for a transfer out from the CPC or leaves
inactive PMBUSO08 (high) for a transfer into the CPC, and activates
the ERU enable signal (EREP) during X0. If a Transfer Out, the
destination ERU receives data during X1. If a Transfer In, the destina-
tion ERU transmits data during X1.

2-CYCLE ERU REFERENCE: Certain ERU transfers to the
ATC require that the CPC be granted the bus for two consecutive
cycles. Since the CPC only gains access to the bus in the absence of
requests from other devices, the second cycle must be guaranteed
by the ATC. The Special Request (REQS) is activated by the ATC
during X0 when EREP has been sourced by the CPC and a 2-cycle
ERU address has been asserted on the bus. REQS should force BAV
active for the CPC despite the presence of any requests (REQX).
REQS should also disable the generation of any selects (SELX).

The second cycle is required either for the CPC to perform an-
other ERU reference tightly coupled to the first, or to allow the
ATC to complete the operation dictated by the first cycle ERU
reference.

PROCESSOR INTERRUPT MESSAGE

A Processor Interrupt message is an External Register transfer to
the Bus Interrupt (BIN) Register in the ATC from another device
tied to the PM Bus. The BIN Register is the input path for devices
(e.g., I/0 devices) other than the ATC to interrupt the CPC. Thus if
an 1/0 device wants to interrupt the CPC, it sends a message to the
ATC BIN Register, and subsequently the ATC will interrupt the
CPC.

The ATC uses EREP during clock X1 to control the loading of
the BIN Register. The BIN Register is unloaded on an interrupt
priority basis by the CPC, and therefore a new transfer into the BIN
is not allowed until an old message is read out. The ATC will con-
tinue to assert EREP during all X1 times until the BIN Register is
transferred into the CPC. The format of the interrupt message (X1
information in the External Register transfer) is a function of the
particular device which sources the message.

MEMORY INTERFACE

The following describes a typical memory interface connected to the
NCR/32 System. The memory interface converts the standard PM
Bus line voltage levels to the voltage levels required by the particu-
lar memory component used in the memory array. The memory in-
terface is idle until MAE is asserted during clock X0 by a selected

3-26

PROCESSOR-MEMORY BUS

device. The memory interface, upon detecting MAE active, generates
the row address strobe (RAS) which clocks the row address into the
Dynamic RAM chips. The row address is available via the memory
interface address multiplexer from the lower portion of the memory
word address (PMBUS10-03) that is on the PM Bus during X0. The
size of the multiplexer is a function of the density of the memory
components in the array. The assumed chip size in this description
is a 64k x 1 RAM. The memory interface decodes PMBUS28-25,
PMBUS29, and PMBUS32 during the X0 clock to determine the
type of memory operation to be performed.

During a Fetch (PMBUS28-25 are all high) the memory inter-
face generates the column address strobe (CAS) as a delayed func-
tion of RAS. The CAS signal clocks the column address, which is
available via the multiplexer from the upper portion of the memory
word address (PMBUS24-11), into the Dynamic RAMs. The accessed
word is then asserted onto the PM Bus, and RAS and CAS are
deactivated appropriately by the memory interface.

During a Full Store (PMBUS28-25 are all low) the memory in-
terface generates the CAS as a delayed function of RAS. The col-
umn address is strobed into the RAM, and the data word on the PM
Bus from the ATC is written into the addressed location during the
X0 clock period.

During a Partial Store (PMBUS28-25 equals some low) the
memory interface generates CAS as a delay of RAS as in the Fetch
case, strobes in the column address, and asserts the accessed word
onto the PM Bus. CAS is then deactivated by the memory interface
while RAS remains active. Then, after an appropriate delay, the
memory interface generates CAS again, and the data word on the
PM Bus from the ATC is written into the addressed location during
the X0 in which MDEE is asserted.

During a refresh operation (PMBUS28-25 are low, PMBUS29 is
low) the memory interface performs the identical operations as dur-
ing a Partial Store. In addition, PMBUS29 active forces RAS to be
asserted for all the banks of RAM chips in memory, not just the
one selected bank as is the case during a normal Partial Store (where
PMBUS29 is inactive).

During most memory operations, PMBUS24-19 of the word ad-
dress should be compared against the maximum allowable memory
address for the main memory configuration. If the word address is
greater than the maximum allowable address, an LGM (Larger than
Memory) condition occurs and the memory interface should sub-
sequently present a Check Bit pattern to the ATC that results in
an uncorrectable error if the operation was a Fetch. If the operation
was a Partial or Full Word Store, then an LGM condition should

3-27

PROCESSOR-MEMORY BUS

force the memory interface to abort the write into the addressed
memory location. During refresh operations (PMBUS29 active) or
accesses to the Scratch Pad (PMBUS32 active) portion of the memory,
héwever, the LGM should be bypassed.

3-28

CENTRAL PROCESSOR CHIP (CPC)

CHAPTER IV
CENTRAL PROCESSOR CHIP (CPC)
CONTENTS
CPCOVEIVIEW.ot 4-1
SIGNALDESCRIPTION 4-1
DATA ORGANIZATION INMEMORY 4-7
ISUMemory. 4-7
Main Memoryttt 4-8
THREE-STAGE PIPELINE 4-9
ARITHMETICLOGICUNIT(ALU) 4-9
ArithmeticOperations 4-10
Special Decimal ALU Logic. 4-10
REGISTERDESCRIPTION 4-11
Register Storage Unit (RSU) 4-11
External Registers (ERUs) 4-13
Internal Register Unit (IRU) 4-14
Jump Registers (IRUO-IRU7) 4-14
Restore Field (IRUS8).t 4-16
State Register (IRU9) 4-17
Bits 1-5 — Field Array Bits 4-18
Bits 7-10 — Byte Write TagBits 4-18
Bits 11-14 — RSU Address Bits 4-19
Bits 15-16 — Protection Check Code Bits 4-19
Indicator Array (IRU16) 4-20
Virtual Indicators (IRU17). 4-22
Tally Register (IRU18) 4-22
Operand Pointers (IRU24) 4-23
Stack Pointer (IRU26) 4-24
Setup Registers. 4-24
Setup Register #1 (IRU19) 4-24
Setup Register #2(IRU20) 4-25
Setup Register #3 (IRU-10) 4-25
Setup Register #4 (IRU11) 4-25

©Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in U.S.A.

i

CHAPTER IV
CENTRAL PROCESSOR CHIP (CPC)

CONTENTS (CONTINUED)

Setup Register #5 (IRU18) 4-25
Control Array #1 (IRU27). 4-26
MARS6 Write Tags (IRU28) 4-27
WRITE TAGOPERATION 4-28
SCRATCHPAD ACCESS 4-28
Access Via the Operand Pointers 4-29
Access Via the Stack Pointer. 4-30
Scratch Pad Access Via ERU Registers 4-31
Scratch Pad Access ViaFLandSL..................... 4-31
INTERRUPTS/TRAPS 4-33
Interrupt/Trap Recognition. 4-33
Interrupt/Trap Servicing 4-33
Saving the Machine State 4-34
Restoring From Interrupts/Traps 434
PROCESSOR RESET 4-35
PMBUSACCESS 435
SETUP ASSIST 4-36
Setup Register Applications 4-36
Setup Register #1 Application 4-36
Setup Register #2 Application 4-37
Setup Register #3 Application 4-38
Setup Register #4 Application 4-38
Setup Register #5 Application 4-39
Scratch Pad Virtual Machine Operation. 4-44
Operand Pointer #1 4-44
Operand Pointer #2 4-44
Stack Pointer 4-46
Map Indicator Logic 4-46

CENTRAL PROCESSOR CHIP (CPC)

CHAPTER IV
CENTRAL PROCESSOR CHIP (CPC)
CONTENTS (CONTINUED)
PROGRAMMING CONSIDERATIONS 4-46
FieldOperands 4-46
Single Field Operand Instructions 4-47
Multiple Field Operand Instructions 4-48
Fetching From ISU 4-49
DelayedJumps. 4-50
LockOnFetch 4-50
Store Operations 4-50
FetchOperations 4-51
PROGRAMMING RESTRICTIONS 4-51

i

CENTRAL PROCESSOR CHIP (CPC)

CHAPTER IV
CENTRAL PROCESSOR CHIP (CPC)

The NCR/32-000 Central Processor Chip (CPC) is an NMOS, 32-bit
high performance microprocessor that is externally micropro-
grammed. This chapter describes the CPC internal architecture and
how the CPC interacts with the scratch pad, located in main
memory.

CPC Overview

The CPC is a true 32-bit, externally microprogrammable processor.
It contains a set of 179 primitive instructions and variants located
in an on-chip ROM (Figure 4-1). These instructions provide the user
with a high degree of flexibility to generate microcode programs
which are stored in off-chip memory. This memory (organized into
16-bit words) is accessed via the Instruction Storage Unit Bus (ISU
Bus). The CPC features a very sophisticated set of operating
registers referred to in Figure 4-1 as the Register Storage Unit
(RSU). The RSU is organized as sixteen 32-bit registers which, with
the ALU, allow the user to perform arithmetic operations at the
digit (4-bits), byte (8-bits), half-word (16-bits), word (32-bits) and
field (string) levels. The RSU registers can also be organized into
even/odd address/data pairs for efficient manipulation of field data.
The highly regular structure of the RSU simplifies the effort in
writing microcode, while the versatility of the RSU makes emula-
tion of complex virtual machines and execution of complex arith-
metic operations easy and efficient. To facilitate op-code cracking of
virtual machine instructions, a set of internal registers called “Set-
Up Registers” is provided.

SIGNAL DESCRIPTION

Table 4-1 gives a brief description of the CPC input and output sig-
nals. The input and output signals can be organized into groups as
shown in Figure 4-3. CPC pinout is shown in Figure 4-2, and a CPC
signal summary is presented in Table 4-2.

“Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in U.S.A. 4-1

cv

Figure 4-1

CPC Functional Block Diagram

RAP
_ T
DIE BAV RESE
|]
5
N
1SU R - - HB+ERU -
e Drivers l %g':loi '
ISU g Compare]
interface ﬁ@'@ﬁo—leNDICATOR] .
L _ARRAY_ TS
CR Jump
Logic 9 skiP
: « Internal
T
IsuouT | CRJ “, Control ROM
| o (256X 95)
1AR £
- IAR r
: ROM Output
———————— - —— —— —_—— HOLD Buffers & Drivers Control
. L} , Section
KL-BUS - - - = X!
Mux " \8US ERUE| T xis sd xpis
J- +JX ! = = XEOs — XPOS —— | —
RJ
Buffer —6 Dec
K J J Corr Int '
nternal
= | Register Register Data_
| Storage | x x Unit Section
'J ¢ éjngz S = 4 > = ALU +6 Dec (32X 16)
(16x32) | - 0
. « b] = input|24 ALU Corr.
K-Mux i Latch
R 4 11
oy ;'___/ |
Buffer {11 {1
' J BYTE BUSSES
GIM3016AB

(0d9) dIHD HOSSIOO0Hd 1VYHINIO

TERM

CENTRAL PROCESSOR CHIP (CPC)

PIN

PIN TERM
PMBUS32 10
PMBUS3T 11 8 CLOCKO (X0)
PMBUS30 12 7 Vpg
PMBUS29 13 6 CLOCK1 (X1)
PMBUS28 14 5 PMWTO
PMBUS27 15 Vgs (GND) 4 PMWITI
PMBUS26 16 3 PMWT2
PMBUS25 17 2 PMWT3
1 PVT
PMBUS24 18
PMBUS23 19 68 TRAP
PMBUS2Z 20 \ _J77 5 1\/ 67 INT
PMBUS21 21 18 68 66 BAV
PMBUS20 22 H 65 DIE_
PMBUS19 23 64 MAE
PMBUST8 24 63 EREP
PMBUST7 25\ 62 PMRST
61 EACI
VoD 267 26 CPC so|ZZ 60 Vop
PMBUS16 27 \
PMBUS156 28 59 IsuU16
PMBUST4 29 58 ISUTS
PMBUSTS 30 i 57 ISUT4
PMBUST2 31 34 52 56 ISU13
PVMBUSTT 32 /152 23 S\ 55 1sut2
PMBUSTO 33 / 54 18U11
PMBUSO9 34 53 ISU10
52 ISU09
PMBUSO8 35 43
PMBUSO7 36 Vgg (GND) 51 18UC8
PMBUSO6 37 50 I1suo7
PMBUSO5 38 49 ISUO6
PMBUSO4 39 48 1SUOS
PMBUSO3 40 47 ISUO4
PMBUSO2 41 46 ISUO3
PMBUSO1 42 45 I1SUO2
44 1SUO1
GIM4009A
Figure 4-2 CPC Pin Diagram Bottom View (Opposite From Lid)

4:3

CENTRAL PROCESSOR CHIP (CPC)

Vppl2) -
PMBUS32-01
GND(2)
- To Main Memory
VBB Add/Data/Control) and Peripheral/
CLK(2) System Devices
VRSt G Extended Arithmetic
M i .
== 5 < Chip Control
ISU16-01 CPC ¢ BAV Bus Arbitration
To < INT Interrupt
Microcode Add/Data TRAP Control
Storage —
PVT A
=
DIE
le———— | PMBuUs
MAE Control
————>
EREP
—)

~ Fetch, Store, Partial

4.__.,PMWT3 Store Indicators

PMWT2 (Virtual Transfers)
—> ;

& and Special Controls

M_, in Output Mode.

PMWTO Virtual Processor Status
———>) .

</ in Input Mode.

GIM4010A

Figure 4-3 Input and Output Signals

“

Pin Signal Description

/
1 PVT Processor Virtual Transfer—This active low signal is
generated by the processor during the X0 clock phase of
all virtual memory operations.

This signal is also generated during the X1 clock phase
by the processor for all processor-generated memory
operations; that is, for all processor generated PM bus
operations with the exception of ERU transfers.

2-5 PMWT3- Processor to Memory Write Tags 0-3—These active low
PMWTO signals are generated during the X0 time that PVT is
generated by the processor. They indicate which bytes
are to be written into memory during a virtual transfer.
PMWT3 corresponds to memory byte 3, etc. All Write
Tags inactive implies a Fetch operation. During the X1
clock phase, these signals have other definitions:

BCT (Between Commands Testing)—This processor
output is asserted on the PMWT3 pin during every X1
clock phase. It is driven by the BCT bit of Control Array

GIMTE4011 B‘.1
Table 4-1 Pin Description

CENTRAL PROCESSOR CHIP (CPC)

Pin

Signal

Description

9,43

10-25
27-42

44-59

X1

X0

vBB
VSS

PMBUS32-
PMBUSO1

ISUO1-
ISUt16

#1 in the processor. If the BCT bit is set to a 1, then
PMWTS3 will be low each X1.

VPBSY (Virtual Processor Busy)—The input VPBSY is
monitored on the PMWT2 pin during the X1 clock phase
during the interpret stage of instructions JRPX and JRMX.

BKPTE (Breakpoint Enable)—During the X1 clock phase,
this signal is asserted on PMWT1. It is intended to be
used to represent the data bit (breakpoint set/reset) to be
loaded into an optional off-chip breakpoint RAM if the
signal BKPTWE enables modification of the addressed
breakpoint. BKPTE can be activated by the DJOR and RTI
instructions.

BKPTWE (Breakpoint Write Enable)—This signal is
asserted during the X1 clock phase on the PMWTO pin. It
is intended to be used as the write enable control for an
optional off-chip breakpoint RAM. When this signal is
active, it permits the breakpoint RAM to be modified as
directed by the BKPTE signal. This pin can be activated
by the DJOR and RTI instructions.

CLOCK1 (X1) phase input.

CLOCKO (X0) phase input.

The processor uses two externally-supplied, 2-phase,
non-overlapping clocks to control all internal operations.
These free-running clocks are X0, the first phase clock,
and X1, the second phase clock.

Negative Voltage Supply.
Ground.

Processor Memory Bus—This active low open drain time-
shared bus is the connecting data/address path between
the processor and the other NCR/32 Family chips and
main memory.

ERU addresses are transferred from the processor via
the PM bus at X0 times. Memory addresses are
transferred from the processor at X0 times. ERU and
memory data is transferred to/from the processor at X1
times.

Instruction Storage Unit Bus—This is an active high, tri-
state bus which links the processor to its ISU memory.
During the X0 phase of each clock cycle, the processor
outputs an address onto this bus. At the end of the X1
clock phase of the same clock cycle, the processor
latches the contents of this bus into its Instruction
Register. This is the micro-code instruction or literal stored
at the addressed ISU location.

GIMTE4011B-2

Table 4-1 Pin Description (Continued)

45

CENTRAL PROCESSOR CHIP (CPC)

Pin Signal Description
26,60 | VDD Positive Voltage Supply.
61 EACI Extended Arithmetic Chip Information—This is a status

input to the CPC from the EAC. After the CPC has
initiated an EAC operation, the processor can test the
EAC Busy flag in the Indicator Array, cleared by an
asserted EACI to determine when the EAC has
completed the operation.

62 PMRST PM Bus Reset—This asynchronous active low reset
signal is generated by the system external reset logic.
PMRST is used within the CPC to initialize the processor
control logic to an appropriate state.

63 EREP External Register Enable/Permit—This active low
processor output is generated by the processor to initiate
an ERU transfer. It is generated during the X0 clock
phase.

64

<
>
mi

Memory Address Enable—This active low signal is
generated by the processor during X0 time during real
memory address transfers initiated by the processor
over the PM bus.

65

9
m

Data Input Enable—This active low signal is monitored by
the processor at the end of all X1 times following the
initiation of a memory fetch sequence to synchronize the
processor pipeline to memory data on the PM bus. If DIE
is asserted during X1 and meets the required setup and
hold times, the processor unlocks the pipeline and latches
the data that is asserted on the PM Bus the following X1
clock.

66 BAV Bus Available—This is an input to the processor; its
insertion indicates that the PM bus will be free for the
processor to use during the next clock cycle. For
processor instructions which do not require the PM bus,
this signal is ignored. For instructions which require the
use or availability of the PM bus, the processor will halt
until BAV is asserted to indicate that it may use the bus in
the next cycle.

67 INT Interrupt—The processor monitors the INT signal at the
end of all X0 times to determine whether an interrupt is
being sourced to the processor.

68 TRAP Trap—The processor monitors the TRAP signal at the
end of all X0 times to determine whether a trap is being
sourced to the processor.

NOTE: Signals with bars are active-low-true signals.

GIMTE4011B-3

Table 4-1 Pin Description (Continued)

CENTRAL PROCESSOR CHIP (CPC)

Input/ | Active

Signal Name Pin # Symbol Qutput | State | Drive
Processor Virtual Transfer 1 PVT OQutput | Low Open
Drain

Processor-Memory Write |2,3,4,5 PMWT3-0 Input/ | Low Open

Tag Output Drain
Clock 1 6 X1 Input | High Input
Power Input 7 VBB Input — —
Clock 0 8 X0 Input | High Input
Ground 9,43 VSS Input — —
Processor-Memory Bus 10-25, | PMBUS32-01] Input/ | Low Open
27-42 OQutput Drain
Instruction Storage Unit 44-59 ISUO1-16 Input/ | High | 3-State
Bus Qutput
Power Input 26,60 vDD Input — -
Extended Arithmetic Chip 61 EACI Input Low Input
Information
Processor-Memory Reset 62 PMRST Input Low Input
External Register 63 EREP OQutput | Low Open
Enable/Permit Drain
Memory Address Enable 64 MAE Output | Low | Open
- Drain
Data Input Enable 65 DIE Input Low Input
Bus Available 66 BAV Input | High Input
interrupt 67 INT Input | Low Input
Trap 68 TRAP Input Low Input
GIMTE4012A

Table 4-2 Signal Summary

DATA ORGANIZATION IN MEMORY

The NCR/32-000 CPC accesses two separate memory arrays. One is
the Instruction Storage Unit (ISU), and the other is Main Memory.

ISU MEMORY

The NCR/32-000 communicates with the ISU memory over the
16-bit multiplexed ISU bus. The ISU memory contains the external
microinstruction programs. The microinstruction organization is
presented in the Instruction Set chapter of this manual.

4-7

CENTRAL PROCESSOR CHIP (CPC)

MAIN MEMORY

The NCR/32-000 communicates with main memory over the 32-bit
multiplexed PM bus. During read operations (Fetch-Receive in-
struction sequence), an entire 32-bit word is read from memory and
placed into a designated RSU location. During store operations, an
entire word is written into a memory location. Figure 4-4 shows
word organization in memory.

32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 1

4 A4 v A4 44 4

LSB

MSB *

[.
Nibble Nibble

\ I\ J
v v
O Byte 1 Byte T T

\ I\, - 7
v
A 2 Byte 3 Byte *
| NG
v v
Left Half-Word Right Half-Word A
\ J
o
Word
GIM2130A

Figure 4-4 Word Organization In Memory

Main memory is divided into two sections, scratch pad and
program/data storage, with the scratch pad located at the upper
most 128 words of the address space (Figure 4-5). See the Scratch
Pad Access section of this chapter for a more complete description.

48

CENTRAL PROCESSOR CHIP (CPC)

}

Scratch Pad 128 Words

; Program/Data ;

Storage

32 1

GIM4013A

Figure 4-5 Main Memory Organization
THREE-STAGE PIPELINE

The NCR/32-000 executes microinstructions within a three-stage
pipeline consisting of a fetch stage, an interpret stage, and an exe-
cute stage.

In the fetch stage, the microinstruction in the ISU memory is
addressed from the Control Register (CR) and then read out of mem-
ory and loaded into the Instruction Register (IR). Both the CR and
IR are internal CPC registers not directly accessible by the user.

In the interpret stage, the microinstruction currently in the In-
struction Register is decoded to set up the controls used during the
instruction execution and to read out the operands from the Regis-
ter Storage Unit (RSU) to be used during execution.

In the execute stage, the operands are processed as appropriate
to the instruction type. Information is routed internally throughout
the CPC and externally over the PM bus. Results are written back
into the RSU as required.

ARITHMETIC LOGIC UNIT (ALU)

The ALU inside the CPC performs binary functions on words and
bytes, decimal arithmetic functions on bytes, logical functions on
words, bytes, and nibbles, and shift functions on words.

ALU binary arithmetic functions include Add, Subtract, and
Compare. Decimal functions include Add and Subtract. Logical
functions include AND, OR and Exclusive OR, and Invert. Shift
functions include single-bit Shift Right and Shift Left.

49

CENTRAL PROCESSOR CHIP (CPC)

ARITHMETIC OPERATIONS

Decimal operations may be in either packed or unpacked BCD repre-
sentation. Data bytes in the packed format contain two BCD digits.
Data bytes in the unpacked format contain a BCD digit and an
ASCII zone character.

Binary operands may be in either a signed or an unsigned for-
mat. In the signed format, the most-significant bit of the operand
determines the sign of the operand. If the most-significant bit is a
zero, the sign is positive. If the most-significant bit is a one, the sign
is negative. Operand values for unsigned binary numbers range
from 0 to (2**N)-1, where N equals the total number of bits in the
operand. Operand values for signed binary numbers range from
-2%*(N-1) to —1 for negative numbers and from +0 to +[2**(N-1)]-1
for positive numbers, where N again equals the total number of bits
in the operand.

During binary subtraction, the subtrahend is two’s comple-
mented and then added to the minuend. During binary compare, one
operand is two’s complemented and then added to the other. A com-
pare operation does not write a result back into the RSU. .

Most ALU operations affect the machine indicators (flags). The
validity of the indicators is often dependent upon the data represen-
tation of a particular instruction. When not applicable, an indicator
should be ignored. For example, the Overflow Indicator is set dur-
ing several binary operations but is valid only for signed binary
operations.

The ALU represents negative numbers in two’s complement
form.

SPECIAL DECIMAL ALU LOGIC

The digit operands used in decimal field arithmetic operations, field
transfers, and digit transfers are checked prior to entering the ALU.
If the operand is not in the packed BCD format, then the PBCD in-
dicator is set. If the zone digit is not a valid character (not 0011),
then the UBCD indicator is set. These checks are performed a byte
at a time and are reset by firmware.

During unpacked decimal arithmetic operations, the ASCII
zone character “3” is inserted in the upper digit of the resultant
byte. During unpacking operations, the digit operand is tested prior
to the transfer. If the digit is nine or less, the ASCII zone char-
acter “3” is inserted into the upper digit of the resultant byte. If the
digit is greater than nine, the ASCII zone character “2” is inserted
into the upper digit of the resultant byte.

4-10

CENTRAL PROCESSOR CHIP (CPC)
REGISTER DESCRIPTION

The NCR/32-000 features two sets of internal registers available to
the user: Register Storage Unit and the Internal Register Unit. The
Register Storage Unit (RSU) consists of sixteen 32-bit registers
that are used for data and address storage and manipulation. The
Internal Register Unit (IRU) consists of twenty-two special
registers used for status information, jump addresses, field byte
count information (Tally Register), and special set-up for virtual
machine emulation. The CPC can also access 96 peripheral and user-
defined external registers called ERUs.

REGISTER STORAGE UNIT (RSU)
The RSU consists of sixteen 32-bit registers. All non-literal instruc-
tion operands are read from the RSU during the interpret phase of
instruction execution. Results of an operation are written back into
the RSU during the Execution phase.

During most operations, the RSU assignments are not instruc-
tion dependent. During Field operations and Store operations, how-
ever, adjacent even and odd RSUs are paired together as Memory
Assist Registers (MARS). RSUO becomes MARSO Address
Register and RSU1 becomes MARSO Data Register, RSU2 be-
comes MARS1 Address Register and RSU3 becomes MARS1 Data
Register, etc. A Field or Store instruction will specify a MARS Data
Register which implies the use of the associated MARS Address
Register. For Virtual Fetch operations, the Data RSU must always
be an odd-numbered RSU.

The two MARS7 RSUs are generally reserved as the Virtual
Control Register (used as a program counter for virtual instruc-
tions) and the Virtual Instruction Register (used to hold the virtual
instruction addressed by the Virtual Control Register portion of
MARST?), but otherwise function like the other RSUs.

All RSU entries are accessible on a word basis through the J and
K operand address fields of the micro-instruction. The first four
RSUs (RSUO-RSU3) are also addressable to the byte level.

RSU9, RSU11, RSU13, and RSU15 are indirectly byte address-
able; that is, bytes are not directly addressable via micro-
instruction but rather are addressed via the Byte Pointers. The
Byte Pointers are 2-bit binary counters which correspond to the two
least-significant bits of RSU8 (MARS4 Address Register), RSU10
(MARS5 Address Register), RSU12 (MARS6 Address Register),
and RSU14 (MARS7 Address Register). The Byte Pointers are load-
ed when the MARS Address Register is loaded, and subsequently
incremented or decremented during Field instructions (or Setup

4-11

CENTRAL PROCESSOR CHIP (CPC)

instructions for MARS?7). The RSU registers and their characteris-
tics are shown in Table 4-3.

Memory Protection
Transfers Access Checks Field
RSU #} W HW B2 D |MARS Function | WF WS BS| RW L E Usage
0 X | X X| X | MARSO Addr X| X| X X| X{ X
1 X | X1 X|X]| MARSO Data X| X| X X[X} X
2 X | X | X|X| MARS1 Addr X| X] X X[X[X
3 X | X1 X{X| MARS1 Data X| X} X X[XX
4 X | X MARS2 Addr X X| X X | X| X
5 X | X MARS2 Data X1 X]| X X| X[X
6 X | X MARS3 Addr X XX X[XX
7 X1 X MARSS3 Data X1 XX XXX
8 X | X MARS4 Addr X| XX X[X] X Operand
9 X | X | X] MARS4 Data X | X| X X X]| X Fetch
10 X | X MARSS Addr X1 X | X XXX Operand
11 X | X | X MARSS Data X1 X|X XXX Fetch
12 X | X MARS6 Addr X | X[X X [X]X Operand
13 X | X | X MARS6 Data X| X[X XXX Store
14 X | X MARS7 Addr XXX X | V Cont
Reg
15 X | X X MARS7 Data X X]|X X V Inst
Reg
= Byte HW = Halfword WF = Word Fetch
= Digit L = Linkage WS = Word Store
= Execute R = Read BS = Byte Store

Byte transfers on RSU 9, 11, 13, and 15 are during field instructions only.
32-bit words can be fetched from main memory and placed into any of the
RSU locations as specified by the J-field and K-field of the micro-instruction.
Full or partial word stores can be used to place data into main memory from
any RSU location.

3. On virtual transfers, the two least-significant bits of the PM bus (PMBUSO02
and 01) contain the appropriate protection code. The Fetch for Execution
protection is invoked on accesses with RSU 14 and 15.

PMBUS02 PMBUSO01 Function
0 0 Fetch
0 1 Store
1 0 Fetch for Linkage
1 1 Fetch for Execution

The PMBUSO02 and PMBUSO1 values represent logic levels (i.e., logical “0”
represents a high voltage level on the signal line and a logical “1" represents a
low voltage level on the signal line).

GIMTE4014A

Table 4-3 RSU Characteristics

412

CENTRAL PROCESSOR CHIP (CPC)

EXTERNAL REGISTERS (ERUs)
The CPC can address up to 128 register assignments (Table 4-4) via
special transfer instructions. The first 32 (address locations 00-1F
hex) are contained inside the CPC and are referred to as Internal
Registers (IRUs). The RSU previously described and the IRU repre-
sent all of the user accessible registers inside the CPC. The IRU is
described in detail in the following section of this chapter.

The remaining 96 register assignments represent register loca-
tions external to the CPC (e.g. Scratch Pad, 1/O Ports, or Registers
inside the Address Translation Chip - ATC) and are referred to as
External Registers (ERUs).

7-bit Addr. Transfer
(DEC) (HEX) Function Instructions
IRUs | 00-07 | 00-07 Jump Registers TH
08 08 Restore FIFO &
09 09 State Register TOI
10 OA Setup Register #3
11 0B Setup Register #4
12 oC Tally Register
13-15 | OD-OF Not Used
16 10 Indicator Array
17 11 Virtual Indicators
18 12 Setup Register #5
19 13 Setup Register #1
20 14 Setup Register #2
21-23 | 15-17 Not Used
24 18 Operand Pointer #1 and #2
25 19 Not Used
26 1A Stack Pointer
27 1B Control Array #1
28 1C MARS6 Write Tags
29-31 1D-1F Not Used
ERUs| 32 20 Operand Data 1 A TIE
33 21 Operand Data 1 Inc &
34 22 Operand Data 1 Dec Indirect TOE
35 23 Operand Data 2 }Scratch Pad
36 24 Operand Data 2 In¢ [Reference
37 25 Operand Data 2 Dec
38 26 Stack Data
39 27 Not Used J
40 28 Control Array #2
41 29 Interrupt/Trap Array/
42 2A Interrupt Mask
43 2B Interval Monitor } ATC
44 2C Time of Day Registers
45 2D Address Monitor
46 2E BIN Register
47-55 | 2F-37 Associative Memory
Functions /
50-63 | 38-3F Reserved for Future Use
64-127| 40-7F Reserved for Future Use TIP & TOP
Table 4-4 Internal Register (IRU) and External Register (ERU)

Address Assignments

4-13

CENTRAL PROCESSOR CHIP (CPC)

1. These are 16-bit Right Justified IRU registers. A Tll (Transfer In Internal) from
one of these registers does not affect the left-half of the destination RSU.

2. These are 16-bit Left Justified registers. A Tll from one of these registers
does not affect the right-half of the destination RSU.

3. Registers 00-31 (00-1F Hex) are registers internal to the CPC, hence, are
referred to as Internal Register Units (IRU). They are accessed via the Tl and
TOl instructions.

4. Registers 32-55 (20-37 Hex) are registers external to the CPC, hence, are
referred to as External Register Units (ERU). These registers all have
assigned functions. They are accessed via the TIE and TOE instructions.

5. Registers 56-63 (38-3F Hex) are ERUs reserved for future NCR 32-000
family devices.

6. Registers 64-127 (40-7F) are also ERUs but do not belong to the basic
Processor Subsystem. These ERUs do not have fixed functional assignments
but rather may be grouped together to form a collection of addressable PM
Bus registers or “ports,” on the PM bus. These registers are accessed via
the TIP and TOP instructions.

7. Instructions which transfer information to or from an external register over the
Processor-Memory Bus supply the seven-bit external register number via the
seven least significant bits of the Processor-Memory Bus. The direction of
transfer is specified on PM Bus 08 (active = external register receives data,
inactive = external register sources data).

GIMTE4015

Table 4-4 Internal Register (IRU) and External Register (ERU)
Address Assignments (Continued)

INTERNAL REGISTER UNIT (IRU)

There are thirty-two internal register locations inside the
NCR/32-000 which are referenced by the Transfer Out Internal
(TOI) and Transfer In Internal (T1I) instructions (Figure 4-6). These
registers are described in the following paragraphs.

Jump Registers (IRUO-IRU7)

There are eight addressable 16-bit registers that can be used to hold
jump addresses. These registers are addressable as internal regis-
ters (IRUO-7) and through the J-field of certain jump instructions.

During the Jump on Field Array instruction, Jump Register 7 is
the source register containing the base jump vector. Jump Register
6 is the destination register receiving the link address.

Firmware may choose by convention to dedicate some of the
Jump Registers that contain frequently used addresses (e.g., the ad-
dress of the BCT flow).

A Transfer Out to a Jump Register loads the least-significant
sixteen bits of an RSU into the register. A Transfer In from a Jump
Register loads the contents of the Jump Register into the least-
significant sixteen bits of an RSU without altering the upper six-
teen bits.

414

IRU16

IRU17

IRU18

IRU19

IRU20

IRU24

IRU26
IRU27

IRU28

CENTRAL PROCESSOR CHIP (CPC)

16 9 8 1 16 1
Ind. Array Jump Register O IRUOO
Virtual Indicators Jump Register 1 IRUO1
SUR#5 Jump Register 2 IRUO2
SUR#1 Jump Register 3 IRUO3
SUR#2 Jump Register 4 IRUO4
Jump Register 5 IRUOS
Jump Register 6 IRUO6B
Jump Register 7 IRUO7
OPTR#1 OPTR#2 Restore FIFO IRUO8
State Register IRUO9
Stack Pointer SUR#3 IRU10
Control Array SUR#4 IRU11
M6 Write Tags Tally Register IRU12
\ v J \ v J
la N T N\
32 17 16 1

Byte O Byte 1

Byte 2

IRUOO-12 May be Transferred Into or Qut
From the Right Halfword of an RSU
Without Disturbing the Left Halfword

IRU16-20, 24, 26-28 May be Transferred
Into or Qut From the Left Halfword

of an RSU Without Disturbing the

Right Halfword

Unused IRUs Are Not Physically
Implemented in the CPC

Figure 4-6

CPC Internal Register Unit

Byte 3 | RSUX

GIM3021-2A

CENTRAL PROCESSOR CHIP (CPC)

“Transfer Out” and “Transfer In” are partial CPC instruction
names which indicate write and read operations to/from registers
and memory. The complete names further specify whether the op-
erations are to “internal” or “external” register/memory locations.
See Chapter VI of this manual for further information on these
OP Codes.

Restore Field (IRU8)

The Restore FIFO is a 3-deep, 16-bit wide, first-in first-out shift reg-
ister connected to the micro-instruction Control Register. The FIFO
saves the addresses of all three instructions that are in the pipeline
during normal program execution (Execution Address in EARI, In-
terpret Address in IARI, and Control Register value in CRI). When
an interrupt or trap is taken, the Restore FIFO clocking is stopped
until a Restore from Interrupts/Traps instruction (RTI) is executed
with the Restart FIFO control bit set. The FIFO may also be
stopped by executing an RTI instruction with the Restart FIFQO
control bit clear.

When the Restore sequence (three RTI instructions) is executed
at the end of an interrupt or trap service routine, the three addresses
saved in the FIFO are sequentially injected into the micro-
instruction Control Register to restart the normal program flow.

The Restore FIFO may be read using the Transfer In instruc-
tion and loaded using the Transfer Out instruction. A Transfer In
always reads the bottom-most entry (EARI) into the least-
significant sixteen bits of an RSU without altering the upper six-
teen bits. At the completion of the Transfer In, the FIFO is shifted
one position; that is, CRI moves to IARI, IARI moves to EARI,
and EARI moves to CRI. If the Transfer In is executed during nor-
mal program flows, the EARI moving to CRI overrides the CR
transfer to CRI that normally occurs during execution. Care should
be taken when accessing the FIFO during normal program execu-
tion.

A Transfer Out always loads the least-significant sixteen bits of
an RSU into the top-most entry (CRI) of the FIFO. At the comple-
tion of the Transfer Out CRI has been loaded from an internal bus,
IARI has been loaded from CRI, and EARI has been loaded from
IARI. If the Transfer Out is executed during normal program flows,
the loading of the CRI from the internal bus overrides the loading of
CRI from CR.

Figure 4-7 shows the Restore FIFO and its interface to the
micro-instruction Control Register and the internal bus.

4-16

CENTRAL PROCESSOR CHIP (CPC)

(1)(4) (1)(4) Micro-instruction (4)
< Control Register <
(CR)
A 4
1) (2)(3)(4)
Internal CRI -
ISU Bus
‘L (1(2)(3)(4)
1ARI
L (@19
(2)(4)
EARI >
IRU 8 Access
1. Normal flow
2. Transfer in
3. Transfer out
4. RTI

GIM4016A

Figure 4-7 Restore FIFO

State Register (IRU9)

The State Register is a 16-bit status register used to save key proc-
essor control information during the execution of Virtual Memory
instructions. That information is then used during subsequent
MRR (Memory Reference Retry) instruction execution. The State
Register is also loaded from the least-significant sixteen bits of an
RSU with a Transfer Out instruction and, conversely, is read into
the least-significant sixteen bits of an RSU (with the most-
significant sixteen bits not affected) with a Transfer In.

CAUTION

Care should be taken when writing to this register to pre-
vent altering needed processor status. When resetting cer-
tain bits, it is good programming practice to leave the
remaining bits of the register unchanged.

The State Register is formatted as follows:

CENTRAL PROCESSOR CHIP (CPC)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Check) MARS
Code RSU # 1 Write Tags 0 Overflow DFP|

L—- Field Array —1

Bit 1: Direction of Field Processing (DFP). Left-to-Right (0). Right-to-Left (1).

Bit 2: MARS4 Overflow Flag

Bit 3: MARSS5 Overflow Flag

Bit 4: MARS6 Overflow Flag

Bit 5: MARS?7 Overflow Flag

Bit 6: Not Used = 0

Bit 7: Memory Byte 3 Write Tag

Bit 8: Memory Byte 2 Write Tag

Bit 9: Memory Byte 1 Write Tag

Bit 10: Memory Byte O Write Tag

Bits 14-11: RSU Address; Bit 11 = 1
Bits 16, 15: Protection Check Code

GIM4017

Figure 4-8 State Register Format

Bits 1-5 — Field Array Bits

The least-significant five bits of the State Register are the Field
Array bits which are concatenated with Jump Register 7 to form
the jump vector during Jump on Field Array execution. The Field
Array consists of the Overflow Flags for MARS4-7, and the Direc-
tion of Processing Indicator.

The Overflow Flags are automatically set for the respective
MARS units when the corresponding Byte Pointers in the RSU
cross the word boundary during a Field instruction. When using
word-aligned fields, as many as three Overflow Flags can set simul-
taneously. The Overflow Flags should be cleared by firmware before
exiting the service routine. The Direction of Processing Indicator is
automatically modified during execution of a Field instruction to re-
flect left-to-right or right-to-left memory data processing. If no spe-
cific direction is indicated in the instruction, then left-to-right proc-
essing is used (0 = left-to-right; 1 = right-to-left). This bit can be
modified by firmware (TOI instruction) or execution of another
Field instruction.

Bits 7-10 — Byte Write Tag Bits

Bits 7-10 of the State Register are a copy of the Memory Byte Write

Tags which control byte writing during Memory Store operations.
The Byte Write Tags in the State Register are a copy of the cor-

responding bits in the internal Write Tag Register. The Write Tag

Register is an internal holding register not accessible by the user.

4-18

CENTRAL PROCESSOR CHIP (CPC)

The contents of this register are used to drive the appropriate PM
bus lines during certain store operations (refer to Figure 4-12). The
Write Tag Register is copied into bits 7-10 of the State Register dur-
ing all Virtual Store instructions for use during a subsequent Mem-
ory Reference Retry when an error condition, such as a DAT trans-
lation error, is detected during a Virtual Store. The Byte Write Tags
do not change until another Virtual Store is executed.

Bits 11-14 — RSU Address Bits

Bits 11-14 of the State Register are the RSU Address bits which are
used to specify the source or destination RSU during Memory Ref-
erence Retry operations.

Virtual Store instructions and Receive Fetched Data instruc-
tions (which have bit 1 of the K-field set) enable the address specify-
ing the Data RSU to be saved in bits 11-14 of the State Register. Bit
11 is forced to a one, which forces the use of an odd-numbered regis-
ter. Subsequently, if a DAT interrupt occurs during a Virtual Store
or Virtual Fetch operation, the saved address will be used during
the memory retry portion of the interrupt service routine. The Mem-
ory Reference Retry (MRR) instruction uses the RSU specified by
the State Register as the Source Data Register when performing a
Store operation. The Receive Fetched Data instruction (which has
bit 2 of the K-field set) used in conjunction with an MRR instruction
uses the RSU specified by the State Register as the Destination
Data Register when performing a Fetch operation.

Bits 15-16 — Protection Check Code Bits

Bits 15 and 16 of the State Register are automatically written dur-
ing all virtual memory transfers with the Protection Check Code
bits which are asserted on PMBUS01,02. Bit 15 corresponds to
PMBUSO1, and bit 16 to PMBUSO02.

During the execution of an MRR instruction, bits 15 and 16 are
then used as the Protection Check Code for the retry memory
operation.

A decode of the Protection Check Code is used by the hardware
to distinguish between Store (01) operations and Fetch (not 01)
operations. The Protection Check Codes are defined in Table 4-5.

4-19

CENTRAL PROCESSOR CHIP (CPC)

PMBUSO02 PMBUSO1
Logical Level Logical Level Function
0 0 Read (Fetch)
0 1 Write (Store)
1 0 Linkage (Fetch)
1 1 Execute (Fetch via MARS7)

NOTE: Logical 1 level is a low voltage level (active) on the PM Bus and a logical
0 is a high voltage level (inactive) on the PM Bus
Table 4-5 Protection Check Code

Indicator Array (IRU16)

The Indicator Array is an 8-bit register used to identify the state of
the processor, particularly the ALU, following an instruction execu-
tion. The Indicator Array can be loaded from byte 1 of an RSU with
a Transfer Out instruction and, conversely, can be read into byte 1
of an RSU (with byte 0 zero-filled and bytes 2 and 3 not affected)

with a Transfer In instruction.
Not all instructions affect the Indicator Array. For some of the

instructions that affect the Array, the resulting state of the indica-
tors is not defined. Also, the indicators may be defined differently
for one instruction than for another. Table 4-6 shows the defined
bits for various categories of instructions.

Conditional Jump and Conditional Skip instructions test the
Indicator Array bits. The specific bits to be tested are selected by
the setting of the Bit Pair Selector and the Bit Pair Mask in the
microinstruction. Refer to “Condition Selector” in the Microinstruction
Set (Chapter VI) for details.

The following definitions apply to the indicators in Table 4-6.

1. <ZERO, =ZERO, >ZERO
These indicators are set/reset during most arithmetic and

boolean instructions to reflect whether the result of an opera-
tion was less than, equal to, or greater than zero. The indicators
do not change until a compare, arithmetic, or boolean instruc-
tion that has been specified to modify these indicators is ex-
ecuted.

2. LESS, EQUAL, GREATER
These indicators are set/reset during all compare instructions to

reflect whether one operand was less than, equal to, or greater
than another operand. The indicators do not change until a com-
pare, arithmetic, or boolean instruction is executed.

3. CARRY ,))
This indicator is set/reset during all arithmetic instructions and

during some shift instructions. It reflects that a carry of the
most-significant bit position of the result has occurred during
the operation (exception: Shift Right instruction where the
carry occurs from the least-significant bit position). For binary

4-20

GIMTE4018A

CENTRAL PROCESSOR CHIP (CPC)

subtraction, a carry represents no borrow, and no carry represents
a borrow. This indicator does not change until another arithmetic
or shift instruction is executed. Firmware must initialize this
indicator prior to certain instruction executions.

. OVERFLOW

This indicator is set/reset during most binary arithmetic instruc-
tions. It reflects that, as a result of an operation, a carry was
forced into the sign position (most-significant bit) when the sign
bit should have been a zero, or a carry-out occurred from the sign
position when the sign bit should have been a one. This indicator
does not change until an arithmetic, a field compare, or a digit
transfer instruction is executed.

. PBCD

This indicator is set during field decimal arithmetic, field compare,
field transfer, and digit transfer instructions. It reflects that a
non-numeric digit was detected during the operation. This indica-
tor does not change once set until cleared by firm ware.

. UBCD

This indicator is set during field decimal arithmetic, field compare,
field transfer, and digit transfer instructions. It reflects that an
illegal ASCII zone character (not 0011) was detected. This indi-
cator does not change once set until cleared by firm ware.

. EAC BUSY

This indicator is set by the Extended Arithmetic Function in-
struction. It reflects that an operation has been initiated in the
EAC and that the EAC is busy. The indicator is reset when the
EAC signals (via EACI pin) the processor that the operation is
complete and the results are ready. EAC Busy is not affected by
a TOI to IRU16, but can be read via a TII from IRU16.

. C.C. MATCH

This indicator is set during the SETNA instruction on branch
formats when the condition code field of the Virtual instruction
matches the Virtual indicators. The indicator is reset upon
entering a subsequent SETNA instruction.

During JMPIB or JMPIC instructions, this indicator is set
when the condition code field of the IBM instruction matches
the Virtual indicators. The indicator is reset or set again during
the next JMPIB or JMPIC execution.

. BCT

This indicator is set/reset by firmware via the TOI to IRU27,
SC, and RC instructions. BCT (Between Commands Testing) in
the Indicator Array is a copy of bit 9 of Control Array #1. A TOI
to IRU16 does not affect this bit. The BCT bit can be read with
a TII from IRU16.

4-21

CENTRAL PROCESSOR CHIP (CPC)

Binary Decimal

Bits Arithmetic Arithmetic Boolean Compare Shift

1 < ZERO <ZERO < ZERO LESS —

2 =ZERO =ZERO =ZERO EQUAL

3 >ZERO >ZERO >ZERO GREATER -_—

4 CARRY CARRY — — CARRY

5 OVERFLOW PBCD — PBCD —

6 — UBCD — UBCD —

7 J— —_— p— — —

8 J— —_ — J— —

NG Extended SCAL SCO

Bits Transfer Setup Arithmetic RCAL RiZ

1 —_ — — _ —

2 —_ — — — —

3 — — — — —

4 — — — — CARRY

5 PBCD — — — PBCD

6 UBCD C.C.MATCH — - UBCD

7 — — EAC BUSY — —

8 - — — BCT —

— Unaffected
GIMTE4019
Table 4-6 Indicator Array Bit Definition

Virtual Indicators (IRU17)
The Virtual Indicator Register is a 16-bit register which contains
various virtual machine level indicators or flags that are maintained
by the firmware. Some specific indicators are explicitly defined for
each of the virtual machines that is supported. These indicators are
the most frequently referenced indicators and are mapped from the
Indicator Array (IRU16) via the special Map Indicator instructions.

A Transfer Out to the Virtual Indicators loads all sixteen bits
from the most-significant sixteen bits (byte 0, byte 1) of the source
RSU. A Map Indicator instruction loads only those bits specified in
the instruction. A Transfer In from the Virtual Indicators reads the
16-bit register into the upper half of the destination RSU but does
not affect the lower half (bytes 2, 3).

The defined indicators under hardware support are shown in
Figure 4-9 for each of the virtual machines.

Tally Register (IRU12)

The Tally Register is a 16-bit counting register which normally
counts the number of bytes to be processed during a virtual com-
mand emulation. During the execution of Field instructions or the

4-22

CENTRAL PROCESSOR CHIP (CPC)

16 15 14 13 12 11 10 9 8 7 6 5 4 2 1
O R E L |VRX
(0] E L |NVM
¢ Sliem
C =Carmry L =Less
CO = Condition Code O O = Overflow
C1 = Condition Code 1 R = Repeat
E = Equal G = Greater
GIM4020
Figure 4-9 Virtual Machine Indicators

Delayed Jump on Tally instruction, the content of the Tally
Register is decremented by one (two if half-word instruction) for
each instruction cycle. When the Tally Register is decremented to a
zero value, TALLY=0, the Field instruction is exited.

The Tally Register is loaded during virtual command setup by
the Load Tally From Setup (LTS) instruction, and can be loaded
with an instruction literal by the Load Tally Right and Clear Left
(LTRC) instruction. Bit 9 of the Tally Register is loaded with a one
if TALLY=0 during the JPMVC instruction.

A Transfer Out to the Tally Register loads sixteen bits from the
least-significant sixteen bits of the source RSU. A Transfer In from
the Tally Register reads the sixteen bits of the register into the
lower half of the destination RSU but does not affect the upper half.

Operand Pointers (IRU24)

The Operand Pointer Register contains both Operand Pointer #1
(upper byte) and Operand Pointer #2 (lower byte). Both pointers
operate the same functionally. They differ only in their applications
during virtual setup assist. The Operand Pointers are 8-bit registers
used to access information located in the scratch pad portion of
main memory. The least-significant seven bits of the registers are a
modulo-128 up/down counter which points to one of the 128 scratch
pad entries. The eighth bit is an override control which, when set,
voids the use of the Operand Pointer and instead enables the Stack
Pointer for all scratch pad accesses normally performed using the
Operand Pointer. See the Scratch Pad Access section for more
details.

Pointer #1 is loaded by a Transfer Qut with byte 0 of the source
RSU, while Pointer #2 is loaded with byte 1. Conversely, a Transfer
In reads the eight bits of the Pointer #2 into byte 1 of the destina-
tion RSU, while the eight bits of Pointer #1 are read into byte 0
with bytes 2 and 3 not affected.

4-23

CENTRAL PROCESSOR CHIP (CPC)

During virtual command setup, the Operand Pointers are load-
ed to reference the virtual registers in the scratch pad that apply to
the particular virtual machine being supported. Refer to the “Setup
Assist” section for an example description of the modes in which
the Operand Pointers can be initialized and subsequently
manipulated.

Stack Pointer (IRU26)

The Stack Pointer is a 5-bit, modulo-32 up/down counter which
points to one of the 32 operand stack entries in the scratch pad por-
tion of main memory (locations 64-95 decimal).

The Stack Pointer can be loaded by a Transfer Out with the
least-significant five bits of byte 1 of the source RSU. A Transfer In
from the Stack Pointer reads the 5-bit register into the least-
significant five bits of byte 1 of the destination RSU. The remaining
bits in byte 1 and all of byte 0 are cleared. Bytes 2 and 3 of the RSU
are not altered.

Setup Registers

While the RSU can be used exclusively for the emulation of virtual
commands, a special set of registers called Setup Registers have
been designed for ease in cracking the opcodes of certain instruction
sets. The Setup Register operations have been specifically tailored
for the emulation of the IBM 370 instruction set as well as the VRX
and NVM (NCR operating systems) instruction sets. The Setup
Registers allow the programmer to crack virtual machine instruc-
tions and automatically branch to the appropriate micro-code sub-
routine with a high degree of efficiency. Even though these registers
have been designed for specific virtual machine emulation, their
function is general in nature, and can be used to crack many other
~ instruction sets.

Before using the RSU registers for emulation of instruction sets
other than those mentioned above, the user should make use of the
Setup Registers where appropriate. This section describes the func-
tional operation of the Setup Registers (SUR1-5). The “Setup
Assist” section of this chapter describes the use of these registers.

Setup Register #1 (IRU19) — Setup Register #1 (SURI) is a
16-bit register used to hold all or part of a virtual instruction for the
purpose of decoding the virtual opcode to form a vectored jump to a
command setup or command execution routine, and for the purpose
of isolating fields within the instruction for subsequent transfers to
an RSU.

4-24

CENTRAL PROCESSOR CHIP (CPC)

SURI is loaded and interpreted by the special setup instruc-
tions as described in the ‘‘Setup Assist’’ section. SUR1 is also load-
ed by a Transfer Out from the most-significant sixteen bits of a
source RSU, and read by a Transfer In to the most-significant six-
teen bits of a destination RSU (the least-significant bits of the RSU
are undisturbed).

Setup Register #2 (IRU20) — Setup Register #2 (SUR2) is a
16-bit register used to hold part of a virtual instruction during NVM
or IBM setup for the purpose of loading an Operand Pointer and for
isolating the displacement field for a subsequent transfer to an
RSU.

SUR?2 is loaded and interpreted by the setup instructions as de-
scribed in the “Setup Assist” section. SUR2 is also loaded by a
Transfer Out from the most-significant sixteen bits of a source
RSU, and read in by a Transfer In to the most-significant sixteen
bits of a destination RSU (the least-significant bits of the RSU are
not affected).

Setup Register #3 (IRU10) — Setup Register #3 (SUR3) is a
16-bit register that contains three base address values which are
concatenated with vectors formed during the setup instructions to
perform program jumps to additional command setup or command
execution flows.

SUR3 is used by the setup instructions as described in the
‘“Setup Assist’’ section. SUR3 is loaded by a Transfer Out from the
least-significant sixteen bits of a source RSU, and read in by a
Transfer In to the least-significant sixteen bits of a destination RSU
(the most-significant sixteen bits of the RSU are not affected).

Setup Register #4 (IRU11) — Setup Register #4 (SUR4) is a
16-bit register which contains the address of the MARS7 Overflow
Fetch routine used during NVM or IBM emulation. In support of
NVM, SURM is also used as a portion of the base address for pro-
gram jumps during Descriptor operations.

SUR4 is used by the setup instructions as described in the
“Setup Assist’’ section. SUR4 is loaded by a Transfer Out from the
least-significant 16 bits of a source RSU, and read by a Transfer In
to the least-significant sixteen bits of a destination RSU (the most-
significant sixteen bits are not affected).

Setup Register #5 (IRU18)—Setup Register #5 (SUR5) is an
8-bit register which holds the virtual tally that is loaded into the
Tally Register with the Load Tally From Setup instruction.

4-25

CENTRAL PROCESSOR CHIP (CPC)

SURS5 is loaded from the virtual instruction during the special
setup instructions. SUR5 is also loaded by a Transfer Out from byte
1 of a source RSU, and read by a Transfer In to byte 1 of a destina-
tion RSU with byte 0 zero-filled and bytes 2 and 3 not affected.

Control Array #1 (IRU27)
Control Array #1 is an 8-bit register which contains control bits that
are used within the processor.

A Transfer Out to Control Array #1 loads all eight bits from the
most-significant eight bits (byte 0) of the source RSU. A Transfer In
from Control Array #1 reads the 8-bit register into the upper byte of
the destination RSU with zeros loaded into byte 1, but does not af-
fect the lower half-word. Figure 4-10 shows Control Array #1
format.

16 15 14 13 12 11 10 9
ESC EACA NUM AT T NIE BCT
GIM4021A

Figure 4-10 Control Array #1 Format
The following are the Control Array #1 bit definitions.

Bit 9 Between Commands Testing (BCT)

This indicator is used by the setup instructions. If
BCT is set, the setup instructions branch to the BCT
flow (refer to the individual setup commands for
branch flow). This indicator is set by firmware (via
TOI or SC) whenever there is a need for between
commands testing. It must be cleared by firmware
when the testing is not desired (via TOI or RC).

Bit 10 Normal Interrupt Enable (NIE)

This indicator is used to enable or disable interrupts.
Interrupts are recognized when this bit is set. This
indicator is set/cleared by the TOI, SC, and RC in-
structions, and set by the RTI instruction. An active
interrupt condition (INT pin low) clears this bit.

Bit 11 Trap Indicator TI

This indicator is set when the TRAP pin is active
(low) and forces a jump to the trap address (0000
hexadecimal). This bit, when set, inhibits all pending

4-26

Bit 12

Bit 13

Bit 14

Bits 15, 16

CENTRAL PROCESSOR CHIP (CPC)

traps and interrupts. The Trap indicator is set/
cleared with the TOI, SC, and RC instructions and
cleared with the RTI instruction.

Address Translation (AT)

This bit selects the formatting of memory messages
to be in the virtual address format (AT set) or the
real address format (AT cleared). AT is set/cleared
with the TOI, SC, and RC instructions.

Non-User Mode (NUM)

This is a test bit not intended for user applicatioﬁ
and must remain cleared. On power-up, this bit is
cleared, and should not be programmed to a 1.

EAC Activated (EACA)

The EACA bit is intended for use with the Extended
Arithmetic Chip. This indicator is set whenever an
EAF instruction is executed to indicate that the
EAC has been activated. EACA is reset by firmware
with a TOI or an RC instruction.

*Execution Skip Count (ESC)

At the time an interrupt or trap occurs, the 2-bit
skip count is saved in bits 15 and 16. Subsequently,
during the execution of an RTI instruction, bits 15
and 16 are loaded into the skip counter. A skip count
of two (CA16=1, CA15=0) forces the next two exe-
cution cycles to be voided. A skip count of one
(CA16=0, CA15=1) forces the next single execution
cycle to be voided. The skip count saved in bits 15
and 16 is not altered after being transferred to the
master skip control.

MARS6 Write Tags (IRU28)

The MARS6 Write Tags are contained in a 4-bit register (MSB =
byte 0 Write Tag, LSB = byte 3 Write Tag), shown in Figure 4-11,
that is program accessible for purposes of saving/restoring the
machine state. Each data byte loaded into the MARS6 Data Regis-
ter during field operations sets a corresponding MARS Write Tag.
Then during a subsequent Store operation, the MARS6 Write Tags
are used if so specified by the J-field of the instruction. The MARS6
Write Tags are cleared when a MARS6 Store instruction executes.

4-27

CENTRAL PROCESSOR CHIP (CPC)

A Transfer Out to the MARS6 Write Tags loads the register
from the least-significant four bits of byte 1 of the source RSU. A
Transfer In from the MARS6 Write Tags reads the register into the
four least-significant bits of byte 1, with the other bits in byte 1 and
all of byte 0 zero-filled. Bytes 2 and 3 of the destination RSU are not
affected.

Bit 4 3 2 1
Byte O Byte 1 Byte 2 Byte 3
GIM4022
Figure 4-11 MARSG6 Write Tag Register Format
WRITE TAG OPERATION

A 4-bit internal register, the Write Tag Register, contains the flags
that are normally used to form the byte write enables (PMBUS28-25)
during all real memory store messages, or the corresponding processor-
memory write tags (PMWTO-3) during all virtual memory store
messages. This register is not accessible as an internal register, al-
though a copy of it is maintained during normal program emulation
in the State Register during Virtual Store operations.

During Store instructions, this internal register is loaded from
the J-field and is used as the source of the write tags if at least one
J-field bit is on. The four J-field bits specify the memory byte write
tags that will be set when the Store operation is performed. If none
of the J-field bits are set, then the MARS6 Write Tag Register
(IRU28) is used.

During the Store Literal instruction, this internal register is not
affected. The memory byte write tags are all set for the Store Literal
instruction.

During a Memory Reference Retry instruction, the write tag
portion (bits 7-10) of the State Register is used as the source of the
write tags. This allows the write tags used during a previously-
executed Virtual Store instruction to be used during the retry of
that operation.

Figure 4-12 illustrates the transfer paths to and from this inter-
nal register.

SCRATCH PAD ACCESS

The Operand Pointers and the Stack Pointer are used to access the
scratch pad. A Transfer Out or a Transfer In via pseudo External

4-28

CENTRAL PROCESSOR CHIP (CPC)

Write
Store Inst. Tag Memory Byte
J-Field Reg* Write Enables
3 3 | store with Real 3 | PMBUS25
Store at Least Memory _—
2 | instructions | 2] ore _ Store | 2 | PMBUS26
1 1 | J-Field 1 | PMBUS27
Bit On
0 0 0 PMBUS28
MARS6
Write Tags
3 Store with
No J-Field
2 Bits On
1
0
State Register Processor Memory
Bits 10-07 Write Tags
3 Memory 3 PMWT3
Reference
2 Retry 2 PMWT2
! 1| PMWTI
0 0 PMWTO
Virtual Memory Store

*This register is an internal register to the CPC and is not user accessible.

GIM4023

Figure 4-12 Write Tag Paths

Registers 32-38 will reference data in the scratch pad and also per-
form an explicit function on one of the pointers. The scratch pad can
also be accessed with the SL and FL instructions.

ACCESS VIA THE OPERAND POINTERS

A Transfer Out to ERU32 (Operand Data 1) performs a write to the -
scratch pad word addressed by Operand Pointer #1 if the pointer is
in the register mode. A Transfer In from ERU32 performs a read

4-29

CENTRAL PROCESSOR CHIP (CPC)

from the scratch pad word addressed by Operand Pointer #1.
Operand Pointer #1 is not altered by either operation.

A Transfer Out to ERU33 (Operand Data 1 Inc) performs a
write via OPTR#1 to the scratch pad if the pointer is in the register
mode and then increments the pointer to the next word address. A
Transfer In from ERU33 performs a read via OPTR#1 from the
scratch pad and then increments the pointer to the next word
address.

A Transfer Out to ERU34 (Operand Data 1 Dec) performs a
write via OPTR#1 to the scratch pad if the pointer is in the register
mode and then decrements the pointer to the next word address. A
Transfer In from ERU34 performs a read via OPTR#1 from the
scratch pad and then decrements the pointer to the next word
address.

Operations involving Operand Pointer #2 are identical to those
involving Operand Pointer #1. The Operand Data 2 ERUs are sub-
stituted for the Operand Data 1 ERUs in the above descriptions.
Both OPTR#1 and OPTR#2 are modulo-128. No hardware check is
made for the wraparound of a pointer.

Table 4-7 presents a summary of scratch pad access via the
pseudo ERU registers.

ACCESS VIA THE STACK POINTER

A Transfer Out to ERU38 (stack data) performs a write to the
operand stack entry addressed by the Stack Pointer and then incre-
ments (pushes) the Stack Pointer to the next entry. A Transfer In
from ERU38 decrements (pops) the Stack Pointer to the next entry
and then performs a read from the operand stack entry addressed
by the Stack Pointer.

A Transfer Out to ERUs 32-37 performs the identical operation
as a Transfer Out to the stack data ERU if the corresponding oper-
and pointer is in the stack mode. Likewise, a Transfer In from ERUs
32-37 performs the identical operation as a Transfer In from ERU38
if the operand pointer is in the stack mode.

The Stack Pointer operates modulo-32. All addressing in the
scratch pad via the Stack Pointer is performed between locations 64
and 95. A reference to the scratch pad using the Stack Pointer
presents SPTR 1-5 as the least-significant five bits of the scratch
pad word address with (110) asserted on the adjacent three bits.

No hardware check is made for stack overflow or stack under-
flow conditions.

4-30

CENTRAL PROCESSOR CHIP (CPC)

ERU
Address
Dec. Hex Register Mode Stack Mode
32 20 Operand Data 1 Stack Data
33 21 Operand Data 1 Inc. Stack Data
34 22 Operand Data 1 Dec. Stack Data
35 23 Operand Data 2 Stack Data
36 24 Operand Data 2 inc. Stack Data
37 25 Operand Data 2 Dec. Stack Data
38 26 Stack Data Stack Data

1. Register Mode — Bit 8 of the corresponding Operand Pointer
Register (IRU 24) = 0. The Scratch Pad location specified by the
contents of Operand Pointer Reg. 1 is accessible through the
Scratch Pad Operand Data Registers (20, 21, 22 hex). The
Scratch Pad location specified by the contents of Operand Pointer
Reg. 2 is accessible through the Scratch Pad Operand Data
Registers (23, 24, 25 hex).

2. Stack Mode — Bit 8 of the corresponding Operand Pointer
Register (IRU 24) = 1. Scratch Pad access via the Operand Data
Registers (20-25 hex) perform the same operation as accessing
Scratch Pad via the Stack Data Register (26 hex).

3. The Stack Data Register (26 hex) is unaffected by the value of bit
8 in the Operand Pointer Registers.

4. ERU address locations 32-38 (20-26 hex) represent pseudo
registers which allow the user to access Scratch Pad (Scratch
Pad locations are determined by Pointer Registers inside the
CPC) as ERU transfers.

GIMTE4024A

Table 4-7 Scratch Pad References Via ERU Pseudo Registers

SCRATCH PAD ACCESS VIA ERU REGISTERS
Scratch Pad accesses via TIE/TOE to ERU locations 20-26 hex are
real memory transfers on the PM Bus. EREP is not asserted (low)
as with transfers using other ERU locations. During the execute
stage the CPC routes the appropriate pointer to the least-significant
bits of the memory word address. Address bits PMBUS10-24 are
forced to the active state (low).

PMBUS32 is forced active (low) by the CPC. This bit can be
used to identify a Scratch Pad access.

A TIE from Scratch Pad triggers a real memory read operation.
Because of this, an RCV instruction must be used to receive the
data.

SCRATCH PAD ACCESS VIA FL AND SL

The first 64 locations of Scratch Pad (0-63 dec) can be accessed
using the Fetch Literal (FL) and Store Literal (SL) instructions.
When the CPC executes an FL or SL, a 6-bit address from the in-
struction is placed on PMBUS03-08. PMBUS(9 is negated (high)
and the remaining upper address lines PMBUS10-24 are forced ac-
tive (low). The transfer is a real memory operation on the PM Bus.

4-31

CENTRAL PROCESSOR CHIP (CPC)

PMBUSB32 is forced active (low) by the CPC when either SL or
FL is executed. This bit can be used to identify a Scratch Pad
access.

Scratch Pad Main Memory
Locations Address
Hex Dec.
FFFFFC
FE 127
60 | 96 FFFF80
5F |95 FFFF7C

Section of Scratch
Pad referenced by
the Stack Pointer

40 | 64 FFFFOO
3F [63 FFFEFC
0

0 —';’_‘_:_: FRFE0O

Note: 1. The operand pointers can access the entire scratch pad.

2. When the Fetch Literal (FL) and Store Literal (SL) instructions are
used to reference Scratch Pad they can only access locations 0-63
dec. (00-3F hex). When FL & SL are executed a 6-bit address from
the instruction is placed in the least significant 6-bits of the memory
word address (PMBUS03-08). PMBUSO9 is negated (high) and the
remaining address lines are all forced to the active state (low).

3. During a Scratch Pad reference via the ERU locations the CPC routes
the appropriate pointer to the least significant bits of the memory word
address. PMBUS10-24 are all forced to an active state (low). This
guarantees that the word address that the memory interface receives
will be at the top (last physical entries) of memory regardless of the
actual main memory size.)

4. PMBUS32 is forced active (low) whenever Scratch Pad is referenced
via TIE, TOE, FL, or SL.

5. Because Scratch Pad accesses are Real Memory operations, a read
from Scratch Pad must include the use of the RCV (Receive-Fetched-
Data) instruction. Writes to Scratch Pad are effectively one cycle
operations to the CPC unless consecutive accesses are at
consecutive code locations.

GIM4025A

Figure 4-13 Scratch Pad Portion of Main Memory

4-32

CENTRAL PROCESSOR CHIP (CPC)
INTERRUPTS/TRAPS

The normal program flow of instructions within the processor may
be diverted when certain conditions labeled as program traps or pro-
gram interrupts occur. Traps are normally considered conditions
that, upon detection, must be serviced immediately. Interrupts are
normally considered conditions that, upon detection, may be serv-
iced immediately, may be serviced at a later time, or may be masked
out altogether.

INTERRUPT/TRAP RECOGNITION

The trap line (TRAP) and interrupt line (INT) are external inputs to
the processor. When TRAP is asserted (low) and the trap indicator
bit in the Control Array is clear (a trap is not currently being proc-
essed), the micro-instruction Control Register is loaded with the
trap address (0000 hexadecimal). An immediate jump to the trap
routine occurs. The Trap Indicator bit (1) is set, but the Normal In-
terrupt Enable bit is not altered. The instruction in the Execute
stage of the pipeline will execute, but the instructions in the Fetch
and the Interpret stages of the pipeline will not be executed. The
pipeline will be advanced one cycle and halt without further execu-
tion. When the interrupt line is asserted (low) and the Trap Indica-
tor bit in the Control Array is clear and the Normal Interrupt
Enable bit is set (an interrupt is not currently being processed), the
micro-instruction Control Register is loaded with the interrupt ad-
dress (0002 hexadecimal). An immediate jump to the interrupt
routine occurs. The Normal Interrupt Enable bit is cleared (0). If
both an interrupt and trap occur simultaneously, the trap will be
serviced first.

Several instructions are non-interruptible. The CPC technical
publication (data sheet) should be referenced for a list of these in-
structions and a description of their effect on interrupt recognition.

Interrupts and traps can be disabled via the Control Array Nor-
mal Interrupt Enable and Trap Indicator bits using the TOI, SC,
and RC instructions.

INTERRUPT/TRAP SERVICING
Servicing of traps and interrupts is a function of both hardware and
firmware.

Hardware forces the program jump to the trap or interrupt ad-
dress, clears Normal Interrupt Enable (if an interrupt) or sets Trap
Indicator (if a trap), and disables the clocking of the interrupt FIFO.

4-33

CENTRAL PROCESSOR CHIP (CPC)

Firmware must transfer in external interrupt status and test
each condition to determine which caused the interrupt or trap.
Firmware also determines the priorities of the conditions in the
event that multiple interrupts have occurred. To enable further in-
terrupts, firmware must set the Normal Interrupt Enable bit (NIE
= bit 10 of Control Array #1) to a 1.

SAVING THE MACHINE STATE

During some interrupt or trap service routines, it may become nec-
essary to save the state of the processor when circumstances arise
that prevent a timely completion of routine (e.g., a page is not resi-
dent in main memory during a Dynamic Address Translation [DAT]
Fault routine). All internal and external registers pertinent to a
recovery of the current task must be saved in the scratch pad or
some other reserved section of main memory. The Restore FIFO
must be read (three successive Transfers In from IRU08) to obtain
the ISU addresses of the three instructions in the pipeline at the
time the interrupt or trap was recognized. Control Array #1 and any
other status values that were saved at the beginning of the service
routine must be relocated to the reserved section of main memory
for state saving.

RESTORING FROM INTERRUPTS/TRAPS

The Restore from Traps and Interrupts (RTI) instruction is used to
control the restore sequence. RTI injects the instruction addresses
saved in the Restore FIFO into the internal micro-instruction Con-
trol Register. By executing three consecutive RTI instructions, the
pipeline can be restored to the pre-interrupt/trap state.

To restart the clocking of the Restore FIFO which was disabled
when the interrupt/trap was recognized, and to load the skip counter
from the Control Array #1, the final RTI instruction must have bit 2
of the K-field set. To clear Trap Indicator and set Normal Interrupt
Enable, the second RTI instruction must have bits 1 and 3 of the
K-field set. Alternatively, the second RTI instruction may have bit
3 of the K-field clear and bit 1 set, which will clear Trap Indicator
and will not affect Normal Interrupt Enable.

If an interrupt or trap is pending at the time the third RTI is ex-
ecuted, the Restore FIFO will not be restarted. The Trap Indicator
will be cleared by the RTI, but then immediately set if a trap is
pending; Normal Interrupt Enable will be set by the RTI, but then
immediately cleared if an interrupt is pending.

4-34

CENTRAL PROCESSOR CHIP (CPC)
PROCESSOR RESET

The reset signal external to the processor (PMRST) initializes the
processor during a power-up or system reset sequence.
When PMRST is asserted, the following actions occur:

. The Control Register is cleared.

. BCT, AT, EACA, and NUM in Control Array #1 are all cleared.

. NIE is cleared and TI is set in Control Array #1.

. EACBSY in the Indicator Array is cleared.

. The FIFO is halted after loading the next logical instruction
address.

. All other status and control bits remain unaffected.

. The RSU is unaffected.

8. The PM bus is negated.

Ut WO DN =

-1

While PMRST remains asserted, the processor will continuous-
ly assert the ISU address of all zeros and skip the execution of all
instructions.

If PMRST is negated (high) and the setup time of the Control
Register is met during X1, then the Control Register will increment
by one. That cycle and the next cycle will be skip cycles for the Ex-
ecute stage of the pipeline. During the next cycle, the instruction at
ISU location 0000 hexadecimal will have reached the Execute stage
and will be executed. The processor at this point is in an entry point
to the normal trap routine with the exception that certain Control
Array #1 bits have been initialized that would not have been af-
fected by a trap.

PM BUS ACCESS

All instructions that reference either the main memory or external
registers that are not resident in the processor require the CPC to
secure the Processor-Memory (PM) Bus before execution of the
instruction.

The processor, as a device on the PM Bus, has the lowest priori-
ty of all active devices. An active device is one which can initiate a
message transfer on the bus. Other active devices gain access to the
PM Bus through a request/select protocol. The processor, however,
gains access only in the absence of any requests from the other
devices, as indicated by the assertion of BAV.

4-35

CENTRAL PROCESSOR CHIP (CPC)

During the Interpret phase of an instruction execution requir-
ing bus availability, the Bus Available (BAV) line is monitored by
the CPC. If BAV is inactive, indicating another device has re-
quested the bus for the next cycle, the processor will halt internal
operations and stop the pipeline. In the subsequent cycles BAV is
tested, and when the bus again becomes available, the instruction
executes. The pipeline is then advanced.

The CPC can initiate three types of transfers on the PM Bus:

¢ External Register Message Transfers
* Real Memory Message Transfers
* Virtual Memory Message Transfers

See Chapter 111 for a detailed description of PM Bus operations.

SETUP ASSIST

The NCR/32-000 contains special hardware (Setup Registers 1-5)
designed to support emulation of virtual machines. This hardware
consists of logic to execute setup instructions and map indicator in-
structions for the IBM 370 and NCR-VRX/NVM virtual machines.
While designed for the above virtual machines, the setup function
(setup registers and instructions) of the NCR/32-000 should be con-
sidered when emulating other virtual machines.

The setup instructions assist in cracking virtual opcodes, load-
ing the virtual pointers into the Operand Pointers or the Stack
Pointer, isolating literal fields in virtual instructions, and creating
jump vectors into additional setup routines or into command execu-
tion routines.

The map indicator instructions map the processor Indicator
Array into the corresponding bits of the virtual indicators.

SETUP REGISTER APPLICATIONS
The following sections describe Setup Register applications in vir-
tual machine emulation.

Setup Register #1 Application

The beginning of each virtual command setup routine should con-
tain a setup instruction that loads Setup Register #1 from MARS?7.
The left or right halfword of the MARS7 Data Register (RSU15), as
determined by the instruction type, is transferred to SUR1. This is
the portion of the virtual instruction that contains the virtual com-
mand code (opcode).

4-36

CENTRAL PROCESSOR CHIP (CPC)

Depending upon the virtual machine type being emulated, the
appropriate bits of SUR1 that hold the command format informa-
tion are decoded. The format determines which of the other bits in
SUR1 should be used to create the jump vector to additional setup
flows or to the execution flows. The base address portion of the
jump address is read from Setup Register #3.

Figure 4-14 shows which setup instructions affect SUR1 and
what the decoded format types are for each virtual machine sup-
ported. Figures 4-15 through 4-17 show how the jump addresses are
formed from SUR1 for each virtual machine supported. Figure 4-18
shows NVM descriptor jump address derivation.

The entire contents of SUR1 can be read by executing a Trans-
fer In from IRU 19. Special instructions are also available which
transfer in literal portions of SUR1 right-justified and leading zero-
filled:

TSLDC transfers in the contents of SUR1 bits 5-8 to RSU-J bits
1-4 with leading zero-fill.

TSRDC transfers in the contents of SUR1 bits 1-4 to RSU-J bits
1-4 with leading zero-fill.

TSBC transfers in the contents of SUR1 bits 1-8 to RSU-J bits
1-8 with leading zero-fill.

TSB transfers in the contents of SUR1 bits 1-8 to RSU-J bits
1-8 with leading zero-fill for bits 9-16. The left half of RSU-J is
undisturbed.

Setup Register #2 Application

During IBM setup and NVM setup of virtual instructions that are
greater than sixteen bits in length, Setup Register #2 is loaded with
either the left or the right halfword of the MARS7 Data Register as
pointed to by the MARS7 Byte Pointers, using the SETIA and
SETNA instructions.

The content of SURZ2 is then used to load an Operand Pointer or
the Stack Pointer and to transfer a displacement value or offset to
RSU-J.

SETIA transfers in the contents of SUR2 bits 1-12 to RSU-J
bits 1-12 with leading zero-fill.

SETNA transfers in the contents of SUR2 bits 1-12 to RSU-J
bits 1-12 for both the RM and the MM formats. The leading bits of
RSU-J are zero-filled.

SETNA transfers in the contents of SUR2 bits 1-16 to RSU-J
bits 1-16 for the RI format. Bit 16 of the SUR2 is tested at the time
of the transfer. If bit 16 is a zero, the remaining bits of RSU-J are
zero-filled. If bit 16 is a one, the remaining bits of RSU-J are one-
filled.

4-37

CENTRAL PROCESSOR CHIP (CPC)

The Setup Sign Extension instruction operates similarly to
SETNA (with RI format) in that sixteen bits from SURZ2 are trans-
ferred to RSU-J and bit 16 is tested. However, where SETNA loads
SUR2 from the MARS7 Data Register, SUR2 must be preloaded by
a Transfer Out prior to execution of the Sign Extension (SETSX)
instruction.

Setup Register #3 Application
SUR3 is loaded by a Transfer Out with the base address values used
during setup of the particular virtual machine that is being emu-
lated. These base address vectors are then concatenated with the
vectors formed during setup to create the required jump addresses.
SURS3 holds a maximum of three base addresses. Bits 9-16 of
SURS3 are an 8-bit vector. Bits 5-8 and bits 1-4 are both 4-bit vec-
tors. Listed below are the base vectors used during setup. Figures
4-15 through 4-17 show SURS vector fields.

IBM Setup
* SBA — Setup Base Address
¢ EBA — Execution Base Address

NVM Setup
* SBA — Setup Base Address
* IBA — Indirection Base Address
e EBA — Execution Base Address

VRX Setup
* SBBA — Setup B Base Address
e SABA — Setup A Base Address
¢ EBA — Execution Base Address

Setup Register #4 Application

SURA4 is loaded by a Transfer Out with the address of the MARS7
Overflow Fetch routine. During IBM or NVM setup, the MARS7
overflow condition is tested, and if it is true, a program jump is exe-
cuted to the Overflow routine in order to fetch the next virtual
instruction.

During NVM emulation, a restriction is placed upon the
addresses that can be used for the Overflow routine. Bit 8 must be a
zero. This is required because a portion of the SUR4 contents (bits
9-16) is used as a base address during descriptor support.

A descriptor jump is formed by concatenating SUR4 bits 9-16
with a vector formed from the descriptor. Figure 4-18 shows the
generation of the descriptor jump address.

4-38

CENTRAL PROCESSOR CHIP (CPC)

Setup Register #5 Application

SURS5 is loaded during NVM, IBM, and VRX setup. SUR5 is the
Tally Copy Register. The tally field of the virtual instruction is un-
conditionally loaded into SUR5 bits 1-8 and, subsequently, if the
virtual format dictates, SUR5 bits 1-8 are transferred to the Tally
Register bits 1-8 by the Load Tally from Setup (LTS) instruction.

During NVM setup, SUR5 bits 1-8 are loaded from the least-
significant eight bits of the half-word that is loaded into SUR1 by
the JMPNA or JMPNB instruction.

During IBM setup, SUR5 bits 1-8 are loaded from the least-
significant eight bits of the half-word that is loaded into SUR1 by
the JMPIA or JMPIB instructions.

During VRX setup, SUR5 bits 1-8 are loaded from the most-
significant eight bits of the half-word that is loaded into SUR1 by
the JMPVB instruction.

Setup Instructions

SUR#1 Which Load SUR#1

16 15 14 1312 1110 9 8 7 6 5 4 3 2 1

«— Q———» JMPIA, JMPIB
| S ——
0000-0011; RR Type; Format 03-01= 000
0100-0111; RX Type; Format 03-01= 001 IBM 370
1000,1011; RS Type; Format 03-01= 100 Formats
1001,1010; SI Type; Format 03-01= 101
1100-1111; SS Type; Format 03-01= 011
16 151413121110 98 7 6 5 4 3 2 1
Q— JMPNA, JMPNB
(R
1000-1011; RR1 Type; Format 03-01= 100
1110-1111; RR2 Type; Format 03-01= 111 Next
1100-1101; Rl Type; Format 03-01= 110 Generation
0000-0101; RM Type: Format 03-01= 000 ormats
0110-0111; MM Type; Format 03-01= 011
GIM4026A
SUR=1 Setup Instructions

Which Load SUR=1
16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1

< Q P JMPVA, JMPVB
Q16=0 Double Stage Format VRX
Q16=1 Single Stage Format Formats
GIM4027

Figure 4-14 Formats Decoded from SUR#1 for IBM, NVM, and VRX Setup
4-39

CENTRAL PROCESSOR CHIP (CPC)

16 1561413121110 9 8 7 6 5 4 3 2 1

Q SUR#1
w
I
16 1
MARS?7 Overflow Fetch Address SUR#4
16 1)
Jump Register
BCT Flow Address Specified by
J-Field
16 151413121110 9 8 7 6 5 4 3 2 1
SBA N/U EBA SUR#3
3 2 1
Format
— F Decode
From OP Code

GIM4028
16 151413121110 9 8 7 6 5 4 3 2 1
BCT Flow Address (JMPIA « BCT)
MARS7 Overflow Fetch Address (JMPIA « M7BO
« BCT)
EBA Q 0 0 0 0] (JMPIB*RR)
+ JMPIC
SBA o F 0 0 0 O] (UJMPIA«M7B2
« BCT)
SBA ‘1] F 0 0 0 0] (UJMPIB+RR)
|
GIM4029

Figure 4-15 IBM Setup Jump Addresses

4-40

CENTRAL PROCESSOR CHIP (CPC)

16 15 1413 121110 9 8 7 6 5 4 3 2 1

Q | SUR#1
\ J N\ - 7 . . .
Y v t Indirection Indicator
—_| L—Q4-1 for RM Format
16 1
MARS7 Overflow Fetch Address SUR#4
16 1
Jump Register
BCT Flow Address Specified by
J-Field
16 151413121110 9 8 7 6 5 4 3 2 1
SBA IBA EBA SUR#3
3 2 1
Format
- F Decode
From OP Code

16

Jump Addresses Loaded Into
The CR During NVM Setup

GIM4030

Conditions Forming
Jump Addresses

BCT Flow Address

MARS7 Overflow Fetch Address

0] (JMPNA » M7B2 « BCT * R

(JMPNA « BCT)
(JMPNA «» M7BO « BCT)

R2

0 I (JMPNA = M7B2 « BCT » RR2)

0| [UJMPNB ¢ (RM + MM)]

0| [JMPNB ¢ (RR1 + RR2 + R1)]

.0} (JMPNC * RM ¢ 1)

o| [UMPNC « RM +T)]

| SBA [of F {00 0

[esa Q [0 0 o0

SBA 1 F 00 O

EBA Q 0O 0 O

IBA Q 0O 0 O

EBA Q 0O 0 O
Figure 4-16 NVM Setup Jump Addresses

GIM4031

4-41

CENTRAL PROCESSOR CHIP (CPC)

16 1514131211 10 9 8 7 6 5 4 3 2 1

Q IR M SUR#1

I Q8 =1 - ~ 7/
Single I L—— indexing Mode
Stage
Index Register

16 1561413121110 9 8 7 6 5 4 3 2 1

SBBA SABA EBA SUR#3

GIM4032

Jump Addresses Loaded into
the CR during VRX Setup Conditions Forming

6 5 4 3 2 1 Jump Addresses

16 15 14 13 12 11 10 9 8 7

SABA 0 0o ofeslo ol M |0 o0 o0 o fﬁé"":"gA"@]
SABA 0 o ofagjo 1| M |0 0 0 O ([,",i»vl :‘@;f
SBBA 0o 0o oflagl1 ol M [0 0 0 o0 {ﬁg"z‘gg;]
SBBA 00| M 0 0 0O f."&” E%B.'@)]
SBBA 0 1 M 0 0 0 o] [UMPVB«(R=0)]
SBBA 1.0 M 0 0 0 0| [UMPVB (IR =63)]
EBA 0 Q7-1 0 0 0 o JMPVC

GIM4033

Figure 4-17 VRX Setup Jump Addresses

4-42

CENTRAL PROCESSOR CHIP (CPC)

SUR#1
16 151413 1211 10 9 8 7 6 5 4 3 2 1 The NVM
Descriptor Jump
o |DF Type Instruction
\) (JMPD) Loads
SUR#1 from a
| Selected RSU..
SUR#4
16 151413 1211 10 9 8 7 6 5 4 3 2 1

MARS?7 Overflow Fetch Address

\ ~ / Program Restriction:
Bit 8 Must Be a Zero
v v
/ ~ f_H

16 151413 12 1110 9 8 7 6 5 4 3 2 1

Q 1

0 0 0 O

Control Register

JMPD Loads the
CR with the
Descriptor Jump
Address

GIM4034

Figure 4-18 NVM Descriptor Jump Addresses

4-43

CENTRAL PROCESSOR CHIP (CPC)

SCRATCH PAD VIRTUAL MACHINE OPERATION

The last 128 words of main memory are reserved as a scratch pad
which can be accessed with the real memory instructions and with
the scratch pad external register instructions. Figure 4-19 shows
the partitioning of the scratch pad with special assignments for cer-
tain virtual machines noted.

The Operand Pointers can be used during virtual command
emulation to reference virtual registers located in the scratch pad
portion of main memory. The Stack Pointer is used during NVM
emulation to reference the operand stack located in the scratch pad.

Operand Pointer #1

Operand Pointer #1 can be accessed through the normal internal
register path via IRU24. During virtual command setup, OPTR#1
bits 1-8 can be loaded as a virtual pointer from a base address and a
field in the virtual instruction to facilitate the referencing of the vir-
tual registers located in the scratch pad.

During IBM setup, the JMPIA and JMPIB instructions load
OPTR#1. OPTR#1 bit 8 is forced to a zero to place the pointer in the
register mode. OPTR#1 bits 5-7 are loaded with the base address
(110) of the virtual registers. OPTR#1 bits 1-4 are loaded from the
contents of SURI1 bits 5-8 (virtual R1 field).

During NVM setup, the JMPNA and JMPNB instructions load
OPTR#1. The value (contents of SUR1 bits 5-8) to be loaded into the
pointer is tested. If the value is not equal to 15, then OPTR#1 bit 8
is forced to a zero to place the pointer in the register mode, and the
remaining bits will be loaded as described. If the value is equal to
15, then OPTR#1 bit 8 is forced to a one to place the pointer in the
stack override mode. OPTR#1 bits 5-7 are loaded with the base ad-
dress (110) of the virtual registers. OPTR#1 bits 1-4 are loaded with
the contents of SUR1 bits 5-8 (virtual R1 field).

Operand Pointer #2

Operand Pointer #2 can be accessed through the normal internal
register path via IRU24. During virtual command setup, OPTR#2
bits 1-8 are loaded as a virtual pointer from a base address and a
field in the virtual instruction to facilitate the referencing of the Vir-
tual Registers in the scratch pad.

During IBM setup, for opcodes not in the RX format, the
JMPIA and JMPIB instructions load OPTR#2. OPTR#2 bit 8 is
forced to a zero to place the pointer in the register mode. OPTR#2
bits 5-7 are loaded with 110. OPTR#2 bits 1-4 are loaded from the
contents of SURI1 bits 1-4 (R2 field).

4-44

CENTRAL PROCESSOR CHIP (CPC)

During IBM setup the SETIA instruction and, for opcodes in
the RX format, the JMPIA and JMPIB instructions also load
OPTR#2. OPTR#2 bits 1-4 are loaded from SUR2 bits 13-16 (B
field). OPTR#2 bit 5 is loaded with a one if SUR2 bits 13-16 are all
zero. Bits 6 and 7 of OPTR#2 are loaded with 11. OPTR#2 bit 8
is forced to a zero to place the pointer in the register mode.

During NVM setup, the JMPNA and JMPNB instructions load
OPTR#2. The value (contents of SUR1 bits 1-4) to be loaded into the
pointer is tested. If the value is not equal to 15 or the NVM format
is the RM type, then OPTR#2 bit 8 is forced to a zero to place the
pointer in the register mode and the remaining pointer bits are
loaded as described. OPTR#2 bits 5-7 are loaded with 110. If the
format is not RM, the OPTR#2 bits 1-4 are loaded from the contents
of SURI1 bits 1-4 (virtual R2 field). If the format is RM, the contents
of SURL1 bits 1-3 are tested. If they are equal to zero, then a value of
16 (10000) is loaded into OPTR#2 bits 1-5. If they are not equal to
zero, then OPTR#2 bit 4 is forced to a zero and the contents of
SURI bits 1-3 are loaded into OPTR#2 bits 1-3 as the Index Regis-
ter Pointer.

During NVM setup, the SETNA instruction loads OPTR#2 ex-
cept for RI formats. OPTR#2 bits 1-4 are loaded from SUR2 bits
13-16 (B-field). OPTR#2 bits 5-8 are loaded as in the JMPNA and

JMPNB cases.
Entry

127 Maximum Main Memory Address

112

e |]
111 Virtual Register #16 ’ The Entire
110 Virtual Register #15 Scratch Pad

* (2) Is Accessible
') via the Two
| 96 | Viual Register #1 | Operand
95 | 32 Entry Operand Stack Used by Pointers or
the Next Generation Virtual via the
Machine (Also Accessible via Memory
64 | Stack Pointer) Instructions
63

Portion of Scratch Pad that is
Accessible by the Fetch Literal
T and the Store Literal

0 Instructions

1. For IBM or NVM emulation Scratch Pad entry 112 must be pre-loaded
with a zero by the firmware. .
2. The Operand Pointers are loaded during setup to reference the Virtual
Registers.
GIM4035

Figure 4-19 Scratch Pad Partitioning Example for Virtual Machine Emulation

445

CENTRAL PROCESSOR CHIP (CPC)

Stack Pointer

The Stack Pointer can be accessed through the normal internal
register path via IRU26. Also, during virtual command setup, the
Stack Pointer can be selected for subsequent use by a field in the
NVM virtual instruction.

During NVM setup, if the value tested from SUR1 or from
SUR2 (excluding the Index Register case for the RM format) is
equal to 15, then the Stack Pointer is selected. Bit 8 in OPTR#1 or
OPTR#2, as appropriate, is set to a one, overriding the use of that
pointer on subsequent external register references. Instead, the
Stack Pointer is used (transparently to the flrmware) to access the
Operand Stack.

MAP INDICATOR LOGIC
The most frequently modified virtual indicators are provided
special CPC logic to map the corresponding bits in the processor In-
dicator Array into the virtual indicator counterparts. Each of the
three virtual machines explicitly supported has a map indicator in-
struction associated with it.

The J-field and the K-field of the instruction act as enables for
the mapping process. Thus, if during emulation of a virtual com-
mand only the L, E, and G flags should be affected, then the L, E,
and G enables in the map indicator instruction are set. The other
flags or indicators in the Indicators Array will not be modified.

Virtual indicators that must be modified during emulation but
are not supported by mapping can be changed via the Transfer Out
instruction (TOI to IRU17).

PROGRAMMING CONSIDERATIONS

This section describes programming considerations and restrictions
when using the NCR/32-000 processor in a system.

FIELD OPERANDS

Field strings are from 1 to (64 K-1) bytes in length. The fields are
located in the MSU (Main Memory). The processor works on one,
two, or three fields at a time. A field is specified by the contents of a
MARS register and the contents of the Tally Register. The MARS
registers are specified by the instruction J-field and K-field. The
store MARS is always MARS6, implied by the instruction. All
fields must be of equal length.

4-46

CENTRAL PROCESSOR CHIP (CPC)

The MARS operation is specified by the instruction operation
code. Fields are processed one byte at a time under CPC logic con-
trol. The field instructions do not move in the pipeline until a word
boundary is crossed or the Tally Register equals zero (except for the
CFU instruction, which also moves in the pipeline when either bits 1
or 3 are set in the Indicator Array in response to a non-equal com-
parison of two fields). The data is transferred between the MSU and
RSU (four bytes at a time) under firmware control. While in the
RSU, the bytes are addressed by the two low-order bits of the corre-
sponding MARS register. Thus, the instruction selects the RSU
word and the MARS selects the byte within the word. The tally is
decremented as each byte is processed.

When the tally equals zero the field operation is complete, the
pipeline is advanced to the next instruction, and the firmware sends
a partial store to the MSU if required.

If the tally equals 0 when the field command is entered, then the
specified transfer is not executed.

The MARS Data Registers to be used in a field instruction must
be initialized before entering the field operation. For arithmetic field
instructions, the carry indicator must be pre-set to the proper value.

The Carry indicator is the only indicator that responds (set/
clear) through the individual cycles of the field instructions. The
Carry (I4) must be initialized by firmware prior to the first execution
of an AF, APDF, AUDF, SF, SPDF, or SUDF instruction. The carry
is chained automatically throughout the subsequent execution cycles.
14 is initialized to a zero (with the RIZ instruction) for AF, APDF,
or AUDF. 14 is initialized to a one (with the SCO instruction) for
SF, SPDF, or SUDF.

SINGLE FIELD OPERAND INSTRUCTIONS

The byte to field, halfword to field, field to byte, and field to half-
word instructions are all single field operand instructions. Only one
of the instruction operands is a field operand. These instructions ex-
ecute in a single cycle.

4-47

CENTRAL PROCESSOR CHIP (CPC)

The following is a firmware flow using a single field operand
instruction:

TBFI: Transfer Byte to MARS6-B0O

JFAL: Jump If Overflow (No Overflow)

TBFI: Transfer Byte to MARS6-B1

JFAL: Jump If Overflow (No Overflow)

TBFI: Transfer Byte to MARS6-B2

JFAL: Jump If Overflow (No Overflow)

TBFI: Transfer Byte to MARS6-B3

JFAL: Jump If Overflow (Overflow, Store Link)

vl@ﬂ@@?@@#

TBFI: Transfer Byte to MARS6-BO
JFAL: Jump If Overflow (No Overflow)

> 9. SKip Cycle (TBFI Skipped)

10. Skip Cycle (JFAL Skipped)

11. DRIBZ: Delayed Return on Link Jump Register
12. SA: Initiate Virtual Store plus Address Augment
13. —: Programmed No-OP

GIM4036

Figure 4-20 Single Field Operand Routine

Multiple Field Operand Instructions
The transfer field instructions, the boolean field instructions, and
the arithmetic field instructions are multiple field operand (two and
three field) instructions. These instructions execute in from one to
four cycles depending upon whether a MARS byte pointer crosses
the word boundary or the Tally Register decrements to zero.
These instructions hold in the Execute stage of the pipeline un-
til an exit condition occurs.

4-48

CENTRAL PROCESSOR CHIP (CPC)

The following is a firmware flow using a multiple field operand
instruction where all fields are aligned:

1. LINK: Load next instruction (AF) C.S.A. into JRJ
—p 2. AF: Add M4-B3 to M5-B3, results to M6-B3
*3. AF: Add M4-B2 to M5-B2, results to M6-B2
*4. AF: Add M4-B1 to M5-B1, results to M6-B1
*5. AF: Add M4-BO to M5-BO, results to M6-BO
6. JFA: Jump on overflow

L_P-?. SKIP CYCLE

8. SKIP CYCLE
9. LFD: Virtual Fetch for MARS4 initiated
10. —: Programmed NO-OP or RCV with pipeline lock
11. RCV: Fetched data is received into RSU
12. LFD: Virtual Fetch from MARSS initiated
13. DRIBZ: Delayed return on link jump register
14. RCV: Fetched data is received into RSU
15. SD: Virtual Store for MARSS initiated

*AF remains in the execute stage until an exit condition occurs (MARS overflow
condition or Tally = 0).

GIM4037A
Figure 4-21 Multiple Field Operand Routine

FETCHING FROM ISU
The processor instruction set does not support an explicit instruc-
tion which allows fetching of data (tables, etc.) from the ISU. How-
ever, a sequence exists which effectively performs the same func-
tion. This sequence depends upon the use of a 2-word instruction
beginning as the second instruction following an unconditional
delayed jump. Ordinarily, this is considered a violation of a restric-
tion involving delayed jumps since the literal used by the 2-word in-
struction will not follow from the coded flow. In realizing what the
CPC does in this circumstance, though, the restriction can be
overlooked and used to effect a fetch from control store.
The sequence to produce a fetch from control store is:

1. Delayed jump

2. Delayed jump

3. LRH or LRHC

4. X

The delayed jump in line 1 should specify the desired control

store address to be fetched from (e.g., DJOR, DRIBZ, etc.). The
delayed jump in line 2 should return the program flow to the desired
instruction code (could be instruction 4). The LRH or LRHC instruc-
tion, when it executes, will pick up the instruction to be used as a
literal that is in the pipeline Interpret stage while the LRH or

4-49

CENTRAL PROCESSOR CHIP (CPC)

LRHC is in the Execute stage. With the above sequence, that in-
struction (literal) will be the instruction referenced by the delayed
jump in line 1.

Thus, by varying the address specified by the first delayed
jump, this sequence can be used to fetch any number of words from
the ISU.

DELAYED JUMPS

An immediate program branch (e.g., immediate jump) voids the
- 3-stage pipeline. The delayed jump increases efficiency by allowing

the next two instructions already loaded in the pipeline to execute.

The efficient programmer is able to maximize performance by using

delayed jump or return instructions.

LOCK ON FETCH
The Receive Fetched Data (RCV) instruction should be executed
when the data resulting from a fetch operation is available from
memory. The processor pipeline halts until the Data Input Enable
(DIE) signal is recognized by the processor. DIE is asserted one
cycle before the data is asserted on the PM bus. At this time, the
pipeline is advanced so that RCV execution coincides with data
assertion on the PM Bus.

This mechanism for holding the pipeline is identical to that for
Bus Availability (BAV) monitoring as described in the “Bus Ac-
cess” section. The only difference is that the processor cannot be
interrupted or trapped while the PM bus is unavailable, but can be
interrupted while waiting for memory data.

STORE OPERATIONS

Store to memory operations are initiated by the explicit Store type
primitive instructions (SR,S,SA,SD,SL,MRR) and by the Implicit
Scratch Pad ERU references (TOE to ERUs 32-38).

All cycles after the first cycle, during which the Store instruc-
tion is executed, are offline to the Processor. Unless the Processor
attempts to execute another memory operation or some instruction
that accesses the PM Bus prior to the completion of the actual write
to memory of the Store data, Store operations can be considered to
be one cycle operations.

The number of offline cycles executed during Store operations is
a function of whether address translation is performed, whether the
Store is a full word Store or a partial word Store, and memory
access time.

4-50

CENTRAL PROCESSOR CHIP (CPC)

FETCH OPERATIONS

Fetch from Memory operations are initiated by the explicit Fetch
type primitive instructions (FR,F,LFA,LFD,LFAL,FL, MRR) and
by the implicit Scratch Pad ERU references (TIE from ERUs
32-38).

Fetches, unlike Stores, require two instructions to be executed
by the Processor. The first, as for Stores, triggers the memory oper-
ation. The second, which is unique to Fetch operations, loads the ac-
cessed Memory data into an RSU. This second instruction is the
Receive Fetched Data (RCV) instruction.

The minimal two cycle Fetch sequence consists of a Fetch In-
struction followed by an RCV instruction. The variations from this
sequence depend on whether Address Translation is performed and
memory access time. These other cases can be handled in one of two
ways.

Alternative #1: a simple macro is used by Firmware whenever a
Fetch sequence is required. This macro corresponds to the minimal
Fetch sequence. Hardware resolves any variations in Fetch timing
by halting the Processor pipeline prior to executing the RCV until
the fetched data is available on the PM Bus.

Alternative #2: Firmware recognizes the state of the AT control
bit at all times and the particular memory access time for the mem-
ory components in any given machine. The RCV, which is a dynamic
instruction in that whatever is currently on the PM Bus is loaded
into RSU, is executed, then, according to the variable factors.

Alternative #2 presents a performance advantage in that any
Processor cycles that occur between the Fetch instruction and the
RCV instruction can be utilized provided they do not reference the
PM Bus. Alternative #1 presents a Firmware management advan-
tage in that each sequence need not be specially tailored and multi-
ple sets of firmware need not be supported for different component
access times.

PROGRAMMING RESTRICTIONS

The following are programming restrictions for the NCR/32-000
processor. Included are CPC restrictions which apply to CPC-based
systems which utilize the NCR/32-010 Address Translation Chip.

1. The Receive Fetched Data (RCV) instruction used in the pro-
gram flow of all fetch operations must be executed when the data
to be received is asserted on the PM Bus. RCV must be either
properly located in the fetch firmware flow, or must be executed
in response to DIE assertion to ensure proper data reception.

4-51

CENTRAL PROCESSOR CHIP (CPC)

2.

10.

11.

12.

13.

14

Virtual memory store instructions capable of triggering DAT
interrupts should not be followed by a virtual memory instruc-
tion. At least one interruptible instruction should be included
between those virtual memory instructions.

The instructions immediately preceding any instruction which
uses the MARS byte pointers (bits 1 and 2 of a MARS address
register), other than an increment or decrement in a field or
setup instruction, must not change the value of the pointers.
Those instructions (LTS, LTRC, JMPVC, and TOE to IRU12)
which load the Tally Register may not immediately precede any
field instruction which uses the tally.

The second instruction following a delayed jump instruction
should not be a two-word instruction (an instruction requiring
an “L” field trailing literal).

The skip instructions cannot be used to skip 2-word instructions.
The restore from interrupts/traps sequence must include three
successive RTI instructions to restore the pipeline to the pre-
trap/interrupt state. v

A program sequence which uses field instructions having more
than one active MARS unit must include a load link address in-
struction (LINK) to establish the re-entry address from the over-
flow routines into a jump register.

The PS, PSM, and TVA functions executed via the TOE in-
struction must not be followed by an instruction which references
the PM bus.

Scratch pad entry 112 must be cleared to a zero value by firm-
ware during NVM emulation for use as the zero value which is
read when Index Register 0 is referenced.

If the virtual address for a fetch operation that causes a memory
error trap must be recovered, then the instruction immediately
following the fetch sequence may not be a virtual memory in-
struction (which will alter the previous virtual address).

All virtual store or fetch instructions which have AT set must
use an odd-numbered RSU as the data source/destination RSU.
Except during a setup sequence other than SETIA or SETNA,
when the Operand Pointers and Stack Pointer are loaded via
special hardware, the pointers can not be loaded in one proces-
sor cycle (instruction) and then used to reference the scratch
pad data in the next cycle.

The RSU specified by the J-field in the SETIA, SETNA, TSBC,
TSLDC, and TSRDC instructions or the K-field in the SETSX
instruction may not be used as a source RSU in the instruction
immediately following one of these instructions.

. A TOE to the TOD Register (ERU44) must not change bits

4-52

CENTRAL PROCESSOR CHIP (CPC)

1-10. Immediately preceding the point where the TOE is to be
executed, a TIE must be executed from the TOD, and bits 1-10
extracted and concatenated with the value to be loaded into bits

11-32 of the TOD.

4-53

ADDRESS TRANSLATION CHIP (ATC)

CHAPTER V
ADDRESS TRANSLATION CHIP (ATC)
CONTENTS

ATCFUNCTIONALDESCRIPTION. 5-7
Memory Operations, 5-7
Virtual Memory Operations (Address Translation) 5-8
Real Memory Operations 5-9
Memory Refresh Operation 5-9

Error Check/Correction and
Syndrome Bit Generation (ECC) 5-10
ECC Generation During Memory Store 5-11
Error Check and Correction During Memory Fetch 5-11
Multi-Work Fetch/Correction 5-12
External Register Unit Operations 5-12
Time Of Day/Interval Monitoring. 5-13
Virtual Address Monitoring 5-13
Breakpoint (Fetch for Execute) Monitor — CA2......... 5-14
Address Monitor (Stores) —CA3..................... 5-14
Fetch for Execute Monitor (Stores) — CA3,4 5-14
Trace (Store) Monitor —CA8 5-14
DYNAMIC ADDRESS TRANSLATION UNIT 5-14
OVEIVIEW . . . o oot e e e e 5-18
Operation 5-18
Translation 5-18
Memory Protection. 5-19
Invalid Register (IR). 5-20
Changed Page(CP)o 5-20
Register Referenced(RR) 5-20
Protection 5-21
Page Frame Number............................... 5-21
Virtual Page Number 5-22
Interrupts 5-22
EXTERNAL REGISTER DEFINITIONS. 5-22
Special Purpose ERU 5-23
Control Array #2.o 5-23
Control Array Definition 5-24

“Copyright 1984, NCR Corporation
Dayton, Ohio .
All Rights Reserved Printed in U.S.A. 1

i

CHAPTER V
ADDRESS TRANSLATION CHIP (ATC)

CONTENTS (CONTINUED)

Interrupt/Trap Array
Trap and Interrupt Operation
Trap and Interrupt Definition
Interrupt Mask Register (IMR)
Interval Timer/Monitor Register (ITMR)
Time-Of-Day Register/Counter (TOD)
Address Monitor Register (AMR)
Bus Interrupt Register (BIN)
Syndrome Register (SR)
Memory Data/Processor Data Register (MD/PD).
Virtual Operation ERUs
Virtual Address Register (VAR)
Real Address Register (RAR)
Descriptor Data Register (DDR)
Associative Memory and Page Descriptor Registers

ASSOCIATIVE MEMORY COMMANDS
Write Page Size (WPS)
Read Page Size RPS)
Invalidate Associative Memory (IAM)
Enable and Set Page Frame (ESPF)
Restriction
Write Virtual Page (WVP)
Read Page Frame (RPF).
Write and Set Page Frame (WSPF)
Restriction
Clear Associative Memory (CAM)
Purge Selective (PS)
Restrictions.
Write Purge Mask (WPM)
Read Purge Mask (RPM)
Purge Selective with Mask (PSM)
Restrictions.,
Read Virtual Address (RVA)
Read Real Address (RRA)
Translate Virtual Address (TVA)
Restrictions.
©Copyright 1984, NCR Corporation

Dayton, Ohio
All Rights Reserved Printed in U.S.A.

ADDRESS TRANSLATION CHIP (ATC)

CHAPTER V]

ADDRESS TRANSLATION CHIP (ATC)
CONTENTS (CONTINUED)
ATCSTATEOPERATION 5-45
StateFlow 5-47
SPECIAL ATC CONSIDERATIONS 5-47
PMBusContention 5-47
Refresh 5-47
Time-Of-Day, 5-48
Bus Interrupt Register Interrupts 5-48
Associative Memory Command Sequencing 5-48
Monitor Operations 5-48
ECCDisable 0o 5-48
ECC Generate/Syndrome Register 5-49
Real Address Register Byte/Descriptor Data Register 5-49
24/32BitOperations 5-49
Associative Memory Results. 5-49
TIMING CYCLE DESCRIPTIONS 5-49
Real Memory Operations 5-49

RealFullStoreot 5-50
Real Partial Store 5-50
RealFetch 5-50
Virtual Memory Operations 5-51
Virtual Full Store (CA9=0) 5-51
Virtual Partial Store (CA9=0) 5-52
Virtual Fetch(CA9=0) 5-52
Virtual Full Store (CA9=1) 5-53
Virtual Partial Store (CA9=1) 5-53
Virtual Fetch (CA9=1). 5-53
RefreshOperation 5-54

©Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in U.S.A.

ifi

Address Translation Chip (ATC)

CHAPTER V
ADDRESS TRANSLATION CHIP (ATC)

The NCR/32-010 Address Translation Chip (ATC) is an NMOS,
32-bit memory management unit that provides system memory
management, data error detection/correction, memory refresh,
supervisor/user isolation using four-level memory access protection,
and virtual address translation for memory fetches, full stores, and
partial stores. A functional block diagram of the ATC is shown in
Figure 5-1. .

The ATC is packaged in a 68-pin leadless chip carrier (Figure
5-2), and features the following:

e NCR/32-000 Compatibility

e Memory Management with four-level memory access protection
Three types of Memory Operations

» Virtual

e Real

e Refresh (Main Memory)

Multi-Word Fetch/Correction

Error Check and Correction, and Syndrome Bit Generation
Time-of-Day Counter and Time Interval Monitoring

Virtual Address Monitoring for Breakpoint and Trace

Functions
TRAP PVT
AN TODOSC l
N A
MEMERR ECC Virtual
Generation Translate
I ontrol
) PMCHAKOT 07 Control ; Control -
<+ A CAM
B8
- /
_ PMB01-32
- Yy v vy YVYY vy v v v ¥
C C
ES '\S I LT o ! N v
M PlAIM]YV
R E ’ s17|1¢|¢Z M{o|p|T|ls|M|M|P[A RAR
UL Rlp|A 2'\ Rl{p|alM R|R|A|R
D rR|R R
4 5 E
L1 IT1 1T I T 1 1 i 8 ’
PMWTO00-03 P;/IB ‘ R
REQO "1 Transter |« Refresh (l;Aastterl
«+ Control ontro

REQS

4L

Figure 5-1

EE
=

w
w
Q
=

I

>

-
0|z
iz
Z|n
a

ATC Functional Block Diagram

GIM5001A

5-1

Address Translation Chip (ATC)

TERM

CLOCKO (X0)

VBB
CLOCK1 (X1)
PMCHK?7

PRIV
CLOCK1 (X1)
CLOCKO (X0)
PVT

PMWT3
PMWT2
MWT 1

MWT

T

0
O

GIMi5002B

TERM PIN
PIN
PMBUS32 10 8
PMBUS31 11 7
PMBUS30 12 5
PMBUS29 13 c
PMBUS28 14 4
PMBUS27 15 Vgg (GND) 3
PMBUS26 16 >
PMBUS25 17 1
PMBUS24 18
PMBUS23 19 68
PMBUS2Z 20 17 9 ﬁ/ 67
PMBUSZ1 21 ﬂls 68 66
PMBUS20 22 65
PMBUSTO 23 64
PMBUSTE 24 gg
PMBUST7 25\ o
-
VoD 26 7 26 ATC 60| — 60
PMBUS16 27 \
PMBUS15 28 59
PMBUSTA 29 58
PMBUST3 30 4 52 gg
PMBUST2 31
PMBUSTT 32 /182 43 511 2451
PMBUSTO 33 o3
PMBUSOS 34 52
PMBUSO8 35 43
PMBUS07 36 Vgg (GND) 51
PMBUSO06 37 50
PMBUSOS 38 Zg
PMBUSO4 39 7
PMBUS03 40 46
PMBUS02 41 45
PMBUSOT 42 44
Figure 5-2 ATC Pin Assignment—Bottom View (Opposite From Lid)

Table 5-1 contains a brief description of the ATC input/output

signals, and Table 5-2 gives a summary of the signals.

5-2

Address Translation Chip (ATC)

PIN # Symbol Description

10-25 |PMBUS32-01 | Processor Memory Bus—These multiplexed bus lines
27-42 are used to transfer information between devices. In
general, address information is transferred to a
destination device during X0, and data is transferred
to/from a destination device during X1. However, all
address and data transfers between the ATC and
memory occur during XO.

8,49 X0 Phase O input clock.
6, 50 X1 Phase 1 input clock.
62 PMRST PM Bus Reset—This input, when asserted, holds the

ATC in a reset state.

61 SPINT Special Interrupt—This input is sampled by the ATC

’ during X1. The ATC responds to an asserted SPINT by
setting bit 12 (Special Interrupt) of the I/T Array and
asserting INT if the interrupt is not masked in the
Interrupt Mask Register. SPINT is normally tied to the
system low-voltage/power-fail detection circuit.

m
)
m
o

External Register Enable/Permit—When this input is
asserted during X0, the ATC decodes the External
Register Unit number from the address lines to
determine if one of the ATC External Register Units
(registers) is being addressed. Descriptions of the ATC
ERUs are given in this chapter.

63

<
>
mi

Memory Address Enable—This input, when asserted,
indicates that a device has initiated a real memory
operation. If the operation is a fetch, the ATC reads and
checks the data for errors during the X0 following the
assertion of MAE, and asserts the checked data on the
PM Bus the following X1 for reading by the requesting
device.

64

The ATC is forced to execute multiple
fetches/corrections by the assertion of MAE and DIE
during subsequent X0 clocks, and remains in the
fetch/correct state until MAE assertion during X0
ceases.

The ATC asserts MAE when it asserts a real address on
the PM Bus after address translation in response to a
virtual memory message; that is, if CA9 (Virtual Equals
Real) in the Control Array is clear, the ATC asserts MAE
and a real address on the PM Bus during X0 if PVT was
asserted the previous X0, indicating a virtual memory
operation.

GIMTES003A-1

Table 5-1 ATC Pin Description

5-3

Address Translation Chip (ATC)

PIN # Symbol Description

48 PVT Processor Virtual Transfer—The ATC initiates a virtual
address translation when this input signal is asserted low
during X0 if bit 9 (Virtual Equals Real) is clear in the
Control Array. If bit 9 is set when PVT is asserted during
X0, the ATC initiates a real memory access.

44-47 PMWTO-3 | Processor Memory Write Tags 0-3—The ATC monitors
these inputs during virtual memory operations to
determine which bytes in the addressed word are to be
written. These signals are equivalent to the Byte Write
Enable signals in real memory messages. If all of the
write tags are negated, a fetch is indicated. If one or
more are asserted, corresponding byte(s) are written.
PMWTO corresponds to byte 0, PMWT3 corresponds to
byte 3, etc.

67,68 | PMCHK7-1 | PM Check 7-1—These bidirectional lines are used for

1-5 syndrome bit (ECC) transfer between the ATC and
memory. These signals are asserted by the ATC during
store operations, and by the memory during fetch
operations.

9
m

65 Data Input Enable—This signal is asserted by the
system Memory Interface during X0 and X1 to indicate
that memory data is to be asserted on the PM Bus as
part of a fetch, partial store, or refresh operation; or that

the Memory Interface is ready to accept data.

66 MDEE Memory Data/Enable Error—The ATC asserts this
signal during the X1 clock that it detects an
uncorrectable (multiple bit) memory error during a fetch
or partial store operation.

57 MEMERR | Memory Error—The ATC asserts this signal during X1

in response to a correctable (single bit) or non-
correctable (multiple bit) error detected during a pamal
store, fetch, or refresh operation.

59 REQO Request 0—The ATC asserts REQO to gain access to

the PM Bus the following PM Bus cycle. REQO is the
highest priority system request. When the ATC asserts
REQO, it takes control of the PM Bus the following cycle
without further handshaking. The system bus arbitration
logic must force other devices off the PM Bus at this time.
The ATC may continue asserting REQO for several
consecutive cycles to complete an operation.

58 REQS Special Request—The ATC asserts this line high to

give the CPC immediate access to the PM Bus. While
REQS remains asserted, the system bus arbitration logic
must ignore all other bus requests, and de-select all
other devices.

GIMTES003A-2
Table 5-1 ATC Pin Description (Continued)

Address Translation Chip (ATC)

PIN #

Symbol

Description

53

52

56

55

51

3

=
|
b
o

TODOSC

Z
I

T
e
<

VBB

Uncorrectable memory errors require immediate CPC
intervention before other data transfers occur. When the
ATC detects an uncorrectable data error, it asserts
REQS until the CPC has serviced the error condition,
indicated by CPC clearing of the trap bit in the ATC I/T
Array.

Three ATC associative commands force the ATC to
assert REQS: the Purge Selective (PS) command, the
Purge Selective With Mask (PSM) command, and the
Translate Virtual Address (TVA) command. The ATC
asserts REQS for one cycle in response to these
commands.

ATC memory refresh operation is inhibited while REQS
is asserted.

Interrupt—The ATC asserts INT when any bit in the I/T
Array other than a trap bit is set. The ATC negates INT
when the bit forcing the interrupt is cleared,; if no other
interrupts are pending. TNT assertion is inhibited
during X1.

Trap—The ATC asserts TRAP when any trap bit in the
I/T Array is set. The ATC negates TRAP when the bit
forcing the trap is cleared, if no other traps are pending.
Traps cannot be masked. TRAP assertion is inhibited
during X1.

Time Of Day Oscillator—This input is driven by a free-
running 250 KHz external oscillator, and is used to drive
the TOD (Time Of Day) Counter/Register in the ATC.
The frequency of this input affects the memory refresh
rate.

Inhibit—This input, when asserted low, inhibits ATC
refresh operation to allow system expansion.

Privilege Mode—PRIV is an input used to set/reset

the Privilege Flag, bit 1, in the Control Array. PRIV must
first be asserted during XO. If PRIV is asserted the
following X1, the Privilege Flag is set; if PRIV is negated
the following X1, the Privilege Flag is cleared.

Negative voltage supply.

GIMTES003A-3

Table 5-1 ATC Pin Description (Continued)

Address Translation Chip (ATC)

PIN # Symbol Description
9, 43 Vss Ground
26, 60 VDD Positive Voltage Supply

54 NC No Connection (not used)

Barred terms are active low.

GIMTE5003A-4

Table 5-1 ATC Pin Description (Continued)

Input/ | Active
Signal Name Pin # Symbol Output | State Drive
Processor-Memory Bus 10-25 |PMBUS32-01{ Input/ | Low Open
27-42 Output Drain
Clock O 8, 49 X0 Input | High Input
Clock 1 6, 50 X1 Input | High Input
PM Bus Reset 62 PMRST Input | Low Input
Special Interrupt 61 SPINT Input | Low Input
External Reg. 63 EREP Input/ | Low Open
Enable/Permit Output Drain
Memory Address Enable 64 MAE Input/ | Low Open
Output Drain
Processor Virtual Transfer 48 PVT Input Low Input
Processor Write Tags 44-47 PMWTO-3 Input Low Input
Processor Memory Check 5-1 PMCHK7-1 Input/ | Low Open
Bits 68, 67 Output Drain
Data Input Enable 65 DIE Input | Low | Input
Memory Data Enable/Error 66 MDEE Input/ | Low Open
Output Drain
Memory Error 57 MEMERR Ouptut| Low Open
Drain
PM Bus Request “0” 59 REQO Output | Low Open
Drain

Table 5-2 Pin Assignment Summary

5-6

Address Translation Chip (ATC)

Table 5-2

ATC Pin Assignment Summary (Continued)

ATC FUNCTIONAL DESCRIPTION

‘) Input/ | Active| .o
Signal Name Pin # Symbol Output | State »
Special Request 58 REQS Qutput | High | Push-Pull
Interrupt 53 iNT Qutput | Low Open
Drain
Trap 52 TRAP Output | Low | Open
Drain
Time-of-Day Osc. 56 TODOSC Input | High Input
Inhibit 55 INH Input | Low | Input
Privilege Mode 51 PRIV Input | Low Input
Power Supply (Pos) 26, 60 Vbp Input — —
Power Supply (Neg) 7 Ve Input — —
Ground 9, 43 Vgs Input — —
GIMTE5004A2

This section gives descriptions of the following ATC functions:
memory operations, error check/correction, External Register Unit
operations, time of day/interval monitoring, and virtual address
monitoring. The rest of the chapter is devoted to detailed descrip-
tions of the ATC Dynamic Address Translation Unit, External
Register Units, and Associative Memory commands necessary for
implementation of the ATC in a system.

MEMORY OPERATIONS
The ATC has an internal state machine to sequence memory opera-
tions (see ATC State Operation). Chapter III describes memory

operations and PM Bus protocols.

Address Translation Chip (ATC)

Virtual Memory Operations (Address Translation)
The ATC can operate on either 24 or 32 bit virtual addresses.

The ATC determines that a virtual operation is being initiated
when the PVT (Processor Virtual Transfer) line is asserted during
X0, at which time a virtual address is on the PM Bus. The ATC
strobes the address into its Virtual Address Register Buffer and
starts the translation process. If the translation process is not suc-
cessful, the ATC generates a DAT (Dynamic Address Translation)
No Match Interrupt. If the translation process is successful and
protection check is enabled, the ATC protection check bits associ-
ated with the virtual address are checked according to the operation
indicated by PM Bus bits 2 and 1 as follows:

BIT 02 01

0 Virtual Fetch

1 Virtual Store

0 Virtual Fetch for Linkage

1 Virtual Fetch for Execution

=)

NOTE: These signals are logical values (i.e. PMBUS02 = 0 is a
logical value and represents an electrical high value on the PM
Bus).

If there is an access violation, the ATC generates a DAT Access
Violation Interrupt.

Assuming a successful translation, the real 24 bit address is in a
register used for holding real addresses, called the Real Address
Register, by the end of X1.

During the next X0 the ATC asserts MAE (Memory Address
Enable) and asserts the real address on the PM bus.

During the X0 clock that PVT is asserted, the ATC asserts the
REQO (PM Bus Request 0—highest priority request) to secure ac-
cess to the PM Bus in the next cycle, and examines the PMWTO0-3
(Processor-Memory Write Tags 0 thru 3) lines. If PMWT0-3 are all
asserted, the ATC enters a full store sequence. If some but not all
PMWTs are asserted, the ATC enters a partial store sequence (i.e.,
a read-modify-write). If all PMWTs are negated the ATC enters a
fetch sequence. During the following X1, data is clocked into the ATC
from the PM bus for store operations. The PMWTs are byte point-
ers assigned as follows: PMWTO - Byte 0, PMWT1 - Byte 1,
PMWT2 - Byte 2, PMWTS - Byte 3.

The ATC has a special mode of operation called Virtual Equals
Real. This mode forces the virtual address translation and the
translation checking to be inhibited, so that the virtual address is
handled as a real 24 bit address.

58

Address Translation Chip (ATC)

A clock by clock description of memory operations is given in
Chapter 3.

Real Memory Operations

A Real Memory operation can be initiated by the processor and by
an 1/0 device on the PM Bus. (The ATC can also initiate a real mem-
ory operation after successfully translating a virtual address into a
real address). The operation is initiated by a device assertion of
MAE (Memory Address Enable) and an address on the PM Bus dur-
ing X0. The ATC detects the MAE line and asserts the REQO line to
secure access to the PM Bus for the next cycle. If a fetch, the ATC
clocks the address into its Real Address Register.

The ATC examines the write tags (bits 28-25 of the address
message) to identify the type of memory operation (in the same
manner as the PMWTO0-3 lines are examined during virtual memory
operations). The PM Bus bits are assigned as byte pointers as
follows: PMBUS28 - Byte 0, PMBUS27 - Byte 1, PMBUS26 -
Byte 2, PMBUS25 - Byte 3.

In order to distinguish between CPC and other device-initiated
real memory operations, the ATC hardware examines the PVT
(Processor Virtual Transfer) line during the X1 following MAE
assertion during X0. If PVT is asserted at the end of the X1, a
processor-initiated operation is indicated. The ATC asserts TRAP if
it detects an uncorrectable memory error during a processor-
initiated memory fetch.

Memory Refresh Operation

Each refresh operation consists of a row refresh and a word fetch/
check/correct followed by a full store operation. These actions main-
tain the proper charge levels in the main memory cells, and scrub
a word of main memory to correct a single bit error that it may
contain.

The ATC performs a refresh to a row of main memory approx-
imately every 16 microseconds, depending on the system clock and
timer programming. Thus the entire main memory (256 rows) is
refreshed every 4 ms by the memory interface term RAS. In addi-
tion to a row refresh, the word fetch/check/correct and store opera-
tion scrubs each word bank of main memory every 1.048 seconds
(assuming each bank of local memory consists of 64K words).

The Time-Of-Day register/counter is used to determine the 16
microsecond refresh intervals. At the start of the 16 microsecond in-
terval, the ATC tests to see if a refresh operation can be initiated on
the PM Bus. If during X0 no PM Bus transfers are initiated (i.e.,
neither a memory transfer nor an External Register Unit transfer),

5-9

Address Translation Chip (ATC)

and if no double memory error from a previous operation is pending,
the ATC asserts REQO and starts a four cycle refresh operation.
During the following X0, the ATC asserts the time-of-day counter
value on the PM Bus as the address that is to be refreshed (the re-
fresh bit, PM Bus bit 29 is set and the write tags are reset). The
ATC asserts MAE, and asserts REQO to secure access to the PM
Bus the next cycle.

The Memory Interface uses the lower 10 bits of the Time-Of-Day
register to activate its RAS term to refresh the Main Memory, and
the upper 14 bits to activate the CAS term for reading the word to
be scrubbed.

The ATC latches the word to be scrubbed at the end of a subse-
quent X0, checks it with its Error Correction Check logic, and
asserts REQO to secure access to the PM Bus for the store operation
that may follow. If there is no error in the fetched word, the same
data is written back into memory. If a single bit error is detected,
correction is made, new syndrome bits are generated, and the cor-
rected word is stored.

If a double error is detected, the ATC aborts the operation and
returns to its Idle state. The TRAP signal is not asserted, but
MDEE is asserted durmg X1, signaling to the Memory Interface
- that the write back is to be aborted. In all cases the ATC assumes
that the Memory Interface will hold the refresh address it received
for the duration required to successfully complete the store.

If a refresh condition is decoded at the same time as either a
memory transfer or an External Register Unit transfer is initiated,
the refresh operation is postponed. After completing a memory or
an External Register Unit transfer, if a memory error trap condition
does not exist, the ATC initiates the 4 cycle refresh operation. If
the memory error trap condition does exist, the ATC returns to the
Idle state.

Note that refresh can be inhibited by any of the following: INH
input signal asserted, PMRST input signal asserted, the double bit
memory error trap bit set in the Interrupt/Trap Array, and a TOE
operation to the Syndrome Register.

ERROR CHECK/CORRECTION AND SYNDROME

BIT GENERATION (ECC)

Associated with each word in memory are 7 syndrome bits. These
syndrome bits are generated by the Error Check and Correction
(ECC) logic during each memory store operation, and are stored
along with that word. During a memory fetch operation, the 7 syn-
drome bits corresponding with the fetched word are used to check
the integrity of the word.

810

Address Translation Chip (ATC)

The ECC logic is capable of detecting and correcting single bit
errors (including syndrome bit errors), but can only detect and re-
port double and some multiple bit errors.

The ECC logic can be disabled by a bit in the Control Array
(CA7=1). The ECC syndrome generation logic can be disabled by
use of the Syndrome Register in a diagnostic mode.

ECC Generation During Memory Store

Each bit on the PM Bus is identified by a unique seven bit code. In
the syndrome generate mode these Correction Codes are identical to
the PMCHK7-1

The ECC logic is normally in the syndrome generate mode and
is essentially an odd parity generator. Fourteen data bits associated
with each Correction-Code bit are input to an odd parity generator.
If the 14 bits by themselves constitute odd parity, the PMCHK line
is negated. If these 14 bits constitute even parity, the PMCHK line
is asserted. The 7 PMCHK line states obtained in this fashion are
then stored in memory along with the data word, and are designated
the 7 syndrome bits for that word.

Error Check and Correction During Memory Fetch

The ECC logic goes active only if CA7 in Control Array #2 is not
disabling ECC and the operation being performed is a “normal”
+034(i.e., not diagnostic, implying manipulation of the syndrome
register) fetch, a fetch for a partial store operation or a fetch for
refresh operation.

Whenever a word is fetched from memory, parity is checked for
each of the 7 sets of 14 data bits plus the corresponding syndrome
bit. If the result of each check is odd parity, all Correction-Code
lines remain negated. If a check results in even parity, then the
associated Internal Correction-Code line is asserted. The state of the
correction-code lines determines whether an ECC error has been
detected and the nature of the detected error. All the code lines are
negated after an error free fetch. A single Correction-Code line
asserted indicates an error in the syndrome bits. Three Correction-
Code lines asserted indicate a single bit error, and the incorrect bit
can be decoded using ECC logic equations. Any other combination of
Correction-Code lines being asserted indicates multiple bit errors.

During fetch operations data is latched during X0 into the ATC.
At the same time the ATC ECC logic begins checking the data. If no
errors are detected, the data is sent to the requesting device. If either
a single data bit or syndrome bit error is detected, the correction is
made by the ATC and the corrected data is sent to the requesting

5-11

Address Translation Chip (ATC)

device. With or without errors, the ATC outputs the data that X1
(same cycle). If multiple bit errors are detected, the ATC flags the
system by asserting the MDEE (Memory Data Enable/Error) line
at X1, indicating that this is an uncorrectable error condition. If the
fetch was initiated by the processor, the ATC sets the Memory
Error Trap bit in the Interrupt/Trap Array, which activates the
TRAP line. The trap bit will not be set for fetch, partial store,
refresh, or non-processor initiated operations.

After an error has been flagged, the ATC resumes normal flow
of state sequencing. It is the responsibility of the Memory Interface
logic to monitor MDEE, and to abort the data write-back if MDEE
is asserted during X1.

In all detected memory error cases (single and multiple bit
errors), the ATC MEMERR line is asserted during X1. This signal
is asserted by the ATC as a feature that may be used to count all
memory errors for test and evaluation purposes.

Multi-Word Fetch/Correction

A normal memory fetch, as seen by the ATC, is an address asserted
during X0, followed some subsequent X0 by the fetched memory
data. An input control signal, DIE, is used to indicate to the ATC
that this is the X0 during which the fetched data is valid on the PM
Bus. The ATC then reads the data and corrects it, if necessary, then
outputs the data the following X1. If the data has an uncorrectable
error, the ATC asserts MDEE the same X1; and if the fetch was
processor initiated, the ATC asserts TRAP.

For multiple-word fetches the ATC requires the same address
and DIE assertion during subsequent X0 clocks. But the MAE
signal must also be asserted with DIE to keep the ATC in the fetch/
correct state (i.e., state 2) until the last fetch data is read. For the
last fetch data read MAE is not asserted, allowing the ATC to
“unlock’ from the fetch/correct state.

The ATC asserts MDEE to indicate an uncorrectable memory
error only during the X1 clock of the cycle in which the uncorrect-
able word is transferred. For CPC-initiated multiple-word fetches,
the ATC asserts TRAP in response to any uncorrectable error.

EXTERNAL REGISTER UNIT OPERATIONS

The ATC identifies an External Register Unit (ERU) operation by
the assertion of EREP (External Register Enable/Permit) during
X0. The ATC responds by decoding the least significant seven bits
on the PM Bus during X0 to determine whether an ATC External
Register Unit is being addressed. A transfer to/from an External
Register Unit occurs during X1. The direction of transfer is

5-12

Address Translation Chip (ATC)

established at X0 by the state of PM Bus bit 8. If bit 8 is set, an Ex-
ternal Register Unit is written from the PM Bus during X1. If bit 8
is clear, the ERU is read during X1.

All External Register Unit transfers are one cycle operations.
However, three External Register Unit transfer-out operations to
the ATC (External Register Units 52,54,55) can not be immediately
followed (for one cycle) by either an External Register Unit opera-
tion that requires the ATC, or by a memory operation.

The ATC External Register Units are divided into two groups:
External Register Units associated with the virtual operations, and
External Register Units for special purpose.

TIME OF DAY/INTERVAL MONITORING

The ATC monitors the Time-Of-Day via a four microsecond resolu-
tion Time-Of-Day register/counter. If a specific time or interval of
time is to be monitored, the Interval Timer Monitor Register must
be initialized for that interval. When there is an equality between
Time-Of-Day register/counter and the Interval Timer Monitor Reg-
ister, the Time-Of-Day Interrupt bit is set.

VIRTUAL ADDRESS MONITORING

The ATC features four types of address monitoring using one
monitor register and four control bits. Table 5-3 presents a sum-
mary of the monitor functions.

When the ATC detects any of the monitored conditions, it
aborts the memory operation.

Control Array Transfer* | AMR Match Additional Match Match
8 4 3 2 |F4X-AMR Required Qualification Result
ojJojJo} 1 No Yes Virt. Fetch for Execute | BP
o|jo}j1]oO No Yes Virtual Store MM
o110} 0 Yes No None None
oj1|1]o0 Yes Yes Virtual Store F4Xx
1]0]0}|O No No Virtual Store MM

*Note: Control Array bit 4 enables the last Fetch for Execute Address (F4X) to
be transferred to the Address Monitor Register (AMR).

BP — is the Virtual Breakpoint Interrupt (I/TA8)
MM — is the Monitor Match Interrupt (I/TA7)
F4X — is the Fetch for Execute Monitor Interrupt (I/TA6)

GIMTES005A

Table 5-3 Monitor Functions

5-13

Address Translation Chip (ATC)

Breakpoint (Fetch for Execute) Monitor — CA2

If the Control Array enables monitoring for breakpoint (CA2=1), a
Fetch for Execute sets the Virtual Break Point Interrupt if the vir-
tual address matches the value in the Address Monitor Register.

Address Monitor (Stores) — CA3

The ATC has the capability of monitoring all virtual addresses used
for full or partial stores. If the Address Monitor Register is set to a
specific address and the Control Array enables monitoring
(CA3=1), all virtual address for full or partial stores are compared
to the address in the Address Monitor Register. If there is a match
the Monitor Match Interrupt is set.

Fetch for Execute Monitor (Stores)—CA3,4

If a (virtual) Fetch for Execute is initiated (PMBUS02, PMBUS01 =
1,1) and the Control Array enables monitoring for Fetch for Execute
addresses (CA4=1), the virtual address received from the processor
at X0 is loaded into the Address Monitor Register. Subsequently, if
the Control Array enables monitoring (CA3=1), all virtual addresses
relating to full or partial stores are monitored. A Fetch for Execute
Monitor Interrupt is set during X1 if there is a match.

Trace (Store) Monitor — CAS8
If the Control Array enables monitoring for Virtual Memory Store
Trace (CA8=1), then any virtual store triggers a Monitor Interrupt.

DYNAMIC ADDRESS TRANSLATION UNIT

An ATC Dynamic Address Translation Unit model is shown in
Figure 5-3.

The Dynamic Address Translation (DAT) unit contains 16 en-
tries. Each entry is comprised of two parts: Associative Memory
(AM, see Figure 5-4) and corresponding Page Descriptor (see Figure
5-5).

Each AM entry consists of a 22 bit Virtual Page Number. The
Page Descriptor is comprised of 25 bits: 8 Protection Check bits, a
14 bit Page Frame Number, 2 AM entry control bits (Changed Page
and Register Referenced bits), and an Invalid Register (entry) bit.
The DAT is designed to support 3 page sizes (1K, 2K, and 4K
bytes). The ATC Virtual Operation flow is shown in Figure 5-6.

5-14

Address Translation Chip (ATC)

Virtual Address Register

20-22 bit Virtual Page Number 12-10 bit Page Displacement
\ 4
1 >
2 >
3 >
. Assoc. o . Page
. Memory . . Descriptor
15 >
16 >
Match
Control
24 v A 1
Real Addr. Reg. Pg. Frame Number Displacement
att——14-12 bits ———w{<tt———10-12 bitg~——3
GIM50078
Figure 5-3 Dynamic Address Translation Unit Model
- - 22 Bits >
Virtual Page Number
1
2
3
.
.
.
15
16
L AM Entry Location
GIM5008A

Figure 5-4 Associative Memory Virtual Page Numbers

5-16

Address Translation Chip (ATC)

- 25 Bits st

Protection Checks™*
Privileged Non-Privileged *x xx
PCR PCW PCE PCL|PCR PCW PCE PCL| Page Frame Number| IR | CP| RR

1 4 Bits 4 Bits 14 Bits . 1 101

/—_—_—’)//

/’—\

\ A\

15

16

L Corresponding AM Entry Location

*PCR, PCW, PCE, PCL are Protection Check bits (defined in a subsequent
section on Protection Check).
**The IR bit is accessible for reading.
***The RR bit is not accessible for reading or writing.
GIM5009A

Figure 55 Page Descriptors

5-16

Address Translation Chip (ATC)

A 4

4

\ 4

Idle —T
‘ N
X0 Virt. Addr.
v
1 Y Set Monitor Match
Mont. Match > Interrupt and Abort
N Memory Operation
4
] N Set No-Match
Translation > Interrupt and Abort
Address Match Memory Operation
v
Y
Memory Store
v K
N le CP Set
N
X119 l
Set Changed Page
Interrupt and Abort
Memory Operation
\ 4 L
N Set Access Violation
Access Enabled # Interrupt and Abort
> Memory Operation
\ 4
Y
Any Virtual Interrupts - Abort Memory Operation
L ‘ N
X0 Output Translated Address
. !
L] L]
[] *
A 4
X1 End Memory Operation

Figure 5-6 ATC Virtual Operation Flow

GIM5011

5-17

Address Translation Chip (ATC)

OVERVIEW

Two types of addresses are presented to the ATC: real, and virtual
(addresses requiring translation). When a real memory operation is
initiated, the ATC performs no operation on the address (i.e., the
real address goes directly to memory). When a virtual memory
operation is initiated, the virtual address is latched by the ATC and
(if ““contained”” in the DAT) is translated into a real address. The
real address is then asserted on the PM Bus (i.e., passed to memory)
by the ATC. If the virtual address was not ‘‘contained” in the DAT,
the memory operation is aborted and the INT (Interrupt) line is as-
serted. This condition is referred to as a DAT fault.

OPERATION
The ATC can translate either a 24 or a 32 bit (including two protec-
tion bits) virtual address into a 24 bit real address.

All virtual addresses are composed of two parts: a Virtual Page
Number (called the VPN), and a Page Displacement. As the page
size varies from 4K to 1K bytes, the number of bits in the VPN field
varies from 20 to 22 bits, and the Page Displacement field varies
from 12 to 10 bits. The virtual address format is as follows:

32 24 16 13 12 11 10 9 8 1
A
optional —3 I I I
VPN Page
Displacement
Variable
Page Size
GIM5006
Translation

When a virtual address is asserted on the PM Bus, the VPN portion
is compared with the contents of the AM (i.e., all valid entries, up to
16).

If a match between the virtual address and a valid AM entry is
found, the page displacement portion of the virtual address is con-
catenated with the Page Frame Number from the Page Descriptor
of the matched AM entry. The result of the concatenation is a real
address. This successful address look-up, and the vector concatena-
tion is called Dynamic Address Translation or simply translation.

5-18

Address Translation Chip (ATC)

The virtual address can be 24 or 32 bits in length. The Address Size
bit in the ATC Control Array (CA5) specifies which address length
the ATC is to translate. With CA5 set the upper 22 (20) bits of the
32 bits of the virtual address are used by the DAT unit in the
associative search. With CA5 reset the upper 8 bits of the virtual
address are forced to zeros by the ATC (since these 8 bits are ig-
nored by the hardware, they can be in any state). This prevents a 24
bit virtual address from matching a valid 32 bit address entry in the
AM whose upper 8 bits are non-zero.

Memory Protection

The DAT unit performs four memory protection functions. Each
Page Descriptor contains two sets of protection check masks: one
for operation in the privileged state, and the other for operation in
the non-privileged state. Each set consists of a PCR, a PCW, a PCE,
and a PCL bit. The processor state is designated by the Privilege
Flag in the Control Array (CA1). If CAl is set, the privileged set is
used. If CA1 is reset, the non-privileged set is used. Each set of pro-
tection check masks controls execution of the four access functions;
read, write, read for execute, and read for linkage.

An attempt to access memory in a manner violating the selected
set of protection checks results in an access violation. If an access
violation occurs, the memory operation is aborted and the DAT Ac-
cess Violation interrupt bit is set in the Interrupt/Trap Array. Table
5-4 indicates which protection is checked for each type of memory
operation. A one indicates that the particular protection function is
checked, and a zero entry indicates that the protection function is
not checked.

Read* Write* Execute™ Linkage*
Permit Permit Permit Permit
Virt. Oper. (PCR) (PCW) (PCE) (PCL)
Fetch 1 | 0 0 0
Store 0 1 0 0
Fetch for Execute 0 0 1 0
Fetch for Linkage 0 0 0 1
TOE to ERU 55 *x > *x *x

*Operation is enabled when the bitis a 1.
**The TOE operation on ERU 55 (called the TVA command) is described in the
External Register section dealing with virtual operations (and commands).

GIMTE5010

Table 5-4 Protection Functions for Memory Operations

5-19

Address Translation Chip (ATC)

Invalid Register (IR)
Associated with each VPN is an IR bit. The IR bit is used to in-
dicate whether a particular AM entry contains a valid/invalid entry.
If an IR bit is set that entry is invalid and is not used in the transla-
tion (association) process.

The IR bit is program accessible for reading.

Changed Page (CP)

The Changed Page (CP) bit indicates that the page referenced by an
AM entry has/has not been written into by a previous memory
operation. When a memory operation writes into a page that has its
CP bit reset, the Change Page interrupt bit is set in the Interrupt/
Trap Array register, the memory operation is aborted, and the CP
bit for that page is set. A write into a page that already has its CP
bit set is treated like any other memory operation: the CP interrupt
is not set, and the operation is continued.

The CP bit is program accessible.

Register Referenced (RR)

The Register Referenced (called the RR) bit is used to implement a
Least Recently Used algorithm for replacing entries in the DAT.
Two situations arise regarding the loading of the AM entries. The
first is the loading of the “table” prior to use. The second is the up-
dating of the table when process translation fails. Since the AM has
a finite number (16) of entries, system operation will require replac-
ing some unused or old entries with new entries. The RR bits are
used to this end. There is one RR bit for each AM entry.

Any AM register that does not have its RR bit set may have a
new VPN and corresponding Page Descriptor loaded into that entry
location. Once the RR bit is set for an entry, that entry cannot have
new data loaded to either the VPN or Page Descriptor. When all RR
bits are set, the ATC automatically resets them.

The RR bit is set for an individual AM entry during a successful
translation.

The Least Recently Used algorithm implemented in hardware
uses a priority scheme. The lowest numbered AM entry (1) has the
highest priority, and highest numbered AM entry (16) has the
lowest priority. Whenever an entry is added (i.e., loaded) to the AM,
the highest priority entry (lowest numbered) whose RR bit is reset is
accessed.

Several External Register Unit operations can be used to reset/
set RR bits.

5-20

Address Translation Chip (ATC)

The RR bit is not program accessible.

Protection

Each AM entry has two sets of corresponding memory Protection
Check bits. The Protection bits are contained in the Page Descrip-
tor. The Privilege Flag in the Control Array (CA1l) selects which set
of protection check bits is to be used. Below is a description of each
of the memory protection check bits:

1. PCR = Read Permit Bit
PCR = 0; read access not permitted
PCR = 1; read access permitted
The Read Permit Bit determines whether a read access is
permitted into a page.
2. PCW = Write Permit Bit
PCW = 0; write access not permitted
PCW = 1; write access permitted
The Write Permit Bit determines whether a write access is
permitted into a page.
3. PCE = Read for Execute Permit Bit
PCE = 0; read for execute access not permitted
PCE = 1; read for execute access permitted
The Execute Permit Bit determines whether a read for ex-
ecute is permitted into a page.
4. PCL = Read for Linkage Permit Bit
PCL = 0; read for linkage access not permitted
PCL = 1; read for linkage access permitted
The Linkage Permit Bit determines whether a read for
linkage is permitted into a page.

The Protection Check bits are program accessible.

Page Frame Number

The Page Frame Number (PFN) portion of the Page Descriptor is 14
bits wide. This accommodates the 1K page size, which requires the
largest number of PFN bits. When a virtual address presented to
the DAT has an AM match with no protection check violation, the
PFN is concatenated with the page displacement portion of the vir-
tual address to form the real address. The number of PFN bits
actually used to form a real address is dependent on the virtual page
size (1K page - 14 bits, 2K page - 13 bits, 4K page - 12 bits).

The Page Frame Number is program accessible.

5-21

Address Translation Chip (ATC)

Virtual Page Number

The VPN (Virtual Page Number) is the 22 bit content of each of the
16 AM entries used in the Dynamic Address Translation (DAT)
Unit. An AM search consists of simultaneously comparing the VPN
portion of a virtual address against all of the valid VPNs in the AM.
A successful search means that one of the AM entries matches (i.e.,
is equal to and is valid) the virtual address.

The Virtual Page Number can be loaded, but not read.

Interrupts

Four conditions that can abort the conversion of the virtual address
to a real address before completion are: a No Match, an Access
Violation, a Changed Page, and an Address Monitor match.

The No Match condition occurs when the VPN of a virtual
address does not match any of the VPNs in the AM. The Access
Violation condition occurs when there is a match, but the memory
operation violates the appropriate protection check. A memory
operation that results in a No-Match sets the DAT No-Match Inter-
rupt bit which aborts the memory operation. An Access Violation
sets the DAT Access Violation Interrupt bit which aborts the
memory operation.

A Changed Page condition occurs the first time a page is writ-
ten into, at which time the Changed Page Interrupt bit is set and
the memory operation is aborted.

The Address Monitor match occurs when the virtual address
meets the conditions for an Address Monitor match, forcing a
memory operation abort (see Address Monitor Register
description).

A memory operation is aborted by no assertion of MAE in the
cycle following the virtual address.

In all of these cases the virtual address causing the exception
condition is placed in the Virtual Address Register Buffer.

When the Virtual Equals Real bit is set in the Control Array the
DAT No Match, the DAT Access Violation and the Changed Page
interrupts are inhibited. Only interrupts related to address monitor-
ing can be asserted.

EXTERNAL REGISTER DEFINITIONS
The ATC has two groups of External Register Units (ERUs): ERUs
for special purpose, and ERUs associated with virtual operations.

Associated with some ATC virtual operations are associative
memory commands. See Table 5-5 for the ATC ERU assignments.

5-22

Address Translation Chip (ATC)

For a detailed description of ERU transfer operation, see
Chapter 3 of this manual. The numerical decode for each ERU will
first be given in decimal, followed in parenthesis by its hexadecimal
equivalent with a capital ““H”’ appended (e.g., decimal twenty: 20 (14
H)). When an ATC ERU is to be read, the term TIE will be used
(Transfer-In-External). When an ATC ERU is to be written, the
term TOE will be used (Transfer-Out-External). All TIE and TOE
operations are one cycle, unless otherwise specified. All ERUs are
addressed with only the lower seven address bits. The eighth bit
determines whether a TIE or a TOE operation is to be executed.

7 Bit ERU # Transfer Out Transfer In*
(Dec.) (Hex.) Operation (Bit 8 = 1) Operation (Bit 8 = 0)

40 28 Control Array #2 Control Array #2

41 29 1/T Array 1/T Array

42 2A Interrupt Mask Reg Interrupt Mask Reg

43 2B Intvl. Timer/Monitor Reg Intvl. Timer/Monitor Reg

44 2C Time-Of-Day Reg/Counter Time-Of-Day Reg/Counter

45 2D Address Monitor Reg Address Monitor Reg

46 2E Bus Interrupt Reg Bus Interrupt Reg

47 2F Write Page Size (WPS) Read Page Size (RPS)

48 30 Invidt. Assoc Mem (IAM) Enabl & Set Pg Frm (ESPF)

49 31 Write Syndrome Bits Read Syndrome Bits

50 32 Write Virtual Page (WVP) Read Page Frame (RPF)

51 33 Write & Set Pg Frm (WSPF) Clear Assoc Mem (CAM)

52 34 Purge Selective (PS) Not Used

53 35 Write Purge Mask (WPM) Read Purge Mask (RPM)

54 36 Purge Set W Mask (PSM) Read Virtual Address (RVA)

55 37 Trans Virt Addr (TVA) Read Real Address (RRA)

*Only a seven bit address is shown, eight bits are required. The direction of transfer
(in/out) specifies the eighth bit. Therefore, all transfer out addresses are different
from those directly indicated by table (e.g., 40 (28 H)—(A8 H) for the transfer-out
operation, the transfer-in is correct as shown).

GIMTES012A

Table 5-5 ATC ERU Assignments

TIE and TOE are CPC op code mnemonics of instructions which
are executed to read (TIE) and write (TOE) registers external to the
CPC. The reader should refer to Chapter VI of this manual for fur-
ther information on these op codes.

SPECIAL PURPOSE ERU
The ATC special purpose ERU is used for ATC control.

Control Array #2
Control Array #2 is a 16 bit register used to select modes of opera-
tion of the ATC. It can be accessed with a TIE or TOE operation on

5-23

Address Translation Chip (ATC)

ERU 40 (28 H). Control Array #1 is located in the CPC. (See Chapter
4 for details.)

The Privilege Flag can be set or reset with a TOE on ERU 40
and with an external ATC pin (PRIV). Activating PRIV during X0
enables setting/resetting the Privilege Flag in the subsequent X1.
Following the enable, if during X1 PRIV is activated, the Privilege
Flag is set; if during X1 PRIV is not activated, the Privilege Flag is
reset. The contents of the Control Array are shown in Table 5-6.

16 _----11 10 9 8 7 6 5 4 3 2 1

NU Res | NM | VER| STr

)L
CC

m|
O
|
=1

ASz | F4X | Mon BP | Prv

Privilege Flag

Break Point Enable

Monitor Enable

Fetch for Execute Monitor Enable
Address Size 24/32

No Protection Check

ECC Disable

Virtual Memory Store Trace Enable
Virtual Equals Real

10. No Match Disable

11. Reserved For Future Use

12. Reserved For Future Use

13. Not Used

14. Not Used

15. Not Used

16. Not Used

CONOO RGN =

GIMTES013A

Table 5-6 Control Array Representation

Control Array Definition — In subsequent descriptions, the bits
in Control Array #2 are identified by ‘“CA’ followed by the bit
number (e.g., Control Array #2 bit 5 = CA5).

Note that there is only one monitor register and several modes
of operation for monitoring. This results in some mutually exclusive
conditions. These are noted below.

CAl : Privilege Flag
This indicator shows which set of protection bits in the
Page Descriptors is used. If this indicator is set the ATC
uses the privileged set, and if this indicator is reset the
ATC uses the non-privileged set.

5-24

CA2:

CA3:

CA4:

CA5:

CAG6:

CAT:

CAS:

CA9:

Address Translation Chip (ATC)

Break Point Enable
This indicator enables/disables the Virtual Breakpoint In-
terrupt logic in the ATC. If this bit is set an interrupt is
asserted when the current virtual address specifies Fetch
for Execute (PMB02,01=1,1). Note that CA2 and CA4 are
mutually exclusive.

Monitor Enable

This indicator enables/disables the ATC hardware compare
of the virtual addresses used during writes to memory with
the address in the Address Monitor Register. If this bit is
set, an interrupt is set when the current virtual address
matches the contents of the Address Monitor Register.
Note that CA3 and CA8 are mutually exclusive.

Fetch for Execute Monitor Enable

This indicator, when set, forces the ATC hardware to retain
the last address used to fetch from memory with Fetch for
Execute specified (by the two least significant bits of the
virtual address). Consequently, that address is loaded into
the Address Monitor Register. When CA3 is set, this ad-
dress is monitored for all writes to memory. Note that CA4
and CA2 are mutually exclusive.

Address Size 24/32

When this indicator is reset, all virtual addresses are han-
dled as 24 bits, and byte 0 is forced clear. When this in-
dicator is set, all virtual addresses are handled as 32 bits.

No Protection Check
When set, this indicator inhibits protection bit checking in
the DAT during a virtual memory operation.

ECC Disable

When set, this indicator inhibits the Error Check/Correc-
tion circuitry in the ATC, and inhibits setting of bit 17 of
the Syndrome Register (memory error indicator).

Virtual Memory Store Trace Enable

When this bit is set and Monitor Enable is reset (CA3=0),
any virtual memory store is aborted. Note that CA3 and
CAS8 are mutually exclusive.

Virtual Equals Real

When set, all memory addresses (virtual and real) are han-
dled as real addresses. Virtual Memory messages require
the same number of cycles regardless of this bit.

5-25

Address Translation Chip (ATC)

CA10: No Match Disable
When set, the DAT No Match interrupt is disabled.

Interrupt/Trap Array

The Interrupt/Trap Array (I/T Array), shown in Table 5-7, is a 12 bit
register that indicates the ATC Interrupt and Trap conditions. This
register can be accessed with a TIE or TOE operation on ERU 41
(29 H).

16 12 8 4

PU[O |ME|PT | SP| AV |[NM]| CP|{BP|MM|F4Xx|BIN|TOD| O | O | O
Not Used
Not Used
Not Used

Time-Of-Day Interrupt

P-M Bus Interrupt (BIN)

Fetch for Execute Monitor Interrupt
Monitor Match Interrupt

Virtual Break Point Interrupt
Changed Page Interrupt

10. DAT No-Match Interrupt

11. DAT Access Violation Interrupt
12. Special Interrupt

13. Programmable Trap*

14. Memory Error Trap™

15. Not Used

16. Power-Up/Reset Trap*

CONOEOALND =

*Trap conditions cannot be masked, but all interrupts can be masked by setting the
appropriate bits in the interrupt Mask Register.

GIMTES014A

Table 5-7 Interrupt/Trap Array Representation

Trap and Interrupt Operation — The ATC can source an Inter-
rupt line (INT) and a Trap line (TRAP). When there are one or more
interrupt conditions met in the ATC as indicated by the I/T Array
flags, the ATC asserts INT (Interrupt) after X1, signaling the proc-
essor that an interrupt requires servicing. The processor responds
with a TIE operation (read) to the I/T Array, and by servicing the
interrupt that has the highest priority. Upon completion, the proc-
essor executes a TOE operation (write) to the I/T Array with the
identical state that was read in response to the interrupt, but with
the specific interrupt (bit) that was serviced cleared. At this point, if
no other interrupts are pending, the ATC deactivates the INT line.
Any interrupt can be masked by setting the corresponding bit in the
Interrupt Mask Register (however, if any interrupt that would nor-
mally result in the memory operation being aborted is masked, the
memory operation takes place).

5-26

Address Translation Chip (ATC)

The interrupts are divided into two categories. The first consists
of the “Virtual Interrupts” corresponding to bits 6 through 11 of
the I/T Array. When these are asserted, the ATC aborts the virtual
memory operation that was initiated, and asserts the INT line (i.e.,
the processor is interrupted). The remaining interrupts are in the
second category corresponding to bits 4,5, and 12 of the I/T Array.
These interrupts occur randomly to processor operation and are
serviced as they occur. The ATC does not interrupt the processor
during a processor initiated fetch operation until the fetched data is
received by the processor (or for a virtual fetch that faults until the
second cycle after the virtual address is asserted).

If the I/T Array is read by any device, any subsequent PM Bus
(BIN) interrupt is not asserted until a TOE operation to the I/T ar-
ray is completed. Upon completion of the TOE operation, the pend-
ing interrupt is recognized. Other interrupts are not “buffered” in
this way; therefore, the programmer must be aware of their poten-
tial recognition by the ATC between a TIE and a TOE operation to
the I/T Array, so as not to inadvertently clear an unserviced inter-
rupt via a TOE to the I/T Array.

Traps cannot be masked in the ATC. The ATC will activate the
TRAP line after X1 in response to: the Power-Up/Reset sequence;
an uncorrectable memory error during a processor initiated fetch; a
TOE operation that sets the Programmable Trap bit in the I/T
Array. The TRAP line can be activated independently of the pro-
cessor fetch operation (real or virtual).

Trap and Interrupt Definition — In the following descriptions
the bits in the I/T Array are identified by ‘“I/TA’’ followed by the bit
number (e.g., I/T Array bit 12: I/TA 12). The following descriptions
are presented in the context of the interrupts being enabled (i.e., not
masked).

I/TA 4: Time-of-Day Interrupt
This interrupt bit is set at X1 when the Time-Of-Day
counter value matches the contents of the Interval
Timer/Monitor Register. The TOD Interrupt remains
asserted until a TOE operation to the I/T Array clears
this bit and either 4 microseconds has elapsed or the In-
terval Timer/Monitor Register no longer matches the
Time-of-Day counter value. Since a TOD Interrupt condi-
tion is asynchronous to CPC operation, the ATC user
should be aware that a TOD Interrupt bit can set in the
I/T Array while the Processor is already in an interrupt
service routine. Consequently the time between a TIE

5-27

Address Translation Chip (ATC)

I/TA 5:

I/TA 6:

I'TA T:

5-28

operation and a TOE operation to the I/T Array in
response to an interrupt must be less than 4 micro-
seconds to guarantee not losing a TOD interrupt.

TOD Interrupt recognition is inhibited during fetch
operations, and during X1 of both TOD and ITMR
writes.

PM Bus Interrupt
This interrupt bit is set during X1 when a device on the
PM Bus sends a message to the processor Bus Interrupt
(BIN) register. The loading of the BIN register sets this
bit. If, however, at the time that the BIN register is
loaded an interrupt is currently being serviced (a TIE
operation on the I/T Array and the BIN register had been
performed), then this bit will not be set in the I/T Array
until the asserted interrupt bit is reset (a TOE operation
on the I/T Array is performed with I/TA 5 reset).

The routine that services this interrupt must read the
BIN register before attempting to write it.

Fetch for Execute Monitor Interrupt
This interrupt bit is set if the Fetch for Execute Monitor
Enable bit (CA4) and the Monitor Enable bit (CA3) are
both set, and the address in the Address Monitor
Register (last Fetch for Execute) matches the virtual ad-
dress during a virtual write. When this bit sets, the
memory operation is aborted.

This interrupt is also set when the Virtual Equals
Real bit is set (CA9=1) if the above conditions are met.

Monitor Match Interrupt

This bit is set during a virtual write to memory if the vir-
tual address matches the address in the Address Monitor
Register, the Fetch for Execute Monitor Enable bit
(CA4) is reset, and the Monitor Enable bit (CA3) is set.
The Address Size bit (CA5) is used to determine if the
match is to be for 24 or 32 bit virtual addresses.

The Monitor Match Interrupt bit is also set during
any virtual write to memory if the Virtual Memory Store
Trace bit (CAS8) is set, and the Monitor Enable bit (CA3)
isreset. The Address Monitor Register contents need not
match the virtual address to set the interrupt.

This interrupt bit is also set when the Virtual Equals
Real bit is set (CA9=1) if the above conditions are met.

I/TA 8:

I/TA 9:

1/TA 10:

I/TA 11:

I/TA 12:

1/TA 13:

I/TA 14:

Address Translation Chip (ATC)

When the Monitor Match Interrupt bit is set, the
memory operation is aborted.

Virtual Break Point Interrupt
This interrupt bit is set during a virtual memory Fetch
for Execute operation if the Breakpoint Enable bit (CA2)
is set, and the virtual fetch address matches the address
in the Address Monitor Register. The memory operation
is aborted if this bit sets.

This interrupt is also set when the Virtual Equals
Real bit is set (CA9=1) if the above conditions are met.

Changed Page Interrupt

This interrupt bit is set when a page is written into for
the first time. The memory store that sets this bit is
aborted.

DAT No-Match Interrupt

This interrupt is set when the virtual address does not
match any of the entries in the associative memory. When
this bit sets, the memory operation is aborted.

If the No Match Disable bit is set (i.e., CA10), the in-
terrupt bit is allowed to set but the interrupt signal (i.e.,
INT) is not asserted.

DAT Access Violation Interrupt

This interrupt bit is set when there is an access violation
as determined by a message comparison with the Protec-
tion Check bits (i.e., the address association was suc-
cessful, but the operation is not permitted). When this bit
sets, the memory operation is aborted.

Special Interrupt

This bit is set when SPINT is asserted (see Table 5-1,
ATC pin description).

Programmable Trap

The Programmable Trap is set with a TOE operation to
the I/T Array. The setting of this bit forces the TRAP
line to activate immediately.

Memory Error Trap

When a processor initiated memory fetch (all virtual
and some real fetches are processor initiated) has an

5-29

Address Translation Chip (ATC)

uncorrectable memory error, the Memory Error Trap bit
is set, forcing the TRAP line to be activated. Refresh is
disabled while this bit is set.

I/TA 16: Power-Up Reset Trap
The Power-Up/Reset Trap bit is set by the assertion of
the PMRST signal (normally, as part of the power-up se-
quence). When this bit is set, the TRAP line is activated.

Interrupt Mask Register (IMR)
The Interrupt Mask Register (IMR) allows the masking of all inter-
rupt bits in the I/T Array (i.e., bits 12-4). Note that the trap bits can
not be masked. If a bit is set in the IMR then the corresponding bit
in the I/T Array cannot be set, and the INT line is not activated for
that interrupt condition. Consequently, when a mask bit is set, any
interrupt condition that would otherwise result in a memory opera-
tion being aborted proceeds normally.

The IMR is program accessible with TOE and TIE operations
on ERU 42 (2A H).

Interval Timer/Monitor Register (ITMR)

The Interval Timer/Monitor Register (ITMR) is a 32 bit register
that is loaded with a desired “‘interval-of-time” value. Logic com-
pares the content of the ITMR with the contents of the Time-Of-
Day register. When there is a match between the ITMR and the
Time-Of-Day register, the Time-Of-Day interrupt is set (I/TA 4=1).
If the Time-Of-Day interrupt bit sets during a memory fetch opera-
tion, INT is not asserted until the fetch operation has been com-
pleted. ITMR can be accessed with a TIE or TOE operation on ERU
43 (28 H).

Time-Of-Day Register/Counter (TOD)

The Time-Of-Day register/counter (TOD) is a 82 bit counting
register with a 4 microsecond clocking (count) rate. It is driven by a
250 KHz external oscillator. The TOD can be accessed with a TIE or
TOE operation on ERU 44 (20 H).

Note that a TOE operation to the TOD must not change the con-
tents of bits 10 thru 1 of the TOD if these bits are used to refresh
memory. Consequently a TIE operation from the TOD should pre-
cede the TOE operation, and bits 10-1 extracted and concatenated
to the new value before the TOE operation is executed.

5-30

Address Translation Chip (ATC)

Address Monitor Register (AMR)
The Address Monitor Register (AMR) is a 32 bit double stage
register, used to monitor virtual addresses during virtual (or Virtual
Equals Real) memory operations. The AMR can be loaded two
ways: either directly with a TOE operation, or indirectly with a vir-
tual Fetch for Execute operation with the Fetch for Execute
Monitor Enable bit set (CA4=1, Fetch for Execute is indicated by
PMBUS02,PMBUS01 = 1,1). The virtual address is loaded into the
AMR. In the 24 bit mode, byte 0 of the AMR is not compared (there-
fore, byte 0 is always equal).

The AMR can be accessed with a TIE or TOE operation on ERU
45 (20 H).

Bus Interrupt Register (BIN)

The Bus Interrupt Register (BIN) is a 32 bit register that is loaded
by a device on the PM Bus with a TOE operation. The ATC deter-
mines that the message on the bus is for the BIN and, if the EREP
was not asserted the previous X1, latches in the message and
asserts EREP during subsequent X1 clocks. The PM Bus Interrupt
bit (I/TA5=1) is set and activates the INT line after X1. As long as
EREP remains asserted during X1 clocks, the BIN does not latch in
messages.

A TIE operation to the BIN forces the EREP to become
negated that X1, allowing writes to the BIN. The BIN is accessible
with TIE and TOE operations on ERU 46 (2E H).

The System Interface Controller (SIC) uses the BIN Register
to report status to the CPC. When the SIC loads the BIN Register,
the ATC interrupts the CPC.

Syndrome Register (SR)
Access to the Syndrome Register (SR) is strictly for diagnostics.
The SR is a 7 bit register used to latch the seven syndrome bits
associated with a data word fetched from memory or stored into
memory. During a word fetch from memory, the syndrome bits
asserted by memory via the PMCHK lines are loaded into the SR.
The SR may be read with a TIE operation. Bits 31 through 25
are the syndrome bits, corresponding respectively to PMCHK?7 thru
PMCHKI1. All other bits are cleared with the possible exception of
bit 17. Bit 17 is set if any type of memory error was detected during
the last memory access (read); otherwise it is also cleared.
Loading the SR with a TOE Operation disables further loading
of the SR with store operations until a TIE operation to the SR is
executed (fetch operations continue to load the SR). Memory stores
(full or partial) after a TOE operation to the SR do not generate new

5-31

Address Translation Chip (ATC)

syndrome bits. Instead, the ATC asserts on the PM Bus the SR con-
tents resulting from the more recent of the SR TOE operation or the
last fetch operation.

When executing TOE stores to the SR, the SR should be re-
leased long enough every 16 microseconds to allow the memory
refresh operation, and no other subsystems should be allowed to ac-
cess (write) memory while syndrome bit generation is inhibited (i.e.,
to prevent extraneous memory errors).

The SR is accessible with TIE and TOE operations on ERU 49
(31 H).

The SR format is:

32 31 25 24 18 17 16 9 8

X PMCK7-1 | X ——— =X Er Xm—m ==X [X=—= ==X

X — Don't Care
Er — 1 = Memory Error; 0 = No Memory Error

GIM5015

Memory Data/Processor Data Register (MD/PD)

The Memory Data/Processor Data (MD/PD) register is not accessi-
ble with TIE or TOE operations. This is a double stage, 32 bit
holding register for data transferred from/to memory.

The memory data stage of the MD/PD register is used to hold
data read from memory during fetch and partial store operations for
assertion on the PM Bus the X1 following the data reception.

The processor stage of the MD/PD register latches in CPC data
from the PM Bus during X1 of full and partial store operations and,
based on memory speed (i.e., DIE assertion), transfers the data out
to memory during a subsequent X1.

VIRTUAL OPERATION ERUs
The following ERUs are directly associated with virtual address

translation.

Virtual Address Register (VAR)

The Virtual Address Register is a 32 bit double stage register used
to latch virtual addresses asserted by the CPC. The first stage is
loaded every X0 except the X0 following a TOE operation to ERU
52, 54 or 55 (34, 36 or 37 H). The first stage is also loaded during X1
of TOE Operations to ERU 50, 51,52,54 or 55, later described in this
chapter as the WVP, WSPF, PS, PSM, and TVA commands. The
first stage of the Virtual Address Register is called the VAR. The
second stage of the Virtual Address Register is called the Virtual
Address Register Buffer (VARB).

5-32

Address Translation Chip (ATC)

The first stage is the ‘‘action” stage and the second stage mere-
ly holds the address for possible later examination. Addresses are
loaded into the second stage (VARB) two ways:

1. During a virtual memory operation, the virtual address is
loaded into the VAR, regardless of the state of the Virtual
Equals Real bit (CA9), during X0. The VAR contents are loaded
into the VARB during the subsequent X1.

2. During X1 of a TOE operation on ERU 55 (37 H) (called the
TVA command), the data portion of the transfer is loaded into
the VAR. The data is transferred from the VAR into the VARB
during the following X1 clock.

Hence the content of the VARB is the last address for which
translation was attempted. VARB can be read with a TIE operation
on ERU 54 (36 H) (called the RVA command). The least significant
two bits of the VARB are not part of the virtual address, but in-
dicate the type of protection that was associated with that particular
address. For the format, see Associative Memory Commands—
RVA.

Real Address Register (RAR)
The Real Address Register (RAR) is a 32 bit register. The RAR for-
mat is:

32 |31 30 29 |28 25| 24 312 1
SP Not Used R WT Real Address PC
SP — Used as Scratch Pad Indicator (set indicates Scratch Pad access)
R — Used as Refresh Operation Indicator (set indicates refresh operation)

WT — Write Tags — All clear Fetch, All set Full Store, etc.
PC — Protection Check Bits for Virtual Memory Operations

GIM5016A

Real addresses are loaded into the RAR during X1 the following
ways:

1. Virtual Memory Operation:
Bits 32-29 are not used, except during V.E.R. operation, when
they are written with corresponding bits from the virtual ad-
dress. Bits 24 through 13 are always transferred from the As-
sociate Memory (AM).

5-33

Address Translation Chip (ATC)

Bits 12 and 11 are transferred from the AM or VAR, de
pending on the page size:

Page Size

Bit
No 4K 2K 1K
12 VAR | VAR | AM

11 VAR AM AM

GIM5017

Bits 10 thru 1 are always transferred from the VAR. The
write tags (bits 28 thru 25) are read from the PMWTO0-3 lines.

2. Real Memory Operation:

All bits are loaded from the PM Bus via the VAR register
during fetch operations (store operation addresses are not loaded);
bits 28 through 25 are the write tags.

If the Virtual Equals Real bit is set (CA9=1) a virtual ad-
dress is loaded into RAR as if it were a real address for both
fetches and stores. However, the PMWT0-3 lines are still used
as the write tags.

3. A TOE operation on ERU 50 (32 H) and a TIE operation on
ERU 48 (30H), called respectively the WVP and ESPF com-
mands, force the highest priority entry with its RR bit reset to
load its corresponding Page Descriptor (i.e., the Page Frame
Number, the Protection Check bits, the Changed Page bit and
the Invalid Register bit) into the RAR, and then into the De-
scriptor Data Register.

4. The TOE Operation on ERU 55 (37 H), called the TVA com-
mand, loads the RAR with the Page Frame Number from the
Page Descriptor and the page displacement from the VAR,
whether the translation is successful or not.

Descriptor Data Register (DDR)

The Descriptor Data Register (DDR) is a 32 bit register used to hold
the contents of the RAR immediately (next cycle) after any virtual
memory address operation, TOE operations to either ERUs 50 or
55, and after a memory or TIE operation on ERU 48 (i.e., the WVP,
TVA, or ESPF commands, respectively, described in detail in the
Associative Memory Commands section).

The DDR acts as a history register for what has occurred in the
RAR, related to virtual operations. The DDR retains a copy of the
last virtual operation RAR contents. This enables the processor to
surrender use of the ATC without losing the RAR contents. The
DDR can be accessed with a TIE operation on ERU 50 (32 H), called

5-34

Address Translation Chip (ATC)

the RPF command. The format of the DDR is shown in the Associa-
tive Memory Commands section in conjunction with the command
utilizing the DDR.

Associative Memory and Page Descriptor Registers

The AM (Associative Memory) consists of sixteen 22-bit registers,
each containing a Virtual Page Number (VPN). Associated with
each AM register is a 25-bit Page Descriptor Register with a 12-14
bit (depending on page size) field containing a Page Frame Number
(PFN). During translation, the virtual address in the VAR is com-
pared to the AM entries. If there is a match (i.e., direct equality) to a
particular VPN, the corresponding PFN bits are asserted on the in-
ternal ATC bus and are concatenated in the RAR to the 10-12 lower
order bits (depending on the page size) of the VAR.

The VPNs are accessible with a TOE operation on ERU 50
(32 H), called the WVP command. The VPNs are not TIE accessible.
A TOE on ERUS51, called the WSPF command, accesses the PFN
for loading. A PFN can be transferred to the DDR in four ways: a
successful virtual translation, a WVP command, a TIE on ERU 48
(called the ESPF command), and a TOE on ERU55 (called the TVA
command). A subsequent TIE on ERU 50 (32 H) called the RPF
command outputs the PFN to the PM Bus.

Refer to the Dynamic Address Translation section for a detailed
description of the translation operation using the VPNs and
PFNs.

ASSOCIATIVE MEMORY COMMANDS

The DAT is controlled with the use of Associative Memory com-
mands. Some of these commands access a register, and some simply
trigger a hardware operation. A list of these commands is given in
Table 5-8.

Addr* Command TIE TOE
2F WPS X
2F RPS X
30 IAM X
30 ESPF X
32 WVP X
32 RPF X
33 WSPF X
33 CAM X
34 PS X
35 WPM X
35 RPM X
36 PSM X
36 RVA X
37 TVA X
37 RRA X

*7 Bit hex address GIMTE5018

Table 5-8 Associative Memory Commands

5-35

Address Translation Chip (ATC)

WRITE PAGE SIZE (WPS)

The Write Page Size (WPS) command is a TOE Operation on ERU
47 (2F H). The lower three bits of the transferred data are loaded
into the Page Size Register (PSR). Bit 1, 2, or 3 set (exclusive)
indicates 2K byte, 1K byte, or 4K byte page size respectively. The
WPS command format is shown in Figure 5-7.

32 24 16 8 3
X— e —— =~ X[X—mmm == XX e — X[X====X] PSR
X — Don’t Care
PSR — Page Size Register:
PSR Page Size
001 2048 Bytes
010 1048 Bytes
100 4096 Bytes

GIM5019

Figure 5-7 WPS Format

READ PAGE SIZE (RPS)
The Read Page Size (RPS) command is a TIE operation on ERU47
(2F H). For format description, see WPS.

INVALIDATE ASSOCIATIVE MEMORY (IAM)

The Invalidate Associative Memory (IAM) command is not a
specific register operation. A TOE operation on ERU 48 (30 H) acts
as a command to the ATC DAT hardware (i.e., the data portion of
the transfer is ignored). The ATC, upon execution of an IAM, sets
all IR bits and resets all RR bits in the AM. This has the effect of in-
validating and clearing all entries in the DAT.

ENABLE AND SET PAGE FRAME (ESPF)

The Enable and Set Page Frame (ESPF) command results in a
register to register transfer inside the ATC. A TIE operation on
ERU 48 (30 H), called ESPF, acts as a command to the ATC hard-
ware. The data transfer portion of the ESPF is not specified (i.e., is
ignored). The content of the Least Recently Used Page Descriptor
entry (i.e., the highest priority entry with the RR bit reset) is trans-
ferred from that Page Descriptor to the RAR. Then the DDR is
loaded from the RAR, and the RR bit for that entry is set. The for-
mat of the DDR content is shown in Figure 5-8.

5-36

Address Translation Chip (ATC)

32 28 24 16 1312 1110 98 7 6 1
RWELI|R WEL P S|X X|IR CP X——=X
’ —> |€— Variable Width
PRIV N-PRIV Page Size
Protection Check Page Frame]

Number

R—Read, Protection Check

W—Write, Protection Check

E—Execute, Protection Check

L—Linkage, Protection Check

PS—The PS (page size) field is the least significant two bits contained in the
PFN. Whether both b12 and b11, b12 only, or neither bit is used to form
the real address is a function of the page size specified.

X—Don't Care

IR—Invalid Register Bit

CP—Changed Page Bit
GIM5020A

Figure 5-8 DDR Content Format

This command takes 1% cycles to complete, but is effectively
a one cycle operation without restrictions.

The DDR contents resulting from this operation remain un-
altered until a virtual address translation (attempt) occurs, or any
of 3 commands occurs: TVA, WVP or ESPF.

Restriction—The ESPF that accesses the sixteenth entry cannot
be immediately followed by another ESPF, WSPF, TVA, or a virtual
memory operation requiring address translation.

WRITE VIRTUAL PAGE (WVP)

The Write Virtual Page (WVP) command is a TOE on ERU 50 (32
H). This command loads one of the AM VPN entries. The entry
loaded is the Least Recently Used VPN entry (i.e., the highest
priority entry with its RR bit reset). The virtual page portion of
the AM is loaded, left justified, from the PM bus. The format of
the data transfer portion of the TOE is shown in Figure 5-9.

5-37

Address Translation Chip (ATC)

32 25 17 1110 9 8 1
X X X————— X

t——— Virtual Page Number ——j

X — Don't Care

Bits 32 through 25 of the AM VPN are cleared if CA5 (Address Size)
specifies 24 bit address size (i.e., CA5 = 0).

GIM5021

Figure 5-9 WVP Format

Upon execution of the WVP command, the corresponding Page
Descriptor is loaded into the RAR and subsequently into the DDR.
Upon completion of the WVP, the corresponding IR bit is set (i.e.,
this entry is invalidated; to validate see the WSPF command). The
format of the DDR contents is shown in Figure 5-8.

The DDR contents from this operation remain unaltered until a
virtual address translation (attempt) occurs, or any of 3 commands
is executed: TVA, WVP or ESPF.

READ PAGE FRAME (RPF)

The Read Page Frame (RPF) command is a TIE operation on ERU
50 (32 H). This command transfers the contents of the DDR register
to the PM bus. The format of the DDR contents is based on the last
operation loading it. The format for a last-operation ESPF, WVP, or
TVA command, is given in the individual command description. The
format for a virtual operation is shown in the RRA command des-
cription section of this chapter.

WRITE AND SET PAGE FRAME (WSPF)

The Write and Set Page Frame (WSPF) command is a TOE opera-
tion on ERU 51 (33 H). This command loads the Page Descriptor
portion of an entry in the DAT. The entry written is the Least
Recently Used Page Descriptor entry (i.e., highest priority entry
with the RR bit reset). The Protection Check bits (both Privileged
and Non-Privileged), the PFN, and the CP bit are loaded. The IR bit
for that entry is reset (i.e., validated), and the RR bit is set. The for-
mat of the Page Descriptor load from the PM bus is shown in
Figure 5-10.

5-38

Address Translation Chip (ATC)

32 28 24 16 1312 1110 98 7 6]
RWETL|RWEL P S|X X|IR CP X——=X
_I__ > |4 Variable Width
PRIV N-PRIV Page Size

Protection Check Page Frame |

Number

R—Read, Protection Check ..

W-—Write, Protection Check

E—Execute, Protection Check

L—Linkage, Protection Check

PS—The PS (page size) field is the least significant two bits contained in the
PFN. Whether both (b12 and b11), b12, or neither bit is used to form
the real address is a function of the page size specified. When one or
more of these bits are not used, they are obtained from the VAR.

X—Don't Care

CP—Changed Page Bit

Note: If the CP bit is loaded as a “1”, the Changed Page interrupt will not occur
for this entry.
GIM5023

Figure 5-10 Page Descriptor Format

Restriction — The WSPF that accesses the sixteenth entry can-
not be immediately followed by another WSPF, ESPF, TVA, or a
virtual memory operation requiring address translation.

CLEAR ASSOCIATIVE MEMORY (CAM)
The Clear Associative Memory (CAM) command is a TIE operation
on ERU 51 (33 H). This command resets all the RR bits. The data
transfer portion of the CAM is not specified (i.e., is ignored).

The DAT is not invalidated by this operation (a virtual address
can still have a successful translation).

PURGE SELECTIVE (PS)

The Purge Selective (PS) command is a TOE operation on ERU 52
(34 H). The data portion of the PS command is compared with the
VPN entries in the DAT. The PSR (Page Size Register) is used to
determine which of the low order bits (b12 and b11) are used in the
comparison (association) process. If the data portion is equal to any
VPN entry, that entry is invalidated (i.e., the IR bit is set, and the
RR bit is reset). If no equality is found, no action in the DAT occurs.
The format of the PS data field is shown in Figure 5-11.

5-39

Address Translation Chip (ATC)

32 24 16 13 12 1110 9 8 1
P S X X | X———-X
—p Le—— Variable Width
Page Size
Virtual Page Number sess————
X — Don’t Care

PS—The PS (page size) field is the least significant two bits of the data portion
of the PS command. Whether both bits, b12 only, or neither bit is used
in the comparison process is a function of the page size specified.

Page Size Bit Used
4K neither
2K b12
1K b12,b11 (both)

GIM5024A

Figure 5-11 PS Data Field Format

Restrictions—

1. The PS command is a two cycle operation by the ATC. The ATC
assures itself of the second cycle by activating the REQS line
during the first cycle. This prevents any subsystem other than
the processor from having access to the bus during the second
cycle. The processor cannot follow the first command with any
other operation that requires the ATC (i.e., no memory opera-
tions or ATC ERU operations) during the subsequent (second)
cycle.

2. If CA5 (Address Size) is reset (i.e., specifying a 24 bit address),
bits 32 through 25 of the PS command are not used in the com-
parisons and are treated as cleared bits. See the WVP command
for the effect of CA5 on the AM VPN contents.

WRITE PURGE MASK (WPM)

The Write Purge Mask (WPM) command is a TOE operation on
ERU 53 (35 H). This command loads the upper 22 bits of the Purge
Mask Register (PMR). The format of the transfer and register is:

32 24 16 19 8 1

X X X —=—==—=—=X

X — Don't Care GIM5025

5-40

Address Translation Chip (ATC)

The PMR is used in conjunction with the PSM command.

READ PURGE MASK (RPM)

The Read Purge Mask (RPM) command is a TIE operation on
ERU53 (35 H). For a description of the format, see the WPM
command.

PURGE SELECTIVE WITH MASK (PSM)

The Purge Selective with Mask (PSM) command is a TOE operation
on ERU 54 (36 H). The PMR (Purge Mask Register), in conjunction
with the PSR (Page Size Register used to obtain the pertinent bits
from the PMR), is used as a mask between the data portion of the
PSM command and the VPN (Virtual Page Number) entries. Bits
set in the mask inhibit association of corresponding VPN bits (i.e.,
these bits become ‘“don’t care’’ bits in that their equality is guaran-
teed). If the PSM data, in conjunction with the mask, finds any
VPN(s) equal, the entry is invalidated (the IR bit is set and the RR
bit reset). If no equality is found, no action on the DAT occurs. The
format of the PSM data field is shown in Figure 5-12.

32 24 16 13 12 1110 9 8 1
P S X X | X—=——-X
— | ¢—— Variable Width
Page Size
Virtual Page Number s
X — Don't Care

PS—The PS (page size) field is the two least significant bits of the data portion
of the PS command. Whether both bits, b12 only, or neither bit is used
in the comparison process is a function of the page size specified.

Page Size Bit Used
4K neither
2K b12
1K b12,b11 (both)

GIM5026A

Figure 5-12 PSM Data Field Format

5-41

Address Translation Chip (ATC)
Restrictions—

1. The PSM command is a two cycle operation by the ATC. The
ATC assures itself of the second cycle by activating the REQS
line during the first cycle. This prevents any device other than
the processor from having access to the bus during the second
cycle. The processor cannot follow the first command with any
other operation that requires the ATC (i.e., no memory opera-
tions or ATC ERU operations) during the subsequent (second)
cycle.

2. If CA5 (Address Size) is reset (i.e., specifying 24 bit addresses)
bits 32 through 25 of the PSM command are not used in the
comparisons and are treated as cleared bits. See the WVP com-
mand for the effect of CA5 on the AM VPN contents.

READ VIRTUAL ADDRESS (RVA)
The Read Virtual Address (RVA) command is a TIE operation on
ERU 54 (36 H). This command asserts the contents of the VARB
onto the PM Bus. The VARB contains the last address for which a
translation was attempted (i.e., the last virtual address or the data
portion of a TOE operation on ERU 55, called the TVA command).
If CA5 (Address Size) was reset, specifying 24 bit addresses, when
the VAR was last loaded during translation, VARB bits 32-25 will
be zeros. The format of the VARB contents asserted on the PM Bus
is:

32 24 16 8 32 1
PC

'y 1
po—ee \/ariable

Virtual Address

Variable — A function of CA5, as noted.

PC-Bits 2 and 1 are the access protection check code.

GIM5027A

Figure 5-13 VARB Format

READ REAL ADDRESS (RRA)
The Read Real Address (RRA) command is a TIE operation on ERU
55 (37 H). The 32 bit content of the RAR is asserted onto the PM
bus.

The content of the RAR is a function of the last real memory
fetch operation, virtual memory operation, or ERU operation affect-
ing it (i.e., ESPF, WVP, or TVA).

5-42

ATC FEATURES

If the last operation affecting the RAR was a real memory fetch,
a virtual equals real memory operation, a successful virtual memory
address translation, or a successful Translate Virtual Address com-
mand, the RAR content format is as shown in Figure 5-14.

32 28 24 16 8 3 2 1

MSN WT P C

l——— Real Memory Addr.——|

MSN — Most Significant Nibble
WT — Write Tags
PC — Protection Check

Real VER VIRT TVA
MSN PMBUS MSN PMBUS MSN * *
WT PMBUS28-25 PMWTO-3 PMWTO-3 **
Real Addr. | PMBUS24-03 PMBUS24-03 e i
PC PMBUSO02,01 PMBUS02,01 PMBUS02,01 PMBUS02,01

*MSN is not loaded for this operation. The contents can be determined from
the most recent of real or virtual equals real operation.
**The WT is not loaded for this operation. The contents can be determined
from the most recent of: real, virtual equals real or virtual memory operation.
***PMBUS10-03 are directly loaded to bits 10-3. Bits 12 and 11 source is
determined by the page size. Bits 24-13 are the page frame number directly
corresponding to the successful match entry.

GIM5029

Figure 5-14 RAR Format

If the last operation affecting the RAR was an unsuccessful vir-
tual address translation (memory or TVA), the RAR field definition
is as shown in the TVA and VIRT columns of Figure 5-14.

If the last operation affecting the RAR was an ESPF or a WVP
command, the RAR content format is the same as the DDR content
format resulting from those commands.

5-43

Address Translation Chip (ATC)

TRANSLATE VIRTUAL ADDRESS (TVA)

The Translate Virtual Address (TVA) command is a TOE operation
on ERU 55 (37 H). The 32 bit data portion of the TVA command (a
virtual address) is loaded into the DAT logic and translation is
attempted. This 32 bit “virtual address” is retained in the VARB
until another address translation is attempted. No memory opera-
tion is initiated, regardless of the success or failure of the transla-
tion attempt. Note that CA9 (V.E.R. mode) has no effect on the
TVA command.

A successful address comparison in the AM results in a
translated (real) address being generated and loaded into the RAR
(Real Address Register), and the RR bit being set for that entry.

An unsuccessful search in the AM results in the Dat No Match
Interrupt bit being set in the I/T Array (I/TA 10), if enabled in the
IMR. The RAR register format is the same as for a successful
search, except that the real address bits are all asserted.

In either case no monitoring functions are performed, the CP bit
is not affected, and no monitoring or CP interrupts are asserted. A
protection check is performed using the two least significant bits of
the data portion of the TVA command:

b2 bl Protect Ck
0 0 read
0 1 write
1 1 execute
1 0 linkage

If translation is successful, the protection check is executed. If
the protection check fails (indicating an illegal access), the DAT Ac-
cess Violation bit (I/TA 11) is set in the I/T Array if enabled in the
IMR.

If translation is successful, the corresponding Page Frame is
loaded into the RAR and then into the DDR. If the translation is un-
successful, the contents in the RAR and DDR are undefined. For
successful translation, the format of the DDR contents is:

5-44

Address Translation Chip (ATC)

32 28 24 16 1312 11 10 1
ub WT P S DISPL.
f Real Addr ‘f

UD—Undefined. These four bits are not loaded for this operation. The
contents can be determined from the most recent of: real memory fetch,
virtual equals real operation, ESPF or WSPE
WT—Write Tags. These four bits are not loaded for this operation. The contents
can be determined from the most recent of: real, virtual equals real, or
virtual memory operation.
Real Addr—Bits 10-1 are loaded from the PM Bus. Bits 12 and 11 source is
determined by the page size. Bits 24-13 are the page frame
number directly corresponding to the table entry that matched.

GIM5028A

Figure 5-15 DDR Format, TVA Command

The DDR contents from this operation remain unaltered until a
virtual address translation is attempted, or a TVA, WYVP, or ESPF
command is executed.

Restrictions—

1. The TVA command is a two cycle operation for the ATC. The
ATC assures itself of the second cycle by activating the REQS
line during the first cycle. This prevents any device other than
the processor from having access to the bus during the second
cycle. The processor cannot follow the first command with any
other operation that requires the ATC (i.e., no memory opera-
tions or ATC ERU operations) during the subsequent (second)
cycle.

9. 1f CA5 (Address Size) is reset (i.e., specifying 24 bit addresses)
bits 32 through 25 of the TVA command are not used in the
comparisons and are treated as cleared bits. See the WVP com-
mand for the effect of CA5 on the AM VPN contents.

ATC STATE OPERATION

ATC memory operations are controlled by state sequencing, shown
in Figure 5-16. Pertinent bus control inputs are latched and sampled
at the end of each X0 clock interval for use in determining the ATC
state during the following clock cycle beginning at X0. Each state
extends through one cycle (X0 interval to X0 interval), although
certain states may be repeated pending the assertion or de-assertion
of pertinent bus control signals (see DIE wait loops, Figure 5-16,
states 1, 2, and 3).

5-45

Address Translation Chip (A TC)

~

Virtual Full Store

DAT or Monitor Interrupt St;te
VER Full Store
State
Monitor Interrupt 11
Real Full Store
Virtual Partial Store
State
DAT or Monitor Interrupt g

<«

Monitor Interrupt

< DIE
State
VER Partial Store 7 9
o __ -p
22 Real Partial Store
< O
% P
Refresh REQ State
8

Normal (No Trap or Interrupt)

setting of bits 9, 10, or 11 in the

response to setting of bits 6, 7,
interrupt asserted in response to
/T Array.

or 8 in the I/T Array. DAT

Note: Monitor interrupt asserted in

B.E

REFR

Virtual Fetch

DAT or > State
Monitor Interrupt 6

A

VER Fetch

State
Monitor Interrupt 10

Real Fetch

Trap

REQ

Figure 5-16 ATC State Sequencing

5-46

GIM5031A

Address Translation Chip (ATC)
STATE FLOW

Each ‘‘normal” memory operation begins in State 0 and ends in
State 0. Two conditions during memory operations, however, will
alter this normal flow:

1. If an ATC interrupt occurs (any of I/T Array bits 6-11 sets) the
memory operation is aborted, and the ATC returns to State 0.

2. If a memory refresh condition (REF REQ) occurs during a mem-
ory operation and no trap is pending, the ATC enters a memory
refresh sequence immediately following the memory operation
before returning to State 0.

Table 5-9 shows the names of the states. The names are descrip-
tive of ATC activity in each state.

State Number State Name

Idle (No Memory Operation in Progress)
Real Partial Store
Real Fetch

Real Full Store
Not Used

Virtual Partial Store
Virtual Fetch
Virtual Full Store
Refresh

VER™ Partial Store
VER* Fetch

VER* Full Store

00N WN=0

—_

*VER — Virtual Equals Real

GIMTES032
Table 5-9 ATC State Names

SPECIAL ATC CONSIDERATIONS

The following paragraphs describe ATC characteristics which
should be considered when using the ATC.

PM BUS CONTENTION

The ATC PM Bus request for memory access (real, virtual, and
refresh), REQO, has highest bus request priority and must be
recognized by all other devices on the PM Bus. No devices on the
PM Bus except the ATC and memory interface logic must drive the
bus during any cycle for which REQO was asserted.

REFRESH

The refresh operation is disabled if any of the following conditions
are met: INH or PMRST input is active (low), the double bit

5-47

Address Translation Chip (ATC)

memory error trap bit is set, or a TOE operation to the Syndrome
Register has not been followed by a TIE operation to the Syndrome
Register.

TIME-OF-DAY

A TOE operation to the TOD must not alter bits 10 through 1 of the

TOD register if these ten bits are utilized as the refresh row address.
TOD interrupts are input active for only four microseconds,

based on a 250KHz clock. Therefore, the time elapsed between a

TIE to the I/T Array and a TOE to the I/T Array should be less than

four microseconds to guarantee not losing a TOD interrupt.

BUS INTERRUPT REGISTER INTERRUPTS

The BIN interrupt must be cleared as follows: read I/T Array, read
BIN, then write I/T Array. All three operations must be executed,
with the write operation last, to guarantee proper BIN interrupt
operation.

ASSOCIATIVE MEMORY COMMAND SEQUENCING

The ESPF and WSPF commands result in the RR bit of a Page De-
scriptor entry in the DAT being set. When either of these commands
results in the sixteenth Page Descriptor entry having its RR bit
set, the next sequential operation can not be a WSPF, ESPF, or TVA
command, or a virtual memory operation requiring translation.

The TVA, PS, and PSM commands each require two cycles to
complete. The ATC asserts REQS during the first cycle of these
three commands. This allows the processor, and no other device, use
of the PM Bus during the second cycle, with the restriction that the
processor must not execute an ATC related operation during this
second cycle.

MONITOR OPERATIONS

Control Array bits 3 and 8 are mutually exclusive, resulting in moni-
tor operation being inoperative if both bits are simultaneously set.
Control Array bits 2 and 4 are mutually exclusive by operation, re-
sulting in indeterminate results if both bits are simultaneously set.

ECC DISABLE

Control Array bit 7 disables data bit correction and memory error
reporting (i.e, MDEE, MEMERR, and TRAP). Partial stores (in-
cluding refresh operation) with CA7 set fetch in data, do not correct
or report errors, and write back to memory with syndrome bits gen-
erated for the write back data.

5-48

Address Translation Chip (ATC)

ECC GENERATE/SYNDROME REGISTER

A TOE operation to the Syndrome Register forces the ATC to cease
ECC generation and to disable refresh operations. A TIE operation
from the Syndrome Register releases the ATC hardware to allow
ECC generation and allow refresh operations. During the period be-
tween the TOE and the TIE operation to the Syndrome Register,
memory store operations use the contents of the Syndrome Register
for store check bits (Syndrome). The contents of the Syndrome Reg-
ister following a TOE operation are the most recent of either the
TOE operation data to the Syndrome Register, or the syndrome
bits returned during a memory fetch.

REAL ADDRESS REGISTER BYTE/DESCRIPTOR

DATA REGISTER

The RAR lower 10 to 12 bits and byte 0 contents may or may not be
directly related to the most recent use of the RAR. Programmer use
of the lower 10 to 12 bits or byte 0 contents (via a TIE operation)
should be restricted to only valid bit fields. Since the DDR is direct-
ly loaded from the RAR, the same restriction applies to DDR
accesses.

24/32 BIT OPERATIONS

Associative Memory operations in the 24 bit mode automatically
clear byte 0 during loading of AM entries and during the address as-
sociation (match) process. The monitor operations disregard byte 0
in the 24 bit mode.

ASSOCIATIVE MEMORY RESULTS

Associative memory operation (address translation) results should
be read from the DDR rather than the RAR, since the RAR con-
tents can be altered by an I/O device on the PM Bus.

TIMING CYCLE DESCRIPTIONS

The following are detailed timing cycle descriptions for real memory
operations, virtual memory operations, and refresh operations.

REAL MEMORY OPERATIONS

Real memory operations are identified by an asserted MAE during
X0. The real address is asserted on the PM Bus during the same X0,
and is latched into the ATC RAR register if the operation is a fetch.
The ATC examines the write tags (bits 28-25) to determine the type
of real memory operation to be performed:

PMBUSZ28-25— All active implies a full store
—Some but not all active implies a partial store
—All inactive implies a fetch

5-49

Address Translation Chip (ATC)

Real Full Store
The real full store is a minimum 2-cycle operation.

Cyc. No. | Clk. Operation

1 X0 | Activate REQO
X1 [Output REQO active
Load data into MD/PD (PD) and generate syndrome bits

2 X0 | Output data and syndrome bits to memory and hold stable until
after DIE goes active
X1 | Continue holding data and syndrome stable to end of clock

GIMTE5035
Table 5-10 Real Full Store

Real Partial Store
The real partial store (read-modify-write) is a minimum 3-cycle
operation.

Cyc. No. | Clk. Operation

1 X0 | Activate REQO
X1 | Hold REQO active
Load data into MD/PD (PD) register

2 X0 | Activate REQO -

Latch data from memory into MD/PD (MD) if DIE is active
Check and correct memory data

X1 | Hold REQO active

Concatenate PD with MD for bytes being written
Generate syndrome bits on new data

3 X0 | Output new data and syndrome bits to memory and hold stable
until after DIE goes active
X1 | Continue holding data and syndrome bits stable to end of clock

GIMTE5036
Table 5-11 Real Partial Store

Real Fetch
The real fetch is a minimum 2-cycle operation.
Cyc. No.| Clk. Operation

1 X0 | Load real address into RAR

Activate REQO
X1 | Hold REQO active
2 X0 |Latch data from memory into MD/PD (MD) if DIE is active

Check and correct data

X1 | Output the checked and corrected data to requester; if there
was an uncorrectable error, activate MDEE and, if the fetch was
initiated by the processor, activate TRAP.

GIMTES037
Table 5-12 Real Fetch

5-50

Address Translation Chip (ATC)

VIRTUAL MEMORY OPERATIONS

Virtual memory operations are identified by a CPC-asserted PVT
during X0. During the same X0 the virtual address is asserted on
the PM Bus. The ATC clocks the virtual address into its VAR at the
end of that X0 and starts the translation process. The ATC ex-
amines the PMWTO0-3 lines to determine the type of memory opera-
tion to be performed.

PMWTO0-3— All active implies a full store
—Some but not all active implies a partial store
— All inactive implies a fetch

Virtual Full Store (CA9=0)
The virtual full store is a minimum 3-cycle operation (i.e., a transla-
tion cycle and a real full store).

Cyc. No. | Clk. Operation

1 X0 | Load Virtual Address into the VAR

Activate REQO

Start translation

X1 | Hold REQO active, load VAR into VARB

Load data into MD/PD (PD) register and generate syndrome bits
Load real address from translation into RAR

2 X0 | Activate MAE

Activate REQO

Send address and write tags to memory
X1 | Hold REQO active

3 X0 | Send data and syndrome bits to memory and hold stable until
cycle after DIE goes active (DIE going active indicates that the
store operation will be completed in the next cycie)

X1 | Continue holding data and syndrome bits stable to end of clock

GIMTE5038

Table 5-13 Virtual Full Store (CA9=0)

5-51

Address Translation Chip (ATC)

Virtual Partial Store (CA9=0)
The virtual partial store is a minimum 4-cycle operation (i.e., a trans-
lation cycle and a real partial store).

Cyc. No.| Clk. Operation

1 X0 | Load virtual address into VAR

" Activate REQO

Start Translation

X1 | Hold REQO active, load VAR into VARB
Load data into MD/PD (PD) register
Load real address from translation into RAR

2 X0 | Activate MAE

Activate REQO

Send real address and write tags to memory
X1 | Hold REQO active

3 X0 | Latch memory data into MD/PD (MD) if DIE is active
Check and correct data

Activate REQO

X1 | Hold REQO active

Concatenate PD with MD for bytes being written
Generate syndrome bits on new data

4 X0 | Output new data and syndrome bits to memory and hold stable
until after DIE goes active (it is assumed that the Memory
Interface has the address from the second XO0)

X1 | Continue to hold data and syndrome bits stable to end of clock

GIMTE5039

Table 5-14 Virtual Partial Store (CA9=0)

Virtual Fetch (CA9=0)
The virtual fetch is a minimum 3-cycle operation (i.e., a translation
cycle and a real fetch).

Cyc. No. | Clk. Operation

1 X0 | Load virtual address into VAR

Activate REQO

Start Translation

X1 | Hold REQO active, load VAR into VARB
Load real address from translation into RAR

2 X0 | Activate MAE

Send real address and write tags to memory
Activate REQO

X1 | Hold REQO active

3 X0 | Latch data from memory into MD/PD (MD) if DIE is active
Check and correct data

X1 | Output checked and corrected data to requester, if there was
an uncorrectable error, activate MDEE and if it was a
processor operation activate TRAP

Table 5-15 Virtual Fetch (CA9=0) GIMTES040

5-52

Address Translation Chip (ATC)

Virtual Full Store (CA9 =1)

Cyc. No. | Clk. Operation

1 X0 | Load virtual address into VAR

Activate REQO

X1 | Hold REQO active, load VAR into VARB and RAR

Load data into MD/PD (PD) register and generate syndrome

2 Same as for CA9=0
Same as for CA9=0

GIMTES04 1

Table 5-16 Virtual Full Store (CA9 = 1)

Virtual Partial Store (CA9=1)

Cyc. No.| Cik. Operation

1 X0 | Load virtual address into VAR

Activate REQO

X1 | Hold REQO active, load VAR into VARB and RAR

Load data into MD/PD (PD) register and generate syndrome

Same as for CA9=0
Same as for CA9=0
Same as for CA9=0

Table 5-17 Virtual Partial Store (CA9=1)

Virtual Fetch (CA9=1)

Cyc. No. | Clk. Operation

1 X0 | Load virtual address into VAR
Activate REQO
X1 | Hold REQO active, load VAR into VARB and RAR

2 Same as for CA9=0
Same as for CA9=0

GIMTES5043

Table 5-18 Virtual Fetch (CA9 = 1)

5-53

Address Translation Chip (ATC)

REFRESH OPERATION

When a memory refresh is required and other conditions permit, the
ATC asserts REQO during X0 to secure the bus for the next cycle.
If the ATC is currently doing a memory operation, the refresh state is
entered upon completion of the memory operation if no traps are
pending. If the ATC is idle, if there are no requests for memory or
ATC ERU operations, and if no traps are pending, the refresh state
is entered. If a TOE operation on ERU 49 (called WSB) has been
executed and a TIE on ERU 49 (called RSB) has not been executed,
the ATC will not recognize the need for refresh; however, the condition
is held for 16 microseconds. Refresh is a minimum 4-cycle operation:

Cyc. No. | Clk. Operation
1 X0 | Activate REQO
X1 | Hold REQO active
2 X0 | Activate REQO
Activate MAE
Send refresh address to memory with PMBUS24 active (low)
and the write tags inactive
X1 | Hold REQO active
Reset the refresh request signal
3 X0 | Activate REQO - -
Latch fetched data into MD/PD (MD) if DIE is active; check
syndrome bits and correct single bit error
X1 | Hold REQO active
If uncorrectable error detected activate MDEE
4 X0 | Output data and syndrome bits to memory and hold both stable
until after DIE goes active
X1 | Continue holding data and syndrome bits stable to end of clock

5-54

GIMTES5044

Table 5-19 Refresh

MICROINSTRUCTION SET

CHAPTER VI
MICROINSTRUCTION SET

CONTENTS

Microinstruction Set Format
LField Function
KField Function
JFieldFunction...............
IField Function
H Field Functions
G Field Functions

Instruction Nomenclature

InstructionOperands
FullWordOperands
Halfword Operands
ByteOperands
Condition Selector
FieldOperands
Single Field Operand Instructions
Multiple Field Operand Instructions
LiteralOperands
Four Bit Literal
EightBit Literal
Sixteen Bit Literal
DigitOperands

Instruction Descriptions
Memory Instructions

Instruction Index by Function

Instruction IndexbyOpCode

Instruction Index by Mnemonic

©“Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in U.S.A.

MICROINSTRUCTION SET

CHAPTER VI
MICROINSTRUCTION SET

The NCR/32-000 (CPC) has been developed to provide a high degree
of performance using 179 instructions and variants organized into
the following general categories:

Memory instructions

Transfer instructions

Field (string) instructions
Arithmetic instructions
Branch instructions

Special emulation instructions
Special instructions

MICROINSTRUCTION SET FORMAT
The CPC instruction set is a 16 or 32 bit instruction divided into the
following fields:

GIM4003

L Field Function

e Used as a jump literal address in several branch instructions.
¢ Used to load literals into the RSU.

K Field Function

e Used as an RSU address in word or halfword instructions.

e Used as an RSU byte address for the four RSU registers 0
through 3.

e Used as a MARS register addresses—all MARS registers are lo-
cated in the RSU.

e Used as a Literal.

6-1

MICROINSTRUCTION SET
J Field Function

e Used as an RSU address in word and halfword instructions.

e Used as an RSU byte address for RSU registers 0 through 3.
e Used as a MARS register address—all MARS registers are lo-
cated in the RSU.

Used as a Jump Register Address.

Used as a Literal.

| Field Function

e Used as part of the operation code in some of the microcom-
mands.

e Used as part of the address field for external registers and Main
Memory locations (scratch pad).

¢ Used as a literal.

H Field Functions

e Used as part of the operation code in some microcommands.
e Used as a literal.

G Field Functions
e Used as part or all of the operation code.
INSTRUCTION NOMENCLATURE

The nomenclature described here is used in the instruction set sum-
mary.

CR Control Register

(CR) The contents of the Control Register

ISU Instruction Storage Unit

(ISU) The contents of the ISU

JRJ The Jump Register specified by the J field of the in-
struction

RSU Register Storage Unit, 16 word (32-bit) registers

RJ The RSU Register specified by the J Field of an in-
struction

6-2

(RJ)

RK

(RK)

RKO

RKE

R13

R9

R11

R15

X1J

(X1J)

(©)

M#OF

M#B#

MARS

Word

MICROINSTRUCTION SET

The contents of the RSU location specified by J

The RSU Register specified by the K field of an in-
struction

The contents of the RSU location specified by K

The RSU Register specified by the K field of an in-
struction containing an odd number

The RSU Register specified by the K field of an in-
struction containing an even number

The MARS data register (RSU) used for data write
operation

One of the MARS data registers used for fetching data
fields

One of the MARS data registers used for fetching data
fields

The MARS Data Register used to hold Virtual In-
structions

The external register specified by the 1J literal

The contents of the External Register specified by the
1J literal

A 16 bit literal

The contents of the Carry Indicator in the Indicator
Array

MARS Overflow Flag which indicates that the MARS
Byte Pointers have crossed the word boundary

The Byte Pointer corresponding to the particular
MARS unit

Memory Assist Register Set

32 bit field, basic CPC memory unit

MICROINSTRUCTION SET

Halfword

Byte

Digit

CPC
ATC
EAC

PM BUS

Packed

CS.A.

16 bit container, either most significant or least signifi-
cant 16 bits of a word

8 bit field, four per word

4 bit field, either most significant or least significant 4
bits of a byte

Central Processor Chip, NCR/32-000
Address Translation Chip, NCR/32-010
Extended Arithmetic Chip, NCR/32-020

Processor-Memory Bus, link between CPC, ATC, EAC
and Main Memory

Two BCD digits within a byte. Arithmetic operations
generate a carry from the least significant digit to the
most significant digit and from the most significant
digit to the Carry Indicator

Control Store Address (ISU Address)

INSTRUCTION OPERANDS
Instructions utilize seven types of operands:

Full Word Operands
Half Word Operands
Bytes

Test MASK Operands
Field Operands
Literal Operands
Digit Operands

Full Word Operands
Full Word Operands are 32 bits in length. In the CPC there are
32-bit paths between:

¢ RSU and Main Memory (data)

RSU and RSU (word transfer)

* RSU and ALU (word arithmetic and logic)
¢ RSU and External Registers

6-4

RSU and Scratch Pad (local memory data)

MICROINSTRUCTION SET

The Full Word format is shown below:

~ Bit Bit
32 1
MSB LSB

Left Right

GIM4004
Halfword Operands
Halfword operands are 16 bits in length. The number of halfword
operands has been intentionally minimized to simplify ALU hard-
ware. There are 16 bit paths between:

RSU and JRJ

CR and JRJ

RSU and Tally Register
RSU and RSU

RSU and Setup Registers
RSU and some ERUs

The halfword format is shown below:

Bit Bit Bit Bit

32 17 16 1
Left Half Right Half

Left Right

GIM4005

Byte Operands
Byte operands are 8 bits in length. There are 8-bit paths between:

e RSU and RSU
e RSU and ALU

Bytes are specified by the two lower order bits of the J and K
fields of byte operations. The bytes in RSU 0 through 3 are explicit-
ly addressable.

The bytes within an RSU word are located as shown below:

Bit Bit Bit Bit Bit Bit Bit Bit

32 25 24 17 16 9 8 1
Byte O Byte 1 Byte 2 Byte 3

MSB LSB

GIM4006

MICROINSTRUCTION SET

Condition Selector

For some Conditional Jump and Conditional Skip instructions, the
J or K field contains a Condition Selector. This Condition Selector
consists of two parts: the Bit Pair Selector and the Bit Pair Mask.
Bit Pair Selector—The function of the Bit Pair Selector is to specify
a pair of bit positions to be tested (from the byte indicated by the
microinstruction).

byte being tested

1
8 ! 7 6 ! 5 4 '3 | 2 1
L 1 1

T
1
1
1
Y% o0
01 Bit Pair
10

Selector
11

The specified bits are referred to as the Test Bits. If, for example,
the Bit Pair Selector is “00”, the Test Bits are bits 1 and 2 of the
byte. A Bit Pair Selector of “10” specifies bits 5 and 6 as the Test
Bits.
Bit Pair Mask —The function of the Bit Pair Mask is to specify which
of the Test Bits affect the outcome of the test. The particular micro-
instruction being used determines whether a one or a zero value in
the Test Bits will satisfy the test.

00 — Either bit (or both) can satisfy the test.

Bit Pair 01 — Right bit must satisfy the test.
Mask 10 — Left bit must satisfy the test.
11 — Both bits must satisfy the test.

Examples — These examples show how the Bit Pair Selector and the
Bit Pair Mask of the Condition Selector work together.

Example 1 Example 2
Bit Pair Selector = 01 Bit Pair Selector = 11
Bit Pair Mask = 10 Bit Pair Mask = 00

For example 1, bit 4 of the byte being tested must satisfy the test
condition because: 1) Bit Pair Selector 01 specifies Test Bits 4 and 3;
and 2) Bit Pair Mask 10 specifies the left bit of those two, or bit 4.
Example 2 indicates that either bit 8 or bit 7 of the byte being tested
must satisfy the test condition. Bit Pair Selector 11 specifies Test
Bits 8 and 7; Bit Pair Mask 00 specifies either of those bits, 8 or 7.

Field Operands

Field operands are from 1 to (64K-1) bytes in length. The fields are
located in Main Memory. The processor works on one, two or three
fields at a time. A field is specified by the contents of a MARS
register and the contents of a Tally Register. The MARS registers
are specified by the J and K fields. The Store MARS is always
MARSES (implied by the instruction). All fields handled by the hard-
ware must be of equal length.

6-6

MICROINSTRUCTION SET

The MARS operation is specified by the instruction operation
code. Fields are processed one byte at a time under hardware con-
trol. The field instructions will not move in the pipeline until a word
boundary is crossed or the Tally Register equals zero. The data is
transferred between Main Memory and the RSU (four bytes at a
time) under Firmware control. While in the RSU, the bytes are
addressed by the two low-order bits of the corresponding MARS
register. Thus, the instruction selects the RSU word and the MARS
selects the byte within the word. The Tally is decremented as each
byte is processed.

When Tally = 0, the field operation is complete, the pipeline is
advanced to the next instruction, and the Firmware sends a partial
store to Main Memory if required.

If Tally = 0 when the Field command is entered, then the
specified transfer is not executed.

The MARS Data Registers to be used in a Field instruction
must be preloaded before entering the Field operation. For
Arithmetic Field instructions, the Carry Indicator must be pre-set
to the proper value.

The Carry and the BCD indicators (both PBCD and UBCD) are
the only Indicators that respond through the individual cycles of
the Field instructions. The Carry (14) must be initialized by Firm-
ware prior to the first execution of an AF, APDF, AUDF, SF, SPDF
or SUDF instruction. The Carry is chained automatically through-
out the subsequent execution cycles. 14 is initialized to a zero (via
an RIZ instruction) for AF, APDF and AUDF. 14 is initialized to
a one (via an SCO instruction) for SF, SPDF and SUDF.

Single Field Operand Instructions —
The following is an example of a firmware flow using a single

field operand instruction:

TBFI: transfer byte to MARS6-BO

JFAL: jump if overflow {no overflow)

TBFI: transfer byte to MARS6-B1

JFAL: jump if overflow (no overflow)

TBFI : transfer byte to MARS6-B2

JFAL: jump if overflow (no overflow)

TBFI : transfer byte to MARS6-B3

JFAL: jump if overflow (overflow, store link)

PN AL

—— TBFI: transfer byte to MARS6-BO
JFAL: jump if overflow (no overflow)

» 9. SKIP CYCLE (TBFI SKIPPED)
10. SKIP CYCLE (JFAL SKIPPED)
11. DRIBZ: delayed return on link jump register
12. SA: initiate Virtual Store plus Address augment
L_13, - programmed No—OP

GIM4007

Figure 6-1 Single Field Operand Microcode
6-7

MICROINSTRUCTION SET

The Byte to Field, Halfword to Field, Field to Byte and Field
to Halfword instructions are all single field operand instructions.
Only one of the instruction operands is a Field operand. These in-
structions execute in a single cycle.

Multiple Field Operand Instructions — The Transfer Field in-
structions, the Boolean Field instructions and the Arithmetic Field
instructions are multiple field operand (two or three field) instruc-
tions. These instructions execute in one to four cycles depending
upon whether a MARS byte pointer crosses the word boundary o1
the Tally Register decrements to zero.

These instructions hold in the execute stage of the pipeline unti
an exit condition occurs.

The following is an example of a firmware flow using a multipl
field operand instruction where all fields are aligned:

1. LINK: load next instruction (AF) C.S.A. into JRJ
—» 2. AF: add M4-B3 to M5-B3, results to M6-B3
*3. AF: add M4-B2 to M5-B2, results to M6-B2
*4. AF: add M4-B1 to M5-B1, results to M6-B1
*5. AF: add M4-B0 to M5-B0, results to M6-B0O
6. JFA: jump on overflow

7. SKIP CYCLE
8. SKIP CYCLE
9. LFD: Virtual Fetch for MARS4 initiated
- programmed No—OP or RCV with pipeline lock
11. RCV: fetched data is received into RSU
12. LFD: Virtual Fetch from MARSS initiated
13. DRIBZ: delayed return on link jump register
14. RCV: fetched data is received into RSU
15. SD: Virtual Store for MARS6 initiated

*AF remains in the execute stage until an exit condition occurs

(overflow or Tally = 0).
GIM4008

Figure 6-2 Multiple Field Operand Microcode Flow

Literal Operands ,
Literal operands are 4, 8 or 16 bits in length and are included in the
instruction. Literal operands are typically used as follows:

Four Bit Literal
e Used as a constant in arithmetic functions

Eight Bit Literal
* A constant to be loaded into RSU
¢ An offset address for CR literal jump
* A literal value to be loaded into Tally or transferred to the EAC

6-8

MICROINSTRUCTION SET
Sixteen Bit Literal

e An absolute jump address
e A literal to load into RSU

Digit Operands

Digit operands are 4 bits in length. There are 4-bit paths between
RSU’s only. Digit operands are specified within the four byte-
addressable RSU’s.

INSTRUCTION DESCRIPTIONS
The CPC instructions are grouped into the following categories:

Memory Instructions
Transfer Instructions
Logical Instructions
Arithmetic Instructions
Jump Instructions
Miscellaneous Instructions

Unless otherwise indicated, all instructions are single cycle
instructions.

Memory Instructions
All memory instructions transfer information over the Processor-
Memory Bus. The memory operations are either virtual or real.

Important: Virtual Store instructions should never be immedi-
ately followed by a Virtual Memory instruction. If a DAT Fault oc-
curs during the execution of a Virtual Store instruction, and if the
next instruction initiates a Virtual operation, then the Virtual Ad-
dress from the faulted operation will be over-written by the Virtual
Address from the subsequent operation.

Virtual Fetch instructions may be immediately followed by a
Virtual Memory instruction (DAT Faults do occur during the Fetch
sequence). However, if a Memory Error Trap occurs, the Virtual Ad-
dress from the first instruction will be over-written by the Virtual
Address from the subsequent operation. If the Virtual Address
must be saved for a Memory Error Trap routine, then the same
restriction as for Virtual Store instructions must be applied to the
Virtual Fetches.

INSTRUCTION INDEX BY FUNCTION

Tables 6-1 to 6-6 show the CPC instructions grouped by function,
and listed in ascending op code order within each group.

6-9

MICROINSTRUCTION SET

TABLE 6-1—MEMORY INSTRUCTIONS

OP CODE
HEX INSTRUCTION NAME MNEMONIC
02 MEMORY REFERENGCE RETRY MRR
03 FETCH REAL FR
04 FETCH F
05 LOAD, FETCH, AND AUGMENT LFA
06 LOAD, FETCH AND AUGMENT LINKAGE LFAL
07 LOAD, FETCH AND DECREMENT LFD
08-0B FETCH LITERAL FL
14 STORE REAL SR
15 STORE s
16 STORE AND AUGMENT SA
17 STORE AND DECREMENT SD
18-18 STORE LITERAL SL
TABLE 6-2—TRANSFER INSTRUCTIONS
OP CODE
HEX INSTRUCTION NAME MNEMONIC
" 00-01 TRANSFER IN EXTERNAL (32-63) TIE
0C-0F TRANSFER IN PORT (64-127) TIP
10-11 TRANSFER OUT EXTERNAL (32-63) TOE
1C-1F TRANSFER OUT PORT (64-127) TOP
20-21 TRANSFER IN INTERNAL (0-31) TH
22 TRANSFER FIELD TO LEFT HALFWORD TFLHD
DECREMENT
23 TRANSFER FIELD TO LEFT HALFWORD TFLHI
INCREMENT
24 TRANSFER FIELD TO RIGHT HALFWORD TFRHD
DECREMENT
25 TRANSFER FIELD TO RIGHT HALFWORD TFRHI
INCREMENT
26 TRANSFER FIELD TO FIELD DECREMENT TFFD
27 TRANSFER FIELD TO FIELD INCREMENT TFFI
28 TRANSFER FIELD TO BYTE DECREMENT TFBD
29 TRANSFER FIELD TO BYTE INCREMENT TFBI
2A TRANSFER FIELD TO BYTE DECREMENT TFBDN
NO TALLY
2B TRANSFER FIELD TO BYTE TFB
30-31 TRANSFER OUT INTERNAL (0-31) TOI
3F TRANSFER FIELD TO BYTE INCREMENT TFBIN
NO TALLY
51 TRANSFER WORD ™
58 LOAD TALLY RIGHT CLEAR LEFT LTRC
59 LOAD BYTE LB
5A LOAD LEFT DIGIT LLD

6-10

MICROINSTRUCTION SET

TABLE 6-2—TRANSFER INSTRUCTIONS (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC

58 LOAD RIGHT DIGIT ~ | wrD

5C LOAD RIGHT HALFWORD LRH

5D LOAD RIGHT HALFWORD CLEAR LEFT LRHC

A0 SHIFT WORD ARITHMETIC RIGHT SWAR

A1 SHIFT WORD LOGICAL LEFT SWLL

A2 SHIFT WORD LOGICAL LEFT WITH CARRY SWLLC

A3 SHIFT WORD LOGICAL RIGHT SWLR

A4 SHIFT WORD LOGICAL RIGHT WITH CARRY | SWLRC

A5 SHIFT WORD CIRCULAR LEFT sweL

A6 TRANSFER LEFT HALFWORD TO FIELD TLHFD
DECREMENT

A7 TRANSFER LEFT HALFWORD TO FIELD TLHFI
INCREMENT

A8 TRANSFER RIGHT HALFWORD TO FIELD TRHFD
DECREMENT

A9 TRANSFER RIGHT HALFWORD TO FIELD TRHFI
INCREMENT

AA TRANSFER LEFT HALFWORD TO LEFT TLHLH
HALFWORD

AB TRANSFER LEFT HALFWORD TO RIGHT TLHRH
HALFWORD

AC TRANSFER RIGHT HALFWORD TO LEFT TRHLH
HALFWORD

AD TRANSFER RIGHT HALFWORD TO RIGHT TRHRH
HALFWORD

BB TRANSFER BYTE TO FIELD INCREMENT TBFIN
NO TALLY

BC TRANSFER BYTE TO FIELD DECREMENT TBFD

BD TRANSFER BYTE TO FIELD INCREMENT TBFI

BE TRANSFER BYTE TO FIELD DECREMENT TBFTN
NO TALLY

BF TRANSFER BYTE TO FIELD TBF

cD TRANSFER BYTE 8

D2 TRANSFER LEFT DIGIT TO LEFT DIGIT TLDLD

D3 TRANSFER LEFT DIGIT TO RIGHT DIGIT "TLDRD

D4 TRANSFER RIGHT DIGIT TO LEFT DIGIT TRDLD

D5 TRANSFER RIGHT DIGIT TO RIGHT DIGIT TRDRD

6-11

MICROINSTRUCTION SET

TABLE 6-3—LOGICAL INSTRUCTIONS

OP CODE
HEX INSTRUCTION NAME MNEMONIC
42 BOOLEAN AND FIELD BAF
43 BOOLEAN OR FIELD BOF
44 BOOLEAN EOR FIELD BEF
4E BOOLEAN AND WORD BAW
4F BOOLEAN OR WORD BOW
50 BOOLEAN EOR WORD BEW
5E BOOLEAN INVERT WORD BIW
CA BOOLEAN AND BYTE BAB
cB BOOLEAN OR BYTE BOB
cC BOOLEAN EOR BYTE BEB
D8 BOOLEAN AND LEFT DIGIT BALD
D9 BOOLEAN AND RIGHT DIGIT BARD
DA BOOLEAN OR LEFT DIGIT BOLD
DB BOOLEAN OR RIGHT DIGIT BORD
DC BOOLEAN EOR LEFT DIGIT BELD
DD BOOLEAN EOR RIGHT DIGIT BERD
DF BOOLEAN INVERT BYTE BIB
TABLE 6-4—ARITHMETIC INSTRUCTIONS
OP CODE
HEX INSTRUCTION NAME MNEMONIC

40 ADD FIELD AF

SUBTRACT FIELD SF

45 COMPARE FIELD UNSIGNED CFU

46 ADD PACKED DECIMAL FIELD APDF
47 SUBTRACT PACKED DECIMAL FIELD SPDF
48 ADD UNPACKED DECIMAL FIELD AUDF
49 SUBTRACT UNPACKED DECIMAL FIELD SUDF
4A ADD WORD AW

4B SUBTRACT WORD sw

4c ADD WORD WITH CARRY AWC
4D SUBTRACT WORD WITH CARRY swc

52 COMPARE WORD SIGNED cws

53 COMPARE WORD UNSIGNED cwu

57 COMPARE BYTE TO FIELD UNSIGNED CBFU
93 ADD CR TO LITERAL ACRL
oC ADD WORD WITH LITERAL NO INDICATOR AWLNI

CHANGE
9D SUBTRACT WORD LITERAL NO INDICATOR SWLNI
CHANGE

AE ADD WORD WITH LITERAL AWL
AF SUBTRACT WORD WITH LITERAL SWL

6-12

MICROINSTRUCTION SET

TABLE 6-4—ARITHMETIC INSTRUCTIONS (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC

co COMPARE BYTE SIGNED CBS '
c1 COMPARE BYTE UNSIGNED CBU

c6 ADD BYTE AB

c7 SUBTRACT BYTE SB

cs ADD BYTE WITH CARRY ABC

c9 SUBRACT BYTE WITH CARRY SBC

CE ADD PACKED DECIMAL BYTE APDB

CF SUBTRACT PACKED DECIMAL BYTE SPDB

DO ADD PACKED DECIMAL BYTE WITH CARRY APDBC
D1 SUBTRACT PACKED DECIMAL BYTE WITH SPDBC

CARRY
DE SUBTRACT BYTE LITERAL SBL
TABLE 6-5—JUMP INSTRUCTIONS
OP CODE
HEX INSTRUCTION NAME MNEMONIC

2C JUMP ON REGISTER ' JOR

2D DELAYED JUMP ON REGISTER DJOR
32 1BM SETUP JUMP A JMPIA
33 1BM SETUP JUMP B JMPIB
34 IBM SETUP JUMP C JMPIC
35 NVM SETUP JUMP A JMPNA
36 NVM SETUP JUMP B JMPNB
37 NVM SETUP JUMP C JMPNC
38 VRX SETUP JUMP A JMPVA
39 VRX SETUP JUMP B JMPVB
3A VRX SETUP JUMP C JMPVC
3B NVM DESCRIPTOR JUMP JMPD
3C JUMP ON PMBUS NEGATIVE JPMBN
3E DELAYED JUMP ON PMBUS NEGATIVE DJPMBN
60 SKIP ON REGISTER BYTE 3 ONES SRB30
62 85'?5%“0 JUMP ON INDICATOR BIT PAIR DJIBO
63 DELAYED JUMP ON INDICATOR BIT PAIR DJIBZ

ZEROS

64 RETURN ON INDICATOR BIT PAIR ONES RIBO
65 CD)EIEASYED RETURN ON INDICATOR BIT PAIR DRIBO
66 RETURN ON INDICATOR BIT PAIR ZEROS RIBZ

67 ?Ekéém RETURN ON INDICATOR BIT PAIR DRIBZ

6-13

MICROINSTRUCTION SET

TABLE 6-5~JUMP INSTRUCTIONS (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC
68 JUMP ON FIELD ARRAY JFA
69 JUMP ON FIELD ARRAY LINK JFAL
6A JUMP ON INDICATOR BIT PAIR ONES JIBO
6B JUMP ON INDICATOR BIT PAIR ZEROS JIBZ
6C JUMP RELATIVE PLUS JRP
6D JUMP RELATIVE MINUS JRM
6E DELAYED JUMP RELATIVE PLUS DJRP
6F DELAYED JUMP RELATIVE MINUS DJRM
70-7F JUMP ON INDICATOR ONES LINKAGE JioL
80-8F JUMP ON INDICATOR ZEROS LINKAGE JIZL
90 DELAYED JUMP ON TALLY NOT ZERO DJTNZ
BO JUMP RELATIVE PLUS EXTERNAL JRPX
B1 JUMP RELATIVE MINUS EXTERNAL JRMX
B2 JUMP ON INDICATOR BIT PAIR ONES MINUS JIBOM
B3 JUMP ON INDICATOR BIT PAIR ZEROS MINUS JIBZM
B4 DELAYED JUMP ON INDICATOR BIT PAIR DJIBOM
ONES MINUS
B5 DELAYED JUMP ON INDICATOR BIT PAIR DJIBZM
ZEROS MINUS
B6 JUMP ON INDICATOR BIT PAIR ONES LONG JiBOL
B7 JUMP ON INDICATOR BIT PAIR ZEROS LONG JIBZL
B8 SKIP ON INDICATOR BIT PAIR ONES SIBO
B9 SKIP ON INDICATOR BIT PAIR ZEROS SiBz
BA JUMP ON TALLY NOT ZERO JTNZ
Cc2 SKIP ON REGISTER UNEQUAL SRU
C3 SKIP ON REGISTER EQUAL SRE
C4 SKIP ON REGISTER BIT PAIR ONES SRBO
C5 SKIP ON REGISTER BIT PAIR ZEROS SRBZ
EO-EF JUMP ON REGISTER ONES JRO
FO-FF JUMP ON REGISTER ZEROS JRZ
TABLE 6-6—MISCELLANEOUS INSTRUCTIONS
OP CODE
HEX INSTRUCTION NAME MNEMONIC

12 EXTENDED ARITHMETIC FUNCTION EAF

13 WAIT ON PMBUS WPMB
2E IBM SETUP ASSIST A SETIA
2F NVM SETUP ASSIST A SETNA
3D RECEIVE FETCHED DATA RCV

54 MAP IBM INDICATORS Mil

6-14

MICROINSTRUCTION SET

TABLE 6-6—MISCELLANEOUS INSTRUCTIONS (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC

55 MAP NVM INDICATORS MIN

56 MAP VRX INDICATORS MIV

61 LOAD LINK ADDRESS MINUS LINKM

91 RETURN FROM TRAPS/INTERRUPTS RTI

92 LOAD LINK ADDRESS LINK

04 SET CONTROLS sC

95 RESET CONTROLS RC

% TRANSFER BYTE FROM SETUP TSB

97 TRANSFER LEFT DIGIT FROM SETUP AND TSLDC
CLEAR

98 TRANSFER RIGHT DIGIT FROM SETUP AND TSRDC
CLEAR

99 TRANSFER BYTE FROM SETUP AND CLEAR TSBC

9A SETUP SIGN EXTENSION SETXS

9B LOAD TALLY FROM SETUP LTS

9E SET CARRY TO ONE sco

oF RESET INDICATORS TO ZERO RIZ

D6 UNPACK LEFT DIGIT UPKL

D7 UNPACK RIGHT DIGIT UPKR

INSTRUCTION INDEX BY OP CODE
Table 6-7 lists the CPC instruction set in ascending Op Code order.

TABLE 6-7—INSTRUCTION INDEX BY OP CODE

OP CODE

HEX INSTRUCTION NAME MNEMONIC
00-01 TRANSFER IN EXTERNAL (32-63) TIE
02 MEMORY REFERENCE RETRY MRR
03 FETCH REAL FR
04 FETCH F
05 LOAD, FETCH AND AUGMENT LFA
06 LOAD, FETCH AND AUGMENT LINKAGE LFAL
07 LOAD, FETCH AND DECREMENT LFD
08-0B FETCH LITERAL FL
0C-OF TRANSFER IN PORT (64-127) TIP
10, 11 TRANSFER OUT EXTERNAL (32-63) TOE
12 EXTENDED ARITHMETIC FUNCTION EAF
13 WAIT ON PM BUS WPMB

6-15

MICROINSTRUCTION SET

TABLE 6-7—INSTRUCTION INDEX BY OP CODE (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC

14 STORE REAL SR

15 STORE S

16 STORE AND AUGMENT SA

17 STORE AND DECREMENT SD

18-1B STORE LITERAL SL

1C-1F TRANSFER OUT PORT (64-127) TOP

20, 21 TRANSFER IN INTERNAL (0-31) TN

22 TRANSFER FIELD TO LEFT HALFWORD TFLHD
DECREMENT

23 TRANSFER FIELD TO LEFT HALFWORD TFLHI
INCREMENT

24 TRANSFER FIELD TO RIGHT HALFWORD TFRHD
DECREMENT

25 TRANSFER FIELD TO RIGHT HALFWORD TFRHI
INCREMENT

26 TRANSFER FIELD TO FIELD DECREMENT TFFD

27 TRANSFER FIELD TO FIELD INCREMENT TFFI

28 TRANSFER FIELD TO BYTE DECREMENT TFBD

29 TRANSFER FIELD TO BYTE INCREMENT TFBI

2A TRANSFER FIELD TO BYTE DECREMENT TFBDN
NO TALLY

2B TRANSFER FIELD TO BYTE TFB

2C JUMP ON REGISTER JOR

2D DELAYED JUMP ON REGISTER DJOR

2E IBM SETUP ASSIST A SETIA

2F NVM SETUP ASSIST A SETNA

30, 31 TRANSFER OUT INTERNAL (0-31) TOI

32 IBM SETUP JUMP A JMPIA

33 IBM SETUP JUMP B JMPIB

34 iBM SETUP JUMP C JMPIC

35 NVM SETUP JUMP A JMPNA

36 NVM SETUP JUMP B JMPNB

37 NVM SETUP JUMP C JMPNC

38 VRX SETUP JUMP A JMPVA

39 VRX SETUP JUMP B JMPVB

3A VRX SETUP JUMP C JMPVC

3B NVM DESCRIPTOR JUMP JMPD

3C JUMP ON PMBUS NEGATIVE JPMBN

3D RECEIVE FETCHED DATA RCV

3E DELAYED JUMP ON PMBUS NEGATIVE DJPMBN

3F TRANSFER FIELD TO BYTE INCREMENT TFBIN
NO TALLY

40 ADD FIELD AF

6-16

MICROINSTRUCTION SET

TABLE 6-7—INSTRUCTION INDEX BY OP CODE (Continued)

OP CODE

HEX INSTRUCTION NAME MNEMONIC
41 SUBTRACT FIELD SF
42 BOOLEAN AND FIELD BAF
43 BOOLEAN OR FIELD BOF
44 BOOLEAN EOR FIELD BEF
45 COMPARE FIELD UNSIGNED CFU
46 ADD PACKED DECIMAL FIELD APDF
47 SUBTRACT PACKED DECIMAL FIELD SPDF
48 ADD UNPACKED DECIMAL FIELD AUDF
49 SUBTRACT UNPACKED DECIMAL FIELD SUDF
4A ADD WORD AW
4B SUBTRACT WORD SW
4C ADD WORD WITH CARRY AWC
4D SUBTRACT WORD WITH CARRY SWC
4E BOOLEAN AND WORD BAW
4F BOOLEAN OR WORD BOW
50 BOOLEAN EOR WORD BEW
51 TRANSFER WORD ™
52 COMPARE WORD SIGNED Cws
53 COMPARE WORD UNSIGNED CWuU
54 MAP IBM INDICATORS Mil
55 MAP NVM INDICATORS MIN
56 MAP VRX INDICATORS MIV
57 COMPARE BYTE TO FIELD UNSIGNED CBFU
58 LOAD TALLY RIGHT CLEAR LEFT LTRC
59 LOAD BYTE LB
5A LOAD LEFT DIGIT LLD
58 LOAD RIGHT DIGIT LRD
5C LOAD RIGHT HALFWORD LRH
5D LOAD RIGHT HALFWORD CLEAR LEFT LRHC
5E BOOLEAN INVERT WORD BIW
60 SKIP ON REGISTER BYTE 3 ONES SRB30
61 LOAD LINK ADDRESS MINUS LINKM
62 (D)ﬁl-EAéYED JUMP ON INDICATOR BIT PAIR DJIBO
63 DELAYED JUMP ON INDICATOR BIT PAIR DJiBZ

ZEROS

64 RETURN ON INDICATOR BIT PAIR ONES RIBO
65 8EIEAéYED RETURN ON INDICATOR BIT PAIR DRIBO
66 RETURN ON INDICATOR BIT PAIR ZEROES RIBZ

6-17

MICROINSTRUCTION SET

TABLE 6-7—INSTRUCTION INDEX BY OP CODE (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC

67 DELAYED RETURN ON INDICATOR BIT PAIR DRIBZ
ZEROS

68 JUMP ON FIELD ARRAY JFA

69 JUMP ON FIELD ARRAY LINKAGE JFAL

6A JUMP ON INDICATOR BIT PAIR ONES JIBO

6B JUMP ON INDICATOR BIT PAIR ZEROS JiBZ

6C JUMP RELATIVE PLUS JRP

6D JUMP RELATIVE MINUS JRM

6E DELAYED JUMP RELATIVE PLUS DJRP

6F DELAYED JUMP RELATIVE MINUS DJRM

70-7F JUMP ON INDICATOR ONES LINKAGE JioL

80-8F JUMP ON INDICATOR ZEROS LINKAGE JIZL

90 DELAYED JUMP ON TALLY NOT ZERO DJTNZ

91 RESTORE FROM TRAPS/INTERRUPTS RTI

92 LOAD LINK ADDRESS LINK

93 ADD CR TO LITERAL ACRL

94 SET CONTROLS SC

95 RESET CONTROLS RC

96 TRANSFER BYTE FROM SETUP TSB

97 TRANSFER LEFT DIGIT FROM SETUP AND TSLDC
CLEAR

98 1C-|?.IE\23FER RIGHT DIGIT FROM SETUP AND TSRDC

99 TRANSFER BYTE FROM SETUP AND CLEAR TSBC

9A SETUP SIGN EXTENSION SETSX

9B LOAD TALLY FROM SETUP LTS

9C ADD WORD WITH LITERAL NO INDICATOR AWLNI
CHANGE

9D SUBTRACT WORD LITERAL NO INDICATOR SWLNI
CHANGE

9E SET CARRY TO ONE SCO

9F RESET INDICATORS TO ZERO RIZ

A0 SHIFT WORD ARITHMETIC RIGHT SWAR

Al SHIFT WORD LOGICAL LEFT SWLL

A2 SHIFT WORD LOGICAL LEFT WITH CARRY SWLLC

A3 SHIFT WORD LOGICAL RIGHT SWLR

A4 SHIFT WORD LOGICAL RIGHT WITH CARRY SWLRC

A5 SHIFT WORD CIRCULAR LEFT SWCL

A6 TRANSFER LEFT HALFWORD TO FIELD TLHFD
DECREMENT

A7 TRANSFER LEFT HALFWORD TO FIELD TLHFI
INCREMENT

A8 TRANSFER RIGHT HALFWORD TO FIELD TRHFD
DECREMENT

6-18

MICROINSTRUCTION SET

TABLE 6-7—INSTRUCTION INDEX BY OP CODE (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC

A9 TRANSFER RIGHT HALFWORD TO FIELD TRHFI
INCREMENT

AA TRANSFER LEFT HALFWORD TO LEFT TLHLH
HALFWORD

AB TRANSFER LEFT HALFWORD TO RIGHT TLHRH
HALFWORD

AC TRANSFER RIGHT HALFWORD TO LEFT TRHLH
HALFWORD

AD TRANSFER RIGHT HALFWORD TO RIGHT TRHRH
HALFWORD

AE ADD WORD WITH LITERAL AWL

AF SUBTRACT WORD WITH LITERAL SWL

BO JUMP RELATIVE PLUS EXTERNAL JRPX

B1 JUMP RELATIVE MINUS EXTERNAL JRMX

B2 JUMP ON INDICATOR BIT PAIR ONES MINUS JIBOM

B3 JUMP ON INDICATOR BIT PAIR ZEROS MINUS | JIBZM

B4 DELAYED JUMP ON INDICATOR BIT PAIR DJIBOM
ONES MINUS

B5 DELAYED JUMP ON INDICATOR BIT PAIR DJIBZM
ZEROS MINUS

B6 JUMP ON INDICATOR BIT PAIR ONES LONG JIBOL

B7 JUMP ON INDICATOR BIT PAIR ZEROS LONG JIBZL

B8 SKIP ON INDICATOR BIT PAIR ONES SIBO

B9 SKIP ON INDICATOR BIT PAIR ZEROS SIBZ

BA JUMP ON TALLY NOT ZERO JTNZ

BB TRANSFER BYTE TO FIELD INCREMENT TBFIN
NO TALLY

BC TRANSFER BYTE TO FIELD DECREMENT TBFD

BD TRANSFER BYTE TO FIELD INCREMENT TBFI

BE TRANSFER BYTE TO FIELD DECREMENT TBFDN
NO TALLY

BF TRANSFER BYTE TO FIELD TBF

Cco COMPARE BYTE SIGNED CBS

ci COMPARE BYTE UNSIGNED CBU

c2 SKIP ON REGISTER UNEQUAL SRU

c3 SKIP ON REGISTER EQUAL SRE

c4 SKIP ON REGISTER BIT PAIR ONES SRBO

cs SKIP ON REGISTER BIT PAIR ZEROS SRBZ

cé ADD BYTE AB

c7 SUBTRACT BYTE sB

cs ADD BYTE WITH CARRY ABC

c9 SUBTRACT BYTE WITH CARRY SBC

CA BOOLEAN AND BYTE BAB

cB BOOLEAN OR BYTE BOB

6-19

MICROINSTRUCTION SET

TABLE 6-7—INSTRUCTION INDEX BY OP CODE (Continued)

OP CODE

HEX INSTRUCTION NAME MNEMONIC
cC BOOLEAN EOR BYTE BEB
CcD TRANSFER BYTE B
CE ADD PACKED DECIMAL BYTE APDB
CF SUBTRACT PACKED DECIMAL BYTE SPDB
DO ADD PACKED DECIMAL BYTE WITH CARRY APDBC
D1 SUBTRACT PACKED DECIMAL BYTE WITH SPDBC

CARRY

D2 TRANSFER LEFT DIGIT TO LEFT DIGIT TLDLD
D3 TRANSFER LEFT DIGIT TO RIGHT DIGIT TLDRD
D4 TRANSFER RIGHT DIGIT TO LEFT DIGIT TRDLD
D5 TRANSFER RIGHT DIGIT TO RIGHT DIGIT TRDRD
D6 UNPACK LEFT DIGIT UPKL
D7 UNPACK RIGHT DIGIT UPKR
D8 BOOLEAN AND LEFT DIGIT BALD
D9 BOOLEAN AND RIGHT DIGIT BARD
DA BOOLEAN OR LEFT DIGIT BOLD
DB BOOLEAN OR RIGHT DIGIT BORD
DC BOOLEAN EOR LEFT DIGIT BELD
DD BOOLEAN EOR RIGHT DIGIT BERD
DE SUBTRACT BYTE LITERAL SBL
DF BOOLEAN INVERT BYTE BIB
EO-EF JUMP ON REGISTER ONES JRO
FO-FF JUMP ON REGISTER ZEROS JRZ

INSTRUCTION INDEX BY MNEMONIC
Table 6-8 lists the CPC instruction set by alphabetical order of

mnemonic.
TABLE 6-8—INSTRUCTION INDEX BY MNEMONIC
OP CODE
HEX INSTRUCTION NAME MNEMONIC
C6 ADD BYTE AB
C8 ADD BYTE WITH CARRY ABC
93 ADD CR LITERAL ACRL
40 ADD FIELD AF
CE ADD PACKED DECIMAL BYTE APDB
DO ADD PACKED DECIMAL BYTE APDBC
WITH CARRY

46 ADD PACKED DECIMAL FIELD APDF
48 ADD UNPACKED DECIMAL FIELD AUDF

6-20

MICROINSTRUCTION SET

TABLE 6-8—INSTRUCTION INDEX BY MNEMONIC (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC
4A ADD WORD AW
4C ADD WORD WITH CARRY AWC
AE ADD WORD WITH LITERAL AWL
9C ADD WORD WITH LITERAL NO INDICATOR AWLNI
CHANGE
CA BOOLEAN AND BYTE BAB
42 BOOLEAN AND FIELD BAF
D8 BOOLEAN AND LEFT DIGIT BALD
D9 BOOLEAN AND RIGHT DIGIT BARD
4E BOOLEAN AND WORD BAW
CC BOOLEAN EOR BYTE BEB
44 BOOLEAN EOR FIELD BEF
DC BOOLEAN EOR LEFT DIGIT BELD
DD .BOOLEAN EOR RIGHT DIGIT BERD
50 BOOLEAN EOR WORD BEW
" DF BOOLEAN INVERT BYTE BIB
5E BOOLEAN INVERT WORD BIW
cB BOOLEAN OR BYTE BOB
43 BOOLEAN OR FIELD BOF
DA BOOLEAN OR LEFT DIGIT BOLD
DB BOOLEAN OR RIGHT DIGIT BORD
4F BOOLEAN OR WORD BOW
Co COMPARE BYTE SIGNED cBS
C1 COMPARE BYTE UNSIGNED CBU
57 COMPARE BYTE TO FIELD UNSIGNED CBFU
45 | COMPARE FIELD UNSIGNED CFU
52 COMPARE WORD SIGNED CwWs
53 COMPARE WORD UNSIGNED CWU
62 DELAYED JUMP ON INDICATOR BIT PAIR ONES DJIBO
B4 DELAYED JUMP ON INDICATOR BIT BIT PAIR DJIBOM
ONES MINUS
63 DELAYED JUMP ON INDICATOR BIT PAIR DJIBZ
ZEROS
B5 DELAYED JUMP ON INDICATOR BIT PAIR DJIBZM
ZEROS MINUS
2D DELAYED JUMP ON REGISTER DJOR
3E DELAYED JUMP ON PMBUS NEGATIVE DJPMBN
6F DELAYED JUMP RELATIVE MINUS DJRM
6E DELAYED JUMP RELATIVE PLUS DJRP
90 DELAYED JUMP ON TALLY NOT ZERO DJTNZ
65 (D)ﬁ-EASYED RETURN ON INDICATOR BIT PAIR DRIBO
67 DELAYED RETURN ON INDICATOR BIT PAIR DRIBZ
ZEROS
12 EXTENDED ARITHMETIC FUNCTION EAF

6-21

MICROINSTRUCTION SET

TABLE 6-8—INSTRUCTION INDEX BY MNEMONIC (Continued)

OP CODE

HEX INSTRUCTION NAME MNEMONIC
04 FETCH F
08-0B FETCH LITERAL FL
03 FETCH REAL FR
68 JUMP ON FIELD ARRAY JFA
69 JUMP ON FIELD ARRAY LINK JFAL
6A JUMP ON INDICATOR BIT PAIR ONES JIBO
B6 JUMP ON INDICATOR BIT PAIR ONES LONG JIBOL
B2 JUMP ON INDICATOR BIT PAIR ONES MINUS JIBOM
6B JUMP ON INDICATOR BIT PAIR ZEROS JiBZ
B7 JUMP ON INDICATOR BIT PAIR ZEROS LONG JIBZL
B3 JUMP ON INDICATOR BIT PAIR ZEROS MINUS JIBZM
70-7F JUMP ON INDICATOR ONES LINKAGE JioL
80-8F JUMP ON INDICATOR ZEROS LINKAGE JIZL
3B NVM DESCRIPTOR JUMP JMPD
32 IBM SETUP JUMP A JMPIA
33 IBM SETUP JUMP B JMPIB
34 IBM SETUP JUMP C JMPIC
35 NVM SETUP JUMP A JMPNA
36 NVM SETUP JUMP B JMPNB
37 NVM SETUP JUMP C JMPNC
38 VRX SETUP JUMP A JMPVA
39 VRX SETUP JUMP B JMPVB
3A VRX SETUP JUMP C JMPVC
2C JUMP ON REGISTER JOR
3C JUMP ON PM BUS NEGATIVE JPMBN
6D JUMP RELATIVE MINUS JRM
B1 JUMP RELATIVE MINUS EXTERNAL JRMX
EO-EF JUMP ON REGISTER ONES JRO
6C JUMP RELATIVE PLUS JRP
BO JUMP RELATIVE PLUS EXTERNAL JRPX
FO-FF JUMP ON REGISTER ZEROS JRZ
BA JUMP ON TALLY NOT ZERO JTNZ
59 LOAD BYTE LB
05 LOAD, FETCH, AND AUGMENT LFA
06 LOAD, FETCH, AND AUGMENT LINKAGE LFAL
07 LOAD, FETCH, AND DECREMENT LFD
92 LOAD LINK ADDRESS LINK
61 LOAD LINK ADDRESS MINUS LINKM
5A LOAD LEFT DIGIT LLD
5B LOAD RIGHT DIGIT LRD
5C LOAD RIGHT HALFWORD LRH
5D LOAD RIGHT HALFWORD CLEAR LEFT LRHC

HALFWORD

6-22

MICROINSTRUCTION SET

TABLE 6-8—INSTRUCTION INDEX BY MNEMONIC (Continued)

OP CODE

HEX INSTRUCTION NAME MNEMONIC "
58 LOAD TALLY RIGHT CLEAR LEFT LTRC
9B LOAD TALLY FROM SETUP LTS
54 MAP IBM INDICATORS Ml
55 MAP NVM INDICATORS MIN
56 MAP VRX INDICATORS MIV
02 MEMORY REFERENCE RETRY MRR
95 RESET CONTROLS ’ RC
3D RECEIVE FETCHED DATA RCV
64 RETURN ON INDICATOR BIT PAIR ONES RIBO
66 RETURN ON INDICATOR BIT PAIR ZEROS RIBZ
9F RESET INDICATORS TO ZERO RIZ
91 RETURN FROM TRAPS/INTERRUPTS RTI
15 STORE s
16 STORE AND AUGMENT SA
c7 SUBTRACT BYTE SB
c9 SUBTRACT BYTE WITH CARRY SBC
DE SUBTRACT BYTE LITERAL SBL
94 SET CONTROLS sC
9E SET CARRY TO ONE SCO
17 STORE AND DECREMENT sSD
2E IBM SETUP ASSIST A SETIA
2F NVM SETUP ASSIST A SETNA
9A SETUP SIGN EXTENSION SETSX
41 SUBTRACT FIELD SF
B8 SKIP ON INDICATOR BIT PAIR ONES SIBO
B9 SKIP ON INDICATOR BIT PAIR ZEROS SIBZ
18-1B STORE LITERAL SL
CF SUBTRACT PACKED DECIMAL BYTE SPDB
D1 SUBTRACT PACKED DECIMAL BYTE WITH SPDBC

CARRY

47 SUBTRACT PACKED DECIMAL FIELD SPDF
14 STORE REAL SR
c4 SKIP ON REGISTER BIT PAIR ONES SRBO
c5 SKIP ON REGISTER BIT PAIR ZEROS SRBZ
60 SKIP ON REGISTER BYTE 3 ONES SRB30
c3 SKIP ON REGISTERS EQUAL SRE
c2 SKIP ON REGISTERS UNEQUAL SRU
49 SUBTRACT UNPACKED DECIMAL FIELD SUDF
4B SUBTRACT WORD SW
A0 SHIFT WORD ARITHMETIC RIGHT SWAR
4D SUBTRACT WORD WITH CARRY SWC
A5 SHIFT WORD CIRCULAR LEFT SWCL

6-23

MICROINSTRUCTION SET

TABLE 6-8—INSTRUCTION INDEX BY MNEMONIC (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC

AF SUBTRACT WORD WITH LITERAL SWL

A1 SHIFT WORD LOGICAL LEFT SWLL

A2 | SHIFT WORD LOGICAL LEFT WITH CARRY SWLLC

9D SUBTRACT WORD LITERAL NO INDICATOR SWLNI
CHANGE

A3 SHIFT WORD LOGICAL RIGHT SWLR

A4 SHIFT WORD LOGICAL RIGHT WITH CARRY SWLRC

cD TRANSFER BYTE B

BF TRANSFER BYTE TO FIELD TBF

BC TRANSFER BYTE TO FIELD DECREMENT TBFD

BE TRANSFER BYTE TO FIELD DECREMENT TBFDN
NO TALLY CHANGE

BD TRANSFER BYTE TO FIELD INCREMENT TBFI

BB TRANSFER BYTE TO FIELD INCREMENT TBFIN
NO TALLY CHANGE

28 TRANSFER FIELD TO BYTE TFB

28 TRANSFER FIELD TO BYTE DECREMENT TFBD

2A TRANSFER FIELD TO BYTE DECREMENT TFBDN
NO TALLY CHANGE

29 TRANSFER FIELD TO BYTE INCREMENT TFBI

3F TRANSFER FIELD TO BYTE INCREMENT TFBIN
NO TALLY CHANGE

26 TRANSFER FIELD TO FIELD DECREMENT TFFD

27 TRANSFER FIELD TO FIELD INCREMENT TFFI

22 TRANSFER FIELD TO LEFT HALFWORD TFLHD
DECREMENT

23 TRANSFER FIELD TO LEFT HALFWORD TFLHI
INCREMENT

24 TRANSFER FIELD TO RIGHT HALFWORD TFRHD
DECREMENT

25 TRANSFER FIELD TO RIGHT HALFWORD TFRHI
INCREMENT

00-01 TRANSFER IN EXTERNAL (32-63) TIE

20-21 TRANSFER IN INTERNAL (0-31) ul

0C-OF TRANSFER IN PORT (64-127) TIP

D2 TRANSFER LEFT DIGIT TO LEFT DIGIT TLDLD

D3 TRANSFER LEFT DIGIT TO RIGHT DIGIT TLDRD

A6 TRANSFER LEFT HALFWORD TO FIELD TLHFD
DECREMENT

A7 TRANSFER LEFT HALFWORD TO FIELD TLHFI
INCREMENT

AA TRANSFER LEFT HALFWORD TO LEFT TLHLH
HALFWORD

AB TRANSFER LEFT HALFWORD TO RIGHT TLHRH
HALFWORD

10, 11 TRANSFER OUT EXTERNAL (32-63) TOE

6-24

MICROINSTRUCTION SET

TABLE 6-8—INSTRUCTION INDEX BY MNEMONIC (Continued)

OP CODE
HEX INSTRUCTION NAME MNEMONIC

30, 31 TRANSFER OUT INTERNAL (0-31) TOI

1C-1F TRANSFER OUT PORT (64-127) TOP

D4 TRANSFER RIGHT DIGIT TO LEFT DIGIT TRDLD

D5 TRANSFER RIGHT DIGIT TO RIGHT DIGIT TRDRD

A8 TRANSFER RIGHT HALFWORD TO FIELD TRHFD
DECREMENT

A9 TRANSFER RIGHT HALFWORD TO FIELD TRHFI
INCREMENT

AC TRANSFER RIGHT HALFWORD TO LEFT TRHLH
HALFWORD

AD TRANSFER RIGHT HALFWORD TO RIGHT TRHRH
HALFWORD

% TRANSFER BYTE FROM SETUP TSB

29 TRANSFER BYTE FROM SETUP AND CLEAR | TSBC

o7 TRANSFER LEFT DIGIT FROM SETUP AND TSLDC
CLEAR

98 TRANSFER RIGHT DIGIT FROM SETUP AND | TSRDC

51 TRANSFER WORD W

D6 UNPACK LEFT DIGIT UPKL

D7 UNPACK RIGHT DIGIT UPKR

13 WAIT ON PMBUS WPMB

The following pages contain descriptions of all CPC instructions.
The op code, mnemonic, format, summary, operation description,
number of cycles, indicator array effect, and relevant programming
convention is given for each instruction.

6-25

MICROINSTRUCTION SET

AB ADD BYTE AB

MNEMONIC: AB
OP CODE: Cé

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Source

Source Source

1 1. 00 01 1 0 Dest Dest Source RSU

RSU RSU RSU Byte

Byte i

0P Code; G, H, & | Fields J Field K Field

GIM2216

SUMMARY: (RJ-B)+ (RK-B) — RJ-B

OPERATION: A byte from the RSU specified by the J FIELD is
binarily added to a byte from the RSU specified by the K FIELD.
The result replaces the byte in the RSU specified by the J FIELD.
NUMBER OF CYCLES: AB is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, 12, 13, and I4.

PROGRAMMING CONVENTIONS: None

6-26

MICROINSTRUCTION SET

ABC ADD BYTE WITH CARRY ABC

MNEMONIC: ABC
OP CODE: C8

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

Source | Source Source
1 1 0 0 1 0 O O] Dest Dest | Source | “Rgy

RSU RSU
RSU Byte Byte

OP Code; G, H, & | Fields J Field K Field

GIM2218

SUMMARY: (RJ-B)+ (RK-B)+C — RJ-B
OPERATION: A byte from the RSU specified by the J FIELD is
added binarily to a byte from the RSU specified by the K FIELD
and the Carry Bit (I4) from a previous instruction. The result
replaces the byte in the RSU specified by the J FIELD.
NUMBER OF CYCLES: ABC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, 12, I3, and I4.

PROGRAMMING CONVENTIONS: None

627

MICROINSTRUCTION SET

ACRL ADD CR LITERAL

MNEMONIC: ACRL
OP CODE: 93

ACRL

FORMAT: 16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1
10 0 1 0 0 1 1 Dest RSU Digit Literal
OP Code; G, H, & I Fields J Field K Field

SUMMARY: Control Store Address +K — RJ

GIM2214

OPERATION: The Control Store Address of the ACRL instruc-
tion is augmented by the digit literal in the K FIELD and transfer-
red to the right halfword in the RSU specified by the J FIELD. The

left halfword of the destination RSU is not affected.

NUMBER OF CYCLES: ACRL is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY:

None

PROGRAMMING CONVENTIONS: None

6-28

MICROINSTRUCTION SET

AF ADD FIELD , AF

MNEMONIC: AF
OP CODE: 40

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o1 o o0 0O OO O1T O 011 0 1 1

. : MARS4 Data RSU | MARS5 Data RSU
0P Code; G, H, & | Fields J Field = 9 K Field = 11

GIM2219

SUMMARY: (RJ - B) + (RK - B) + C — R13; decrement Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from the MARS4 Data
Register specified by the J FIELD and the MARS4 Byte Pointers is
binarily added to a byte from the MARS5 Data Register specified
by the K FIELD and the MARS5 Byte Pointers. The result is
placed in the byte in the MARS6 Data Register (RSU13) specified
by the MARS6 Byte Pointers. Following the addition, the Byte
Pointers are decremented by one, and if one of the Byte Pointers
crossed the word boundary, the corresponding MARS Overflow
Flag (M#OF) will be set. The Tally Register is decremented by one
and the Direction Indicator Bit in the Field Array is set to a one.

NUMBER OF CYCLES: AF is a conditional multi-cycle instruc-
tion (maximum of 4 cycles) that holds in the execution stage of the
pipeline until a MARS overflow occurs or the Tally Register equals
Zero.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I4.

PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding AF must not alter the Tally Register or the MARS Ad-
dress Registers used by AF.

6-29

MICROINSTRUCTION SET

APDB aobppackeppecrmarsyre APDB
MNEMONIC: APDB
OPCODE: CE

FORMAT: 161514 13121110 9 8 7 6 5 4 3 2 1

Source
Source Source
1 1 0 0 1 1 1 0 Dest Dest Source RSU

RSU RSU
RSU Byte Byte

OP Code; G, H, & | Fields J Field K Field

GIM2217

SUMMARY: (RJ-B)+ (RK-B) — RJ-B

OPERATION: A byte from the RSU specified by the J FIELD is
added packed decimally to a byte from the RSU specified by the K
FIELD. The result replaces the byte in the RSU specified by the J
FIELD.

NUMBER OF CYCLES: APDB is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators 11, 12, I3, I4, and I5.

PROGRAMMING CONVENTIONS: None

6-30

MICROINSTRUCTION SET

ADD PACKED DECIMAL BYTE
APDBC

APDBC WITH CARRY

MNEMONIC: APDBC
OP CODE: DO

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Source
Source Source
1t 1 0 1 0 O O O] Dest Dest | Source RSU
RSU RSU RSU Byte
Byte

OP Code; G, H, & | Fields J Field K Field

GIM2220

SUMMARY: (RJ-B)+ (RK-B)+ C — (RJ - B)
OPERATION: A byte from the RSU specified by the J FIELD is
added packed decimally to a byte from the RSU specified by the K
FIELD and the Carry Bit (I4) from a previous instruction. The
result replaces the byte in the RSU specified by the J FIELD.
NUMBER OF CYCLES: APDBC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, 12, I3, I4, and I5.

PROGRAMMING CONVENTIONS: None

6-31

MICROINSTRUCTION SET

AP D F ADD PACKED DECIMAL FIELD AP D F

MNEMONIC: APDF
OP CODE: 46

FORMAT: 16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o1 oo o 1 1 0l1 0 0 1]t 0 1 1

)) MARS4 Data RSU | MARS5 Data RSU
0P Code; G, H, & | Fields J Field = 9 K Field = 11

GIM2221

SUMMARY: (RJ - B) + (RK - B) + C — R13; decrement Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from the MARS4 Data
Register specified by the J FIELD and the MARS4 Byte Pointers is
added packed decimally to a byte from the MARS5 Data Register
specified by the K FIELD and the MARS5 Byte Ponters. The
result is placed in the byte in the MARS6 Data Register (RSU13)
specified by the MARS6 Byte Pointers. Following the addition, the
Byte Pointers are decremented by one, and if one of the Byte
Pointers crossed the word boundary, the corresponding MARS
Overflow Flag (M#OF) will be set. The Tally Register is decremented
by one and the Direction Indicator Bit in the Field Array is set
to a one.

NUMBER OF CYCLES: APDF is a conditional multi-cycle in-
struction (maximum of 4 cycles) that holds in the execution stage of
the pipeline until a MARS overflow occurs or the Tally Register
equals zero.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I4 and I5.

PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding APDF must not alter the Tally Register or the MARS
Address Registers used by APDF.

6-32

MICROINSTRUCTION SET

AUDF appunpackeppecivarrieo AUDF

MNEMONIC: AUDF
OP CODE: 48

FORMAT: 16 15 14 13 12 1110 9 8 7 6 6 4 3 2 1

o1 o001 0 o0 0100 1}1 0 1 1

. ; MARS4 Data RSU | MARS5 Data RSU
0P Code; G, H, & | Fields) Field = 9 K Field = 11

GIM2222

SUMMARY: (RJ - B) + (RK - B) + C — R13; decrement Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, the low-order digit from the
MARS4 Data Register specified by the J FIELD and the MARS4
Byte Pointers is added decimally to the low-order digit from the
MARSS5 Data Register specified by the K FIELD and the MARS5
Byte Pointers. The result is placed in the low-order digit in the
MARS6 Data Register (RSU13) specified by the MARS6 Byte
Pointers. The Hex value 0011 is loaded into the high-order digit as
the ASCII zone character. Following the addition, the Byte
Pointers are decremented by one, and if one of the Byte Pointers
crossed the word boundary, the corresponding MARS Overflow
Flag (M#OF) will be set. The Tally Register is decremented by one
and the Direction Indicator Bit in the Field Array is set to a one.

NUMBER OF CYCLES: AUDF is a conditional multi-cycle in-
struction (maximum of 4 cycles) that holds in the execution stage of
the pipeline until a MARS overflow occurs or the Tally register
equals zero.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators 14 and I6.

PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding AUDF must not alter the Tally Register or the MARS
Address Registers used by AUDF.

6-33

MICROINSTRUCTION SET

AW ADD WORD AW

MNEMONIC: AW
OP CODE: 4A

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Source
o 1 o 0 1 0 1 O Dest RSU Source RSU
0P Code; G, H, & | Fields J Field K Field

GIM2211
SUMMARY: (JR) + (RK) — RJ
OPERATION: A word from the RSU specified by the J FIELD is
binarily added to a word from the RSU specified by the K FIELD.
The result replaces the operand in the RSU specified by the J
FIELD.
NUMBER OF CYCLES: AW is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators 11, 12, I3, I4, and I5.

PROGRAMMING CONVENTIONS: None

6-34

MICROINSTRUCTION SET

AWC ADD WORD WITH CARRY AWC

MNEMONIC: AWC
OP CODE: 4C

FORMAT: 16 15 14 13 121110 9 8 7 6 5 4 3 2 1
0O 1 0 0 1 1 0O O] Source Dest RSU Source RSU
0P Code; G, H, & | Fields J Field K Field

GIM2212

SUMMARY: (RJ)+ (RK)+ C — RJ

OPERATION: A word from the RSU specified by the J FIELD is
binarily added to a word from the RSU specified by the K FIELD
and the Carry Bit (I4) from a previous instruction. The result
replaces the operand in the RSU specified by the J FIELD.
NUMBER OF CYCLES: AWC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators 11, 12, I3, I4, and I5.

PROGRAMMING CONVENTIONS: None

6-35

MICROINSTRUCTION SET

AWL ADD WORD WITH LITERAL AWL

MNEMONIC: AWL
OP CODE: AE

FORMAT: 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1

1 0 1 0 1 1 1 0] Source Dest RSU Digit Literal

0P Code; G, H, & | Fields J Field K Field

GIM2213

SUMMARY: (RJ)+ K — RJ

OPERATION: A word from the RSU specified by the J FIELD is
augmented by the digit literal in the K FIELD. The result replaces
the word in the RSU specified by the J FIELD.

NUMBER OF CYCLES:

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, 12, I3, I4, and I5.

PROGRAMMING CONVENTIONS: None

6-36

MICROINSTRUCTION SET

ADD WORD WITH LITERAL
AWLNI “nompicatorcaancge ~ AWLNI

MNEMONIC: AWLNI
OP CODE: 9C

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

1 0 0 1 1 1 0 O [Source Dest RSU Digit Literal

0P Code; G, H, & | Fields J Field K Field

GIM2215
SUMMARY: (RJ)+ K — RJ
OPERATION: A word from the RSU specified by the J FIELD is
augmented by the digit literal in the K FIELD. The result replaces
the word in the RSU specified in the J FIELD.
NUMBER OF CYCLES: AWLNI is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-37

MICROINSTRUCTION SET

BAB BOOLEAN AND BYTE BAB

MNEMONIC: BAB
OP CODE: CA

FORMAT: 16 15141312 1110 9 8 7 6 5 4 3 2 1

Source

Source | Source’

1 1. 0 0 1 0 1 O Dest | Dest Sg‘g’ge RSU
RSU Byte Byte
OP Code; G, H, & I Fields J Field K Field

GIM2199
SUMMARY: (RJ-B)AND((RK-B) —RJ-B
OPERATION: A byte from the RSU specified by the J FIELD is
ANDed with a byte from the RSU specified by the K FIELD. The
result replaces the byte in the RSU specified by the J FIELD.
NUMBER OF CYCLES: BAB is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, 12, and 13.

PROGRAMMING CONVENTIONS: None

6-38

MICROINSTRUCTION SET

BAF BOOLEAN AND FIELD BAF

MNEMONIC: BAF
OP CODE: 42

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

6 1+ 0 000 1t 0fj1t 0 O0 1T}1 0 1 1

OP Code; G, H, & | Fields MAEE%B"‘E gSU Mﬁ“ﬁg,g‘f ﬁs”

GIM2206

SUMMARY: (RJ - B) AND (RK - B) — R13; decrement Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from MARS4 Data
Register (RSU9) specified by the J FIELD and the MARS4 Byte
Pointers is logically ANDed with a byte from the MARS5 Data
Register (RSU11) specified by the K FIELD and the MARS5 Byte
Pointers. The result is placed in the MARS6 Data Register specified
by the MARS6 Byte Pointers. Following the transfer, the Byte
Pointers are decremented by one and if any of the Byte Pointers
crossed the word boundary, then the corresponding MARS
Overflow Flag (M#OF) will be set. The Tally Register is
decremented by one and the Direction Indicator Bit in the Field Ar-
ray is set to a one.

NUMBER OF CYCLES: BAF is a conditional multi-cycle instruc-
tion (maximum of 4 cycles) that holds in the execution stage of the
pipeline until a MARS overflow occurs or the Tally Register equals
zero.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding BAF must not alter the Tally Register or the MARS
Address Registers used by BAF.

6-39

MICROINSTRUCTION SET

BALD BOOLEAN AND LEFT DIGIT BALD

MNEMONIC: BALD
OP CODE: D8

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Source | Source
1 1 0 1 1 0 0 O] Dest Dest Digital Literal
RSU RSU
Byte
0P Code; G, H, & | Fields J Field K Field

GIM2202
SUMMARY: (RJ-LD)ANDK — RJ-LD
OPERATION: The left digit of a byte from the RSU specified by
the J FIELD is ANDed with the digit literal in the K FIELD. The
result replaces the left digit of the byte in the RSU specified by the
J FIELD. The right digit remains unchanged.
NUMBER OF CYCLES: BALD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, 12, and 13. However, only 12 is valid.

PROGRAMMING CONVENTIONS: None

6-40

MICROINSTRUCTION SET

BARD BOOLEAN AND RIGHT DIGIT BARD

MNEMONIC: BARD
OP CODE: D9

- FORMAT: 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1
Source Sggg;e
11 01 1t 0 0 1 Dest RSU Digit Literal
RSU Byte
opP Code; G, H, & | Fields J Field K Field

GIM2203

SUMMARY: (RJ-RD)ANDK — RJ -RD

OPERATION: The right digit of a byte from the RSU specified by
the J FIELD is ANDed with the digit literal in the K FIELD. The
result replaces the right digit of the byte in the RSU specified by the
J FIELD. The left digit remains unchanged.

NUMBER OF CYCLES: BARD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, 12, and I3. However, only 12 is valid.

PROGRAMMING CONVENTIONS: None

6-41

MICROINSTRUCTION SET

BAW BOOLEAN AND WORD

MNEMONIC: BAW
OP CODE: 4E

FORMAT: 16 15 14 13 12 11 10 9

8

BAW

7 6 5 4 3 2 1

0

Source
Dest
RSU

Source RSU

OP Code; G, H, & | Fields

J Field

K Field

SUMMARY: (RJ) AND (RK) — RJ

GIM2196

OPERATION: A word from the RSU specified by the J FIELD is
ANDed with a word from the RSU specified by the K FIELD. The
result replaces the operand in the RSU specified by the J FIELD.

NUMBER OF CYCLES: BAW is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY:
dicator I1, I2, and 13.

PROGRAMMING CONVENTIONS: None

6-42

This instruction affects In-

MICROINSTRUCTION SET

BEB BOOLEAN EOR BYTE BEB

MNEMONIC: BEB
OP CODE: CC

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

Source Source

Source Dest | s
1 1 0 0 1 1 0O O] Dest es ource | “po;
RSU RSU Byte

RSU Byte

0P Code; G, H, & | Fields J Field K Field

GIM2201

SUMMARY: (RJ-B)EOR(RK -B) — RJ-B
OPERATION: A byte from the RSU specified by the J FIELD is
EORed with a byte from the RSU specified by the K FIELD. The
result replaces the byte in the RSU specified by the J FIELD.
NUMBER OF CYCLES: BEB is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, 12, and I3.

PROGRAMMING CONVENTIONS: None

6-43

MICROINSTRUCTION SET

B E F BOOLEAN EOR FIELD B E F

MNEMONIC: BEF
OP CODE: 44

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o t o0 o0 o0 1t 0 oO0O)1 OO 1}t 0 1 1

MARS4 Data RSU | MARS5 Data RSU
J Field = 9 K Field = 11

GiM2210

0P Code; G, H, & | Fields

SUMMARY: (RJ - B) EOR (RK - B) — R13; decrement Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from MARS 4 Data
Register (RSU9) specified by the J FIELD and the MARS4 Byte
Pointers is logically EORed with a byte from the MARS5 Data
Register (RSU11) specified by the K FIELD and the MARS5 Byte
Pointers. The result is placed in the MARS6 Data Register specified
by the MARS6 Byte Pointers. Following the transfer the Byte
Pointers are decremented by one and if any of the Byte Pointers
crossed the word boundary, the corresponding MARS Overflow
Flag (M#OF) will be set. The Tally Register is decremented by one
and the Direction Indicator Bit in the Field Array is set to a one.

NUMBER OF CYCLES: BEF is a conditional multi-cycle instruc-
tion (maximum of 4 cycles) that holds in the execution stage of the
pipeline until a MARS overflow occurs or the Tally Register equals
zero.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding BEF must not alter the Tally Register or the MARS
Address Registers used by BEF.

6-44

MICROINSTRUCTION SET

BELD BOOLEAN EOR LEFT DIGIT BELD

MNEMONIC: BELD
OP CODE: DC

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1
Source
Source Dest o
1 1 0 1 1 1 0 O Dpest RSU Digit Literal
RSU Byte
0P Code; G, H, & | Fields J Field K Field

GIM2208

SUMMARY: (RJ-LD)EORK — RJ-LD

OPERATION: The left digit of a byte from the RSU specified by
the J FIELD is EORed with the digit literal in the K FIELD. The
result replaces the left digit of the byte in the RSU specified by the
J FIELD. The right digit remains unchanged.

NUMBER OF CYCLES: BELD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, I2, and I3. However, only 12 is valid.

PROGRAMMING CONVENTIONS: None

6-45

MICROINSTRUCTION SET

BERD BOOLEAN EOR RIGHT DIGIT BERD

MNEMONIC: BERD
OP CODE: DD

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

S Source
OUrCe | gt

11 0 1 1 1 0 1 Dest RSU Digit Literal
RSU Byte

0P Code; G, H, & | Fields J Field K Field

GIM2207

SUMMARY: (RJ-RD)EORK — RJ -RD

OPERATION: The right digit of a byte from the RSU specified by
the J FIELD is EORed with the digit literal in the K FIELD. The
result replaces the right digit of the byte in the RSU specified by the
J FIELD. The left digit remains unchanged.

NUMBER OF CYCLES: BERD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, I2, and I3. However, only 12 is valid.

PROGRAMMING CONVENTIONS: None

6-46

MICROINSTRUCTION SET

BEW BOOLEAN EOR WORD BEW

MNEMONIC: BEW
OP CODE: 50

FORMAT: 16 16 14 1312 11 10 9 8 7 6 5 4 3 2 1

0O 1 0 t O O O O | Source DestRSU Source RSU

0P Code; G, H, & | Fields J Field K Field

GIM2198

SUMMARY: (RJ)EOR (RK) — RJ

OPERATION: A word from the RSU specified by the J FIELD is
EORed with a word from the RSU specified by the K FIELD. The
result replaces the operand in the RSU specified by the J FIELD.
NUMBER OF CYCLES: BEW is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, I2, and I3.

PROGRAMMING CONVENTIONS: None

6-47

MICROINSTRUCTION SET

BI B BOOLEAN INVERT BYTE BI B

MNEMONIC: BIB
OP CODE: DF

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1

Dest Source
Dest Source

11 0 1 1 1 1 1 RSU RSU
RSU Byte RSU Byte

OP Code; G, H, & | Fields J Field K Field

GIM2314

SUMMARY: (RK-B)/=RJ-B

OPERATION: A byte from the RSU specified by the K FIELD is
ones complemented. The result replaces the byte in the RSU
specified by the J FIELD.

NUMBER OF CYCLES: BIB is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, I2, and 1I3.

PROGRAMMING CONVENTIONS: None

6-48

MICROINSTRUCTION SET

BIW BOOLEAN INVERT WORD BIW

MNEMONIC: BIW
OP CODE: 5E

FORMAT: 16 151413 121110 9 8 7 6 5 4 3 2 1
o1 o1 1 1 1 O Dest RSU Source RSU
0P Code; G, H, & | Fields J Field K Field

GIM2298
SUMMARY: (RK)/ = RJ
OPERATION: A word from the RSU specified by the K FIELD is
ones complemented. The result replaces the operand in the RSU
specified by the J FIELD.
NUMBER OF CYCLES: BIW is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, I2, and 1I3.

PROGRAMMING CONVENTIONS: None

6-49

MICROINSTRUCTION SET

BOB BOOLEAN OR BYTE BOB

MNEMONIC: BOB
OP CODE: CB

FORMAT: 161514 13121110 9 8 7 6 5 4 3 2 1

Source
Source Source
110 0 1 0 1 1fpest |Dest |Source] g,
RSU Byte

Byte

Op Code; G, H, & | Fields J Field K Field

GIM2200
SUMMARY: (RJ-B)OR(RK-B) — RJ-B
OPERATION: A byte from the RSU specified by the J FIELD is
ORed with a byte from the RSU specified by the K FIELD. The
result replaces the byte in the RSU specified by the J FIELD.
NUMBER OF CYCLES: BOB is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, I2, and I3.

PROGRAMMING CONVENTIONS: None

6-50

MICROINSTRUCTION SET

BOF BOOLEAN OR FIELD BOF

MNEMONIC: BOF
OP CODE: 43

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o1t o o0 o0 o0 1 1)1t OO0 1)1 0 1 1

. : MARS4 Data RSU | MARSS Data RSU
0P Code; G, H, & | Fields JField = 9 K Field = 11

GIM2209

SUMMARY: (RJ - B) OR (RK - B) — R13; decrement Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from MARS4 Data
Register (RSU9) specified by the J FIELD and the MARS4 Byte
Pointers is logically ORed with a byte from the MARS5 Data
Register (RSU11) specified by the K FIELD and the MARS5 Byte
Pointers. The result is placed in the MARS6 Data Register specified
by the MARS6 Byte Pointers. Following the transfer, the Byte
Pointers are decremented by one and if any of the Byte Pointers
crossed the word boundary, the corresponding MARS Overflow
Flag (M#OF) will be set. The Tally Register is decremented by one
and the Direction Indicator Bit in the Field Array is set to a one.

NUMBER OF CYCLES: BOF is a conditional multi-cycle instruc-
tion (maximum of 4 cycles) that holds in the execution stage of the
pipeline until a MARS overflow occurs or the Tally Register equals
zero.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding BOF must not alter the Tally Register or the MARS
Address Registers used by BOF.

6-51

MICROINSTRUCTION SET

BOLD BOOLEAN OR LEFT DIGIT BOLD

MNEMONIC: BOLD
OP CODE: DA

FORMAT: 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1
Source Sgurce
11 0 1 1 0 1 O] Dest est Digit Literal
Byte
opP Code; G, H, & | Fields J Field K Field

GIM2204

SUMMARY: (RJ-LD)ORK — RJ-LD

OPERATION: The left digit of a byte from the RSU specified by
the J FIELD is ORed with the digit literal in the K FIELD. The
result replaces the left digit of the byte in the RSU specified by the
J FIELD. The right digit remains unchanged.

NUMBER OF CYCLES: BOLD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, I2, and I3. However, only 12 is valid.

PROGRAMMING CONVENTIONS: None

6-52

MICROINSTRUCTION SET

BORD BOOLEAN OR RIGHT DIGIT BORD

MNEMONIC: BORD
OP CODE: DB

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

Source
Source Dest

1 1 0 1 1 0 1 1| DpDest Digit Literal
RSU
RSU Byte

0P Code; G, H, & | Field J Field K Field

GIM2205
SUMMARY: (RJ-RD)ORK — RJ-RD
OPERATION: The right digit of a byte from the RSU specified by
the J FIELD is ORed with the digit literal in the K FIELD. The
result replaces the right digit of the byte in the RSU specified by the
J FIELD. The left digit remains unchanged.
NUMBER OF CYCLES: BORD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, 12, and I3. However, only 12 is valid.

PROGRAMMING CONVENTIONS: None

6-53

MICROINSTRUCTION SET

BOW BOOLEAN OR WORD BOW

MNEMONIC: BOW
OP CODE: 4F

FORMAT: 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1

0 1 0 0 1 1 1 1| SourceDestRSU Source RSU

OP Code; G, H, & | Fields J Field K Field

GIM2197
SUMMARY: (RJ)OR (RK) — RJ
OPERATION: A word from the RSU specified by the J FIELD is
ORed with a word from the RSU specified by the K FIELD. The
result replaces the operand in the RSU specfied by the J FIELD.
NUMBER OF CYCLES: BOW is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, 12, and I3.

PROGRAMMING CONVENTIONS: None

6-54

MICROINSTRUCTION SET

CBS COMPARE BYTE SIGNED CBS

MNEMONIC: CBS
OP CODE: (60

FORMAT: 161514 13121110 9 8 7 6 5 4 3 2 1

Source Source
Source RSU Source RSU

11 0 0 0 0 O Of gy Byte RSU Byte

OP Code; G, H, & | Fields J Field K Field

GIM2237

SUMMARY: (RJ - B) > (RK - B) — I1-0, I2-0, I3-1
(RJ - B) < (RK - B) — I1-1, 12-0, I3-0
(RJ - B) = (RK - B) — 11-0, I2-1, I3-0

OPERATION: The signed contents of the byte of the RSU
specified by the J FIELD are compared with the signed contents of
the byte of the RSU specified by the K FIELD.
Indicators I1-I3 are set to indicate the byte in RSU-J is less

than, greater than, or equal to the byte in RSU-K.

13 - Greater

I2 - Equal

I1 - Less

NUMBER OF CYCLES: CBS is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, 12, and I3.

PROGRAMMING CONVENTIONS: None

6-55

MICROINSTRUCTION SET

CBU COMPARE BYTE UNSIGNED CcBU

MNEMONIC: CBU
OP CODE: C1

FORMAT: 161514 131211109 8 7 6 5 4 3 2 1

Source Source
1 1 o0 o 0 0 o 1/ Souce]| psy | Source | Rsy
RSU | Byte | RSU | Byte

OP Code; G, H, & | Fields J Field K Field

GIM2238

SUMMARY: (RJ - B) > (RK - B) — I1-0, 12-0, 13-1
(RJ - B) < (RK - B) — I1-1, I2-0, 13-0
(RJ - B) = (RK - B) — I1-0, I2-1, I3-0

OPERATION: The unsigned contents of the byte of the RSU
specified by the J FIELD are compared with the unsigned contents
of the byte of the RSU specified by the K FIELD.
Indicators I1-13 are set to indicate the byte in RSU-J is less

than, greater than, or equal to the byte in RSU-K.

I3 - Greater

12 - Equal

I1 - Less

NUMBER OF CYCLES: CBU is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, 12, and I3.

PROGRAMMING CONVENTIONS: None

6-56

MICROINSTRUCTION SET

CBFU comparesyTE TO FIELD UNsiGNED CBFU

MNEMONIC: CBFU
OP CODE: 57

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o 1t o 1t o0 1 1 111 0 0 1 1 0 1 1

.) MARS4 Data RSU | MARSS Data RSU

OP Code; G, H, & | Fields JField = 9 K Field = 11

GIM2240

SUMMARY: (RJ - B) - (RK - B); set Indicator 11, 12, or 13; in-
crement RK Byte Pointers; decrement Tally Reg-
ister; set M5OF if word boundary

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from the MARS4 Data
Register (RSU9) specified by the J FIELD and the MARS4 Byte
Pointers is compared with the byte from the MARS5 Data Register
(RSU11) specified by the K FIELD and the MARS5 Byte Pointers.
Indicator I1 is set if the MARS4 data is less than, 12 is set if the
MARS4 data is equal to and 13 is set if the MARS4 data is greater
than the MARS5 data. Indicators I5 and 16 are set by the BCD
checks.

Following the compare, the MARS5 Byte Pointers are incre-
mented by one, and if they crossed the word boundary, MARS5
Overflow Flag (M50F) will be set. The Tally Register is decrement-
ed by one and the Direction Indicator Bit in the Field Array is set to
a zero.

NUMBER OF CYCLES: CBFU is a conditional multi-cycle in-
struction (maximum of 4 cycles) that holds in the execution stage of
the pipeline until a MARS5 overflow occurs, until Indicator I1 or I3
is set, or until the Tally Register equals zero. If the exit condition is
due to the setting of Indicator I1 or I3, no overflow will be detected.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, I2, I3, I5 and I6.

PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding CBFU must not alter the Tally Register or the MARS
Address Registers used by the CBFU.

6-57

MICROINSTRUCTION SET

CFU COMPARE FIELD UNSIGNED CFU

MNEMONIC: CFU
OP CODE: 45

FORMAT: 1615 1413121110 9 8 7 6 5 4 3 2 1

o1 o0 o0 10 1§t 0 O 1|1 0 1 1

. . MARS4 Data RSU | MARS5 Data RSU
OP Code; G, H, & I Fields J Field = 9 K Field = 11

GIM2239
SUMMARY: (RJ - B) - (RK - B); set Indicator I1, I2, or I3; in-
crement Byte Pointers; decrement Tally Register;
set M#OF if word boundary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from the MARS4 Data
Register (RSU9) specified by the J FIELD and the MARS4 Byte
Pointers is compared with the byte from the MARS5 Data Register
(RSU11) specified by the K FIELD and the MARS5 Byte Pointers.
Indicator 11 is set if the MARS4 data is less than, 12 is set if the
MARS4 data is equal to and I3 is set if the MARS4 data is greater
than the MARS5 data. Indicator I5 and 16 are set by the BCD
checks.

Following the compare, the Byte Pointers are incremented by
one, and if any of the Byte Pointers crossed the word boundary, the
corresponding MARS Overflow Flag (M#0OF) will be set. The Tally
Register is decremented by one and the Direction Indicator Bit in
the Field Array is set to a zero.

NUMBER OF CYCLES: CFU is a conditional multi-cycle instruc-
tion (maximum of 4 cycles) that holds in the execution stage of the
pipeline until a MARS overflow occurs, until I1 or I3 is set, or until
the Tally Register equals zero. If 11 or I3 is set at the same time a
MARS overflow occurs, the overflow is ignored.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, 12, I3, 15, and 16.

PROGRAMMING CONVENTIONS: The instruction immediate-
ly preceding CFU must not alter the Tally Register or the MARS
Address Registers used by CFU.

6-58

MICROINSTRUCTION SET

CWS COMPARE WORD SIGNED CWS

MNEMONIC: CWS
OP CODE: 52

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1
o1 o1 o o0 1 o0 Source RSU Source RSU
0P Code; G, H, & I Fields J Field K Field

GIM2235

SUMMARY: (RJ) > (RK) — I1-0, 12-0, I3-1
(RJ) < (RK) — I1-1, 12-0, I3-0
(RJ) = (RK) — I1-0, 12-1, I3-0

OPERATION: The signed contents of RSU (32 bits) specified by
the J FIELD are compared with the signed contents of the RSU (32
bits) specified by the K FIELD.
Indicators I1-I3 are set to indicate the contents of RSU-J are

less than, greater than, or equal to the contents of RSU-K.

13 - Greater

I2 - Equal

I1 - Less

NUMBER OF CYCLES: CWS is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, I2, and I3.

PROGRAMMING CONVENTIONS: None

6-59

MICROINSTRUCTION SET

CWU COMPARE WORD UNSIGNED CWU

MNEMONIC: CWU
OP CODE: 53

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o1 o1 0 0 1 1 Source RSU Source RSU
0P Code; G, H, & | Fields J Field K Field

GIM2236

SUMMARY: (RJ) > (RK) — I1-0, I2-0, I3-1
(RJ) < (RK) — I1-1, 12-0, I3-0
(RJ) = (RK) — I1-0, I2-1, I3-0

OPERATION: The unsigned contents of RSU (32 bits) specified
by the J FIELD are compared with the unsigned contents of the
RSU (32 bits) specified by the K FIELD.
Indicators 11-13 are set to indicate the contents of RSU-J are

less than, greater than, or equal to the contents of RSU-K.

I3 - Greater

12 - Equal

I1 - Less

NUMBER OF CYCLES: CWU is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, I2 and I3.

PROGRAMMING CONVENTIONS: None

6-60

MICROINSTRUCTION SET

DELAYED JUMP ON
DJIBO INDICATOR BIT PAIR ONES DJIBO

MNEMONIC: DJIBO
OP CODE: 62

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1
Bit Pair | Bit Pair .
ot 1 o o O 1O Selctr | Mask Displacement
0P Code; G, H, & | Fields J Field K Field

GIM2250

SUMMARY: If condition Control Store Address + K — CR
Else, execute next sequential instruction

OPERATION: This instruction is a conditional delayed jump. Bits
08,07 of the J FIELD select the Indicator Bit Pair to be compared
against the Mask, bits 06,05 of the J FIELD. Refer to “Condition
Selector” in this chapter for an explanation of the Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The jump is formed by adding the Displacement
(K FIELD) to the contents of the Control Register (DJIBO instruction
address).

NUMBER OF CYCLES: DJIBO is a single-cycle instruction. The
two instructions following DJIBO are always executed regardless
of condition.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The second instruction fol-
lowing a delayed jump instruction must not be a two word instruc-

tion (one requiring the trailing literal in L FIELD) if the first in-
struction following the delayed jump is a single word instruction.

6-61

MICROINSTRUCTION SET
DELAYED JUMP ON
DJIBOM mirpamonesminus DJIBOM
MNEMONIC: DJIBOM
OP CODE: B4

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1
1 0 1 1 0 1 o ofBiPar)BLParl pispiacement
OP Code: G, H, & I Fields J Field K Field

GIM2307

SUMMARY: If condition, Control Store Address - K — CR;
else, execute next sequential instruction.

OPERATION: This instruction is a conditional delayed jump. Bits

108,07 of the J FIELD select the Indicator Bit Pair to be compared
against the Mask, bits 06,05 of the J FIELD. Refer to “Condition
Selector” in this chapter for an explanation of the Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The jump is formed by subtracting the Displace-
ment (K FIELD) from the contents of the Control Register (DJIBOM
instruction address).

NUMBER OF CYCLES: DJIBOM is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The second instruction
following a delayed jump instruction must not be a two word in-
struction (one requiring the trailing literal in the L. FIELD) if the
first instruction following the delayed jump is a single word instruc-
tion.

6-62

MICROINSTRUCTION SET

DELAYED JUMP ON
DJIBZ INDICATOR BIT PAIR ZEROS DJIBZ

MNEMONIC: DJIBZ
OP CODE: 63

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1
Bit Pair | Bit Pair "
ot 1 0 o0 O 1 1 Selctr | Mask Displacement
0P Code; G, H, & | Fields J Field K Field
GIM2251

SUMMARY: If condition, Control Store Address + K = CR;
Else, execute next sequential instruction.

OPERATION: This instruction is a conditional delayed jump. Bits
08,07 of the J FIELD select the Indicator Bit Pair to be compared
against the Mask, bits 06,05 of the J FIELD. Refer to “Condition
Selector” in this chapter for an explanation of the Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The jump is formed by adding the Displacement
(K FIELD) to the contents of the Control Register (DJIBZ instruc-
tion address).

NUMBER OF CYCLES: DJIBZ is a single-cycle instruction. The
two instructions following DJIBZ are always executed regardless
of condition.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The second instruction fol-
lowing a delayed jump instruction must not be a two word instruc-

tion (one requiring the trailing literal in the L. FIELD) if the first
instruction following the delayed jump is a single word instruction.

6-63

MICROINSTRUCTION SET

DELAYED JUMP ON

INDICATOR BIT
DJIBZM PAIR ZEROS MINUS DJIBZM

MNEMONIC: DJIBZM
OP CODE: B5

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1
1 0 1 1 0 1 o 1|BLPar BRI bopiacement
0P Code; G, H, & I Fields J Field K Field

GIM2208

SUMMARY: If condition, Control Store Address - K — CR;
else, execute next sequential instruction.

OPERATION: This instruction is a conditional delayed jump. Bits
08,07 of the J FIELD select the Indicator Bit Pair to be compared
against the Mask, bits 06,05 of the J FIELD. Refer to “Condition
Selector” in this chapter for an explanation of the Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The jump is formed by adding the Displacement
(K FIELD) to the contents of the Control Register (DJIBZM in-
struction address).

NUMBER OF CYCLES: DJIBZM is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The second instruction
following a delayed jump instruction must not be a two word in-
struction (one requiring the trailing literal in the L. FIELD) if the
first instruction following the delayed jump is a single word instruc-
tion.

6-64

MICROINSTRUCTION SET

DJOR oeLavepsumponrecistek DJOR

MNEMONIC: DJOR
OP CODE: 2D

7 5 4 3 1
FORMAT: 16 15 14 13 12 11 10 9 8 6 2

oot o 1 1t 0 1 Control Source RSU

0P Code; G, H, & | Fields J Field K Field

GIM2253
SUMMARY: (RK — RH) — CR

OPERATION: This instruction is a delayed unconditional jump.
A halfword of data is transferred from the RSU addressed by the K
FIELD to the Control Register, the most significant sixteen bits are
not used. The contents of the RSU remain unchanged. The previous
contents of the Control Register are lost. The two instructions
following this instruction are executed before the jump is taken.
DJOR is also used to set or reset breakpoints.

The J FIELD is used to specify control information relating to
Breakpoints:

JO5: This bit is used to enable setting or resetting breakpoints.
With this bit a zero, J06 has no effect.

Joe: If JO5 is a one and JO6 is a zero, then any breakpoint at the
ISU location specified by the right halfword in RSU-K will
be reset. If JO5 is a one and J06 is a one, then a Breakpoint
will be set at the ISU location specified by the right half-
word in RSU-K.

Note: If this instruction is used to set or reset a Breakpoint, then
the jump caused by the DJOR can be voided by programming an
unconditional immediate jump after the DJOR.

NUMBER OF CYCLES: DJOR is a single-cycle instruction. The
two instructions following DJOR are executed.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The second instruction fol-
lowing a delayed jump instruction must not be a two word instruc-

tion (one requiring the trailing literal in the L FIELD) if the first
instruction following the delayed jump is a single word instruction.

6-65

MICROINSTRUCTION SET

DELAYED JUMP ON
DJPMBN PMBUS NEGATIVE DJPMBN
MNEMONIC: DJPMBN
OP CODE: 3E

FORMAT: 16 15 14 13 121110 9 8 7 6 5 4 3 2 1

o o0 1t 11 1 1 0f0 OO O O 0 OO0 O

OP Code; G, H, & | Fields J & K Fields

GIM2297

SUMMARY: (PM BUS - RH)/— CR

OPERATION: The least significant 16 bits of information that
are on the PM Bus at X1 time during the execution of the DJPMB
instruction will be inverted (one’s complemented) and loaded into
the CR.

NUMBER OF CYCLES: DJPMBN is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The second instruction
following a delayed jump instruction must not be a two word in-
struction (one requiring the trailing literal in the L FIELD) if the

first instruction following the delayed jump is a single word instruc-
tion.

6-66

MICROINSTRUCTION SET

DJ RM DELAYED JUMP RELATIVE MINUS DJ RM

MNEMONIC: DJRM
OP CODE: 6F

FORMAT: 16 15 14 13 121110 9 8 7 6 5 4 3 2 1
o 1 1t o0 1t 1 1 1 Jump Length
0P Code; G, H, & I Fields J & K Fields

GIM2257

SUMMARY: Control Store Address - JK — CR

OPERATION: This instruction causes a delayed program jump in
the positive direction. The jump address is formed by binarily sub-
tracting the J K FIELD from the Control Register contents (DJRM
instruction address). The maximum jump is 255 consecutive ad-
dress locations. A Carryout of the sixteenth bit on the addition is
lost. The previous contents of the Control Register are lost.

NUMBER OF CYCLES: DJRM is a single-cycle instruction. The
two instructions following DJRM are executed before the jump is
taken.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The second instruction
following a delayed jump instruction must not be a two word in-
struction (one requiring the trailing literal in the L. FIELD) if the
first instruction following the delayed jump is a single word instruc-
tion.

6-67

MICROINSTRUCTION SET

DJ RP DELAYED JUMP RELATIVE PLUS DJ RP

MNEMONIC: DJRP
OP CODE: 6E

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o1 1 0o 1 1 1 0 Jump Length
0P Code; G, H, & | Fields J & K Fields

GIM2256

SUMMARY: Control Store Address + JK — CR

OPERATION: This instruction causes a delayed program jump in
the positive direction. The jump address is formed by binarily ad-
ding the J K FIELD to the Control Register contents (DJRP in-
struction address). The maximum jump is 255 consecutive address
locations. A Carryout of the sixteenth bit on the addition is lost.
The previous contents of the Control Register are lost.

NUMBER OF CYCLES: DJRP is a single-cycle instruction. The
two instructions following DJRP are executed before the jump is
taken.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The second instruction
following a delayed jump instruction must not be a two word in-
struction (one requiring the trailing literal in the L. FIELD) if the
first instruction following the delayed jump is a single word instruc-
tion.

6-68

MICROINSTRUCTION SET

DJTNZ F R Nzere. MY DJTNZ

MNEMONIC: DJTNZ
OP CODE: 20

FORMAT: 16 15 14 1312 1110 9 8 7 6 5 4 3 2 {
1 0 01 0 0O O O Jump Length
0P Code; G, H, & | Fields J & K Fields

GIM2270

SUMMARY: If Tally not equal 0, Control Store Address - JK
—CR(T-1—T
Else execute next sequential instruction.

OPERATION: This instruction is a conditional delayed relative
jump with a negative displacement. The Tally Register is tested, if
not equal to zero, the J and K FIELDS are binarily subtracted from
the Control Store Address of the DJTNZ instruction and then
transferred to the Control Register. The Tally Register is
decremented by one. The previous contents of the Control Register
are lost. The two instructions following this instruction are ex-
ecuted before the jump is taken.

If the Tally Register is zero the jump is not taken and the Tally
Register is not decremented.

NUMBER OF CYCLES: DJTNZ is a single-cycle instruction. The
two instructions following DJTNZ are executed.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The second instruction fol-
lowing a delayed jump instruction must not be a two word instruc-

tion (one requiring the trailing literal in the L. FIELD) if the first
instruction following the delayed jump is a single word instruction.

6-69

MICROINSTRUCTION SET
DELAYED RETURN ON
DRIBO 1npicatorBiTPaiRoNnes DRIBO
MNEMONIC: DRIBO
OP CODE: 65

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

Jump Bit Pair | Bit Pair
Register Selctr | Mask

o1 1 0 0 1 0 110

0P Code; G, H, & I Fields J Field K Field

GIM2260

SUMMARY: If condition (JRJ) — CR
Else execute next sequential instruction

OPERATION: This instruction is a conditional immediate jump.
Bits 04,03 of the K FIELD select the Indicator Bit Pair to be
compared against the Mask, bits 02,01 of the K FIELD. Refer to
“Condition Selector” in this chapter for an explanation of the Bit
Pair Selector and Mask, as well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The jump is formed by transferring the contents of
Jump Register specified by the J FIELD to the Control Register.

NUMBER OF CYCLES: DRIBO is a single-cycle instruction. The
two instructions following DRIBO will be executed regardless of
the condition.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The second instruction
following a delayed return instruction must not be a two word in-
struction (one requiring the trailing literal in the L FIELD) if the
first instruction following the delayed jump is a single word instruc-
tion.

6-70

MICROINSTRUCTION SET

DELAYED RETURN ON

DRIBZ inpicatorBirpairzeros DRIBZ
MNEMONIC: DRIBZ

OP CODE: 67

FORMAT: 161514 13121110 9 8 7 6 5 4 3 2 1
0 1 1 0 0 1 1 1|0 |sumpRegister Bsigfc’?f B Far
OP Code; G, H, & | Fields J Field K Field

GIM2261

SUMMARY: If condition (JRJ) — CR
Else execute next sequential instruction

OPERATION: This instruction is a conditional immediate jump.
Bits 04,03 of the K FIELD select the Indicator Bit Pair to be compared
against the Mask, bits 02,01 of the K FIELD. Refer to “Condition
Selector” in this chapter for an explanation of the Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The jump is formed by transferring the contents of
Jump Register specified by the J FIELD to the Control Register.

NUMBER OF CYCLES: DRIBZ is a single-cycle instruction. The
two instructions following DRIBZ will be executed regardless of the
condition.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The second instruction
following a delayed return instruction must not be a two word in-
struction (one requiring the trailing literal in the L, FIELD) if the
first instruction following the delayed jump is a single word instruc-
tion.

6-71

MICROINSTRUCTION SET

EAF extenpep aritaMmeTicFUuncTion EAF

MNEMONIC: EAF
OP CODE: 12

FORMAT: 16 16 14 13 1211 10 9 8 7 6 5 4 3 2 1
0O 0 0 1 0O 0 1 O Byte Literal
OP Code; G, H, & | Fields J & K Fields

GIM2293

SUMMARY: JK — Extended Arithmetic Chip as an implicit
transfer out to ERUG63.

OPERATION: The instruction performs a transfer out to ERU63
(implicitly addressed by the EAF instruction). The value trans-
ferred is the J and K literal. The literal is placed in the least signifi-
cant eight bits of the thirty-two bit word.

NUMBER OF CYCLES: EAF is a singlecycle instruction
although contention on the PM Bus may halt the Processor until
the PM Bus becomes available.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 17.

PROGRAMMING CONVENTIONS: None

6-72

MICROINSTRUCTION SET

F FETCH F

MNEMONIC: F
OP CODE: 04

16 15 14 13 12 11 1
FORMAT: 09 8 7 6 5§ 4 3 2 1

O 0 OOO 1t 0O OJO O O O] SourceRSU

OP Code; G, H, & | Fields Not Used; J Field K Field

GIM2137
SUMMARY: (RK) — PM Bus
OPERATION: A virtual fetch (if AT is on) or a real fetch (if AT is
off) is initiated from local memory using the address in the RSU
specified by the K FIELD.
NUMBER OF CYCLES: F is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The F instruction must be
followed by the RCV instruction to receive the data from the PM Bus.

6-73

MICROINSTRUCTION SET

FL FETCH LITERAL FL

MNEMONIC: FL

OP CODE: 08-0B

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
00 0 0 1 0 Literal Addr 0 0 0 0
OP Code; G & H Fields 1 & J Fields K Field; Not Used

SUMMARY: 1 — PMBUS 24-10
0 — PMBUS 09

1,J — PMBUS 08-03
O — PMBUS 02,01

GIM2141A

OPERATION: A real memory fetch is initiated from local mem-
ory using the address formed by concatenating ones to the right-
justified literal in the I and J FIELDS. The real address is a word
address (0 mod 4) accessing the first 64-words of Local Memory

Scratch Pad.

NUMBER OF CYCLES: The Fetch Literal operation is a single-cycle

operation.

EFFECT ON INDICATOR ARRAY:

None

PROGRAMMING CONVENTIONS: The FL instruction must be
followed by the RCV instruction to receive the data from the PM Bus.

6-74

MICROINSTRUCTION SET

FR FETCH REAL FR

MNEMONIC: FR
OP CODE: 03

FORMAT: 16 15 14 13 121110 9 8 7 6 5 4 3 2 1

o 0 o 0 0O 01t 1J0 0 O O Source RSU

0P Code; G, H, & | Fields Not Used; J Field K Field

GIM2136

SUMMARY: (RK) — PM Bus

OPERATION: A Real Fetchis initiated from Local Memory using
the address in the rightmost three bytes of the RSU specified by the
K FIELD.

NUMBER OF CYCLES: The Fetch Real operation is a single-cycle
operation.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The FR instruction must be

followed by the RCV instruction to receive the data from the PM
Bus.

6-75

MICROINSTRUCTION SET

JFA JUMP ON FIELD ARRAY JFA

MNEMONIC: JFA
OP CODE: 68

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o 11 0 1t 0 O OJ|]O O O O]J]O O O O

0P Code; G, H, & | Fields J Field; Not Used | K Field; Not Used

GIM2267

SUMMARY: If overflow, MARS OVERFLOW
ADDRESS = CR;
Else, execute next sequential instruction.

OPERATION: This instruction tests the MARS Field Overflow
Flags. If any of the flags are on and the contents of the Tally
Register are not equal to zero, the jump takes place. The jump ad-
dress is formed by concatenating the most significant eight bits of
Jump Register 7 with the Field Array vector. The final address is:

Bits 16-9 = JRJ 7 (bits 16-9) _
Bit 8 = MARS Direction Flag
Bit 7 =» MARS 7 Overflow

Bit 6 = MARS 6 Overflow

Bit 5 = MARS 5 Overflow

Bit 4 = MARS 4 Overflow

Bit 31 =0

NUMBER OF CYCLES: JFA is a three-cycle instruction if the
condition is met and a one-cycle instruction if the condition is not
met. If the condition is met the two instructions following JFA are
not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-76

MICROINSTRUCTION SET

JFAL JUMP ON FIELD ARRAY LINK JFAL

MNEMONIC: JFAL
OP CODE: 69

FORMAT: 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1

0 1 1 0 1 0 0 1]0 0 0 0[O0 O O O

0P Code; G, H, & | Fields J Field; Not Used | K Field; Not Used

GIM2268A

SUMMARY: If overflow, MARS OVERFLOW ADDRESS =
CR, and next instruction address = JR6 (Link);
Else, execute next sequential instruction.

OPERATION: This instruction tests the MARS Field Overflow
Flags. If any of the flags are on and the contents of the Tally
Register are not equal to zero, then the jump takes place. The jump
address is formed by concatenating the most significant eight bits
of Jump Register 7 with Field Array vector. The final address is:

Bits 16-9 =» JRJ 7 (bits 16-9)

Bit 8 = MARS Direction Flag
Bit 7 =» MARS 7 Overflow
Bit 6 = MARS 6 Overflow
Bit 5 = MARS 5 Overflow
Bit 4 = MARS 4 Overflow
Bit 31 = 0

The contents of the IAR at the time JFAL is in the execution
stage of the pipeline are transferred to Jump Register 6 as the pro-
gram Link Address.

Note: If the JFAL instruction is located immediately after a
delayed jump instruction which takes, the Link established in JR6
will be the instruction address dictated by the logical jump se-
quence.

NUMBER OF CYCLES: JFAL is a three-cycle instruction if the
condition is met and a one-cycle instruction if the condition is not

met. If the condition is met, the two instructions following JFAL
are not executed.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: None

6-77

MICROINSTRUCTION SET
J I B 0 JUMP ON INDICATOR BIT

PAIR ONES JIBO

MNEMONIC: JIBO
OP CODE: 6A

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit Pair | Bit Pair A
o 1 1 0 1t 0 1 O Selctr Mask Displacement
OP Code; G, H, & | Fields J Field K Field
GIM2262

SUMMARY: If condition, Control Store Address + K = CR;
Else, execute next sequential instruction.

OPERATION: This instruction is a conditional immediate jump.
Bits 08,07 of the J FIELD select the Indicator Bit Pair to be com-
pared against the Mask, bits 06,05 of the J FIELD. Refer to “Con-
dition Selector” in this chapter for an explanation of Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The jump is formed by adding the Displacement
(K FIELD) to the contents of the control Register (JIBO instruction
address).

NUMBER OF CYCLES: JIBO is a three-cycle instruction if the
condition is met and a one-cycle instruction if the condition is not
met. If the condition is met, the two instructions following JIBO are
not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-78

MICROINSTRUCTION SET

JUMP ON INDICATOR BIT
JIBOL PAIR ONES LONG JIBOL
MNEMONIC: JIBOL
OP CODE: B6

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit Pair | Bit Pair

'O T T 0T T 0| TSeetr | Mask |[© O O 0

0P Code; G, H, & | Fields J Field K Field; Not Used

16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Literal
L Field
GIM2309
SUMMARY: If condition L. — CR; else, execute next sequential

instruction.

OPERATION: This instruction is a conditional immediate jump
and can be used to jump to any location in Control Store. Bits 08,07
of the J FIELD select the Indicator Bit Pair to be compared against
the Mask, bits 06,05 of the J FIELD. Refer to “Condition Selector”
in this chapter for an explanation of Bit Pair Selector and Mask, as
well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisties the test. The jump is formed by transferring the L FIELD
to the Control Register.

NUMBER OF CYCLES: JIBOL is a three-cycle instruction if the
condition is met and two cycles if not. If the condition is met the in-
struction following JIBOL is not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-79

MICROINSTRUCTION SET

JUMP ON INDICATOR BIT
JIBOM PAIR ONES MINUS JIBOM

MNEMONIC: JIBOM
OP CODE: B2

FORMAT: 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1

10 1 1 0 o 1 ofBLraryBlrari pipiacement

OP Code; G, H, & | Fields J Field K Field

GIM2305

SUMMARY: If condition, Control Store Address - K — CR;
else, execute next sequential instruction.

OPERATION: This instruction is a conditional immediate jump.
Bits 08,07 of the J FIELD select the Indicator Bit Pair to be com-
pared against the Mask, bits 06,05 of the J FIELD. Refer to “Condi-
tion Selector” in this chapter for an explanation of Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The jump is formed by subtracting the Displace-
ment (K FIELD) from the contents of the Control Register (JIBOM
instruction address).

NUMBER OF CYCLES: JIBOM is a three-cycle instruction if the
condition is met and one-cycle operation if the condition is not met.
If the condition is met, the two instructions following JIBOM are
not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-80

MICROINSTRUCTION SET

JUMP ON INDICATOR BIT
JIBZ PAIR ZEROS JIBZ

MNEMONIC: JIBZ
OP CODE: 6B

FORMAT: 16 1514 13121110 9 8 7 6 5 4 3 2 1

— T T
0 1 1 0 1 0 1 1|BFar|BLFAT] Displacement

0P Code; G, H, & | Fields J Field K Field

GIM2263

SUMMARY: If condition, Control Store Address + K = CR;
Else, execute next sequential instruction.

OPERATION: This instruction is a conditional immediate jump.
Bits 08,07 of the J FIELD select the Indicator Bit Pair to be com-
pared against the Mask, bits 06,05 of the J FIELD. Refer to “Condi-
tion Selector” in this chapter for an explanation of Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The jump is formed by adding the Displacement
(K FIELD) to the contents of the control Register (JIBZ instruction
address).

NUMBER OF CYCLES: JIBZ is a three-cycle instruction if the
condition is met and a one-cycle instruction if the condition is not
met. If the condition is met, the two instructions following JIBZ are
not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-81

MICROINSTRUCTION SET

JUMP ON INDICATOR BIT
JIBZL PAIR ZEROS LONG JIBZL
MNEMONIC: JIBZL
OP CODE: B7

FORMAT: 161514 13121110 9 8 7 6 5 4 3 2 1

T o %o o o o

0P Code; G, H, & | Fields J Field K Field; Not used

16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Literal

L Field

GIM2310

SUMMARY: If condition, L — CR; else, execute next sequen-
tial instruction.

OPERATION: This instruction is a conditional immediate jump
and can be used to jump to any location in Control Store. Bits 08,07
of the J FIELD select the Indicator Bit Pair to be compared against
the Mask, bits 06,05 of the J FIELD. Refer to “Condition Selector”
in this chapter for an explanation of Bit Pair Selector and Mask, as
well as for the Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The jump is formed by transferring the L FIELD
to the Control Register.

NUMBER OF CYCLES: JIBZL is a three-cycle instruction if the
condition is met and a two-cycle instruction if the condition is not
met. If the condition is met the instruction following JIBZL is not
executed.

EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: None

6-82

MICROINSTRUCTION SET
JUMP ON INDICATOR BIT
JIBZM PAIR ZEROS MINUS JIBZM
MNEMONIC: JIBZM
OP CODE: B3

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

1 0 1 1 0 o 1 1[BPar]BLRr] pispiacement

0P Code; G, H, & | Fields J Field K Field

GIM2306

SUMMARY: If condition, Control Store Address - K — CR;
else, execute next sequential instruction.

OPERATION: This instruction is a conditional immediate jump.
Bits 08,07 of the J FIELD select the Indicator Bit Pair to be com-
pared against the Mask, bits 06,05 of the J FIELD. Refer to “Condi-
tion Selector” in this chapter for an explanation of Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The jump is formed by subtracting the Displace-
ment (K FIELD) from the contents of the Control Register (JIBZM
instruction address).

NUMBER OF CYCLES: JIBZM is a three-cycle instruction if the
condition is met and a one-cycle if the condition is not met. If the
condition is met the two instructions following JIBZM are not ex-
ecuted.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-83

MICROINSTRUCTION SET

JUMP ON INDICATOR ONES
JIOL

LINKAGE JIOL

MNEMONIC: JIOL
OP CODE: 70-TF

FORMAT: 6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 1 1 1 Literal 0| pome, Literal
OP Code; i i i
G Field H &I Fields J Field K Field

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Literal

L Field

GIM2265

SUMMARY: If condition, L= CR and next instruction address I
= JRJ; else, execute next sequential instruction:

OPERATION: This instruction compares the H, I, K FIELDS bit
for bit against the Indicator Array. If any one bit in the H, I, K
FIELDS matches a one bit in the Indicator Array the L. FIELD is
transferred to the Control Register and the next instruction address
(normally JIOL address + 2) is transferred to the Jump Register ad-
dressed by the J FIELD (Link). The previous contents of the Jump
Register are lost.

NUMBER OF CYCLES: JIOL is a three-cycle instruction if the
condition is met and a two-cycle instruction if the condition is not

met. If the condition is met, the instruction following JIOL is not
executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-84

MICROINSTRUCTION SET

JUMP ON INDICATOR ZEROS
JIZL

LINKAGE JIZL

MNEMONIC: JIZL
OP CODE: 80-8F

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 0 0 O Literal 0 Rgg?;{]er Literal
0P Code; ; : ;
8 Field H & | Fields J Field K Field

16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

Literal

L Field

GIM2266

SUMMARY: If condition, L= CR and next instruction address I
= JRJ; else, execute next sequential instruction.

OPERATION: This instruction compares the H, I, K FIELDS bit
for bit against the Indicator Array. If any one bit in the H, I, K
FIELDS matches a Zero bit in the Indicator Array the L FIELD is
transferred to the Control Register and the next instruction address
(normally JIZL address + 2) is transferred to the Jump Register ad-
dressed by the J FIELD (Link). The previous contents of the jump
register are lost.

NUMBER OF CYCLES: JIZL is a three-cycle instruction if the
condition is met and a two-cycle instruction if the condition is not
met. If the condition is met, the instruction following JIZL is not
executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-85

MICROINSTRUCTION SET
JMPD NVM DESCRIPTOR JUMP JMPD

MNEMONIC: JMPD
OP CODE: 3B

FORMAT: 16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o o1 1t 1 0 1 1/0 0 0 O Source RSU

OP Code; G, H, & | Fields J Field; Not Used K Field

GIM2269

SUMMARY: (RK - BO) — SUR1 1B - 09
Execution Address — CR

OPERATION: The Primary Setup Register (SUR1 16-09) is
loaded from Byte 0 of the RSU specified by the K FIELD of the in-
struction. The setup hardware uses the Descriptor ID Field (SUR1
16-14) to form the Descriptor Execution Address.

The Execution Address is loaded into the CR and a delayed
jump is initiated if (SUR1 12-09) is not equal to zero. The Execution
Address is loaded into the CR and an immediate jump is initiated if
(SUR1 12-09) is equal to zero.

NUMBER OF CYCLES: JMPD is a two-cycle instruction. SUR1
is loaded during the first cycle and the CR during the second. The
immediate jump version of JMPD is, therefore, effectively a four-
cycle instruction.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-86

JMPIA IBM SETUP JUMP A JMPIA

MNEMONIC: JMPIA
OP CODE: 32

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
; Source
0 0 1 1 0 0 1 0] O/[Jump Register ASU
0P Code; G, H, & | Fields J Field K Field

GIM2241

SUMMARY: (RK - H) — SURI1, SP PTRS (IF BCT/+M780)
(JRJ) — CR if BCT
SETUP ADDR — CR if BCT/.M7B2
M70F ADDR — CR if BCT/.M7B0

OPERATION: If an instruction is present (MARS7 Byte Pointer
= 1,0), and BCT is off, the Primary Setup Register (SUR1 16-01) is
loaded from the right halfword of the RSU specified by the K
FIELD as determined by the MARS7 Byte Pointers (the K FIELD
must designate RSU15). The Tally Copy Register, SUR5 08-01, is
loaded from the least significant eight bits of the halfword. Formats
that include a Tally value will load the Tally Register subsequently
from SURS5. The setup hardware decodes the Command Op Code in
SUR1 to determine the IBMVM Format type and loads the Scratch
Pad Pointers.

If the BCT Indicator is true, the contents of the Jump Register
specified by the J FIELD will be transferred to the CR and a de-
layed jump will be initiated.

If the BCT Indicator is false and the MARS7 Byte Pointers are
pointing at byte 2 of RSU-K (M7B2), the Setup Address is loaded
into the CR and a delayed jump is initiated. MARS7 Byte Pointers
are incremented by 2.

If BCT is false and the MARS7 Byte Pointers are pointing at
byte 0 of RSU-K (M7B0), the MARS7 Overflow Fetch Address is
loaded into the CR and a delayed jump is initiated. MARS7 Byte
Pointers are not incremented.

NUMBER OF CYCLES: JMPIA is a two-cycle instruction. SUR1
and the Pointers are loaded during the first cycle. The CR is loaded
during the second cycle. The jump cycle calculations are based upon
the CR loading in the second cycle.

6-87

MICROINSTRUCTION SET
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-88

MICROINSTRUCTION SET

JMPIB IBM SETUP JUMP B JMPIB

MNEMONIC: JMPIB
OP CODE: 33

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Source
o o0 1t 1t 0o 0 1 10 0 O O RSU
0P Code; G, H, & | Fields J Field; Not Used K Field

GIM2242

SUMMARY: (RK - H) — SUR1, SP POINTERS
SETUP ADDRESS — CR if RR/
EXECUTION ADDRESS — CR if RR

OPERATION: The Primary Setup Register (SUR1 16-01) is load-
ed from the left halfword of the RSU specified by the K FIELD as
determined by the MARS7 Byte Pointers (the K FIELD must des-
ignate RSU15). The Tally Copy Register, SUR5 bits 08-01, is loaded
from the least significant eight bits of the halfword. Formats that
include a Tally value will subsequently load the Tally Register from
SURS5. The setup hardware decodes the Command Op Code in SUR1
to determine the IBMVM Format type and loads the Scratch Pad
Pointers.

The Mask field in the IBM instruction (SUR1 bits 08-05) is com-
pared against the Condition Code Bits in the Virtual Indicator Ar-
ray (VIA 02,01). If a match occurs then the Condition Code Match
Bit (I6) in the Indicator Array will be set during the cycle following
the JMPIB. If a match does not occur, or a match occurs but the
IBM instruction format is RR and the R2 field is all zeros, then 16
will be reset.

If the Format is not the RR type, the Setup Address is loaded
into the CR and an immediate (delayed for RX) jump is initiated.

If the IBM Format is the RR type, the Execution Address is
loaded into the CR and a Delayed jump is initiated.

NUMBER OF CYCLES: JMPIB is a two-cycle instruction. SUR1
and the Pointers are loaded during the first cycle. The CR is loaded
during the second cycle. The jump cycle calculations are based on
the CR loading in the second cycle. Therefore, the immediate jump
version of JMPIB is effectively a four-cycle instruction.

6-89

MICROINSTRUCTION SET

EFFECT ON VIRTUAL INDICATOR ARRAY: This instruction
affects Virtual Indicator 16.

PROGRAMMING CONVENTIONS: The instruction immediate-
ly following JMPIB should not test Virtual Indicator 16.

6-90

MICROINSTRUCTION SET

JMPIC IBM SETUP JUMP C JMPIC

MNEMONIC: JMPIC
OP CODE: 34

FORMAT: 16 1514 1312 1110 9 8 7 6 5 4 3 2 1

0 0 1t 1 01 0 O0J]0 0O O OjO 0 0 O

OP Code; G, H, & | Fields J Field; Not Used | K Field; Not Used

GIM2243

SUMMARY: EXECUTION ADDRESS — CR

OPERATION: The Mask field in the IBM instruction (SUR1 bits
08-05) is compared against the Condition Code Bits in the Virtual
Indicator Array (VIA 02,01). If a match occurs, the Condition Code
Match Bit (I6) in the Virtual Indicator Array will be set during the
cycle following the JMPIC. If a match does not occur, or a match oc-
curs but the IBM instruction format is RR and the R2 field is all
zeros, Virtual Indicator I6 will be reset. The Execution Address is
loaded into the CR and a delayed jump is initiated.

NUMBER OF CYCLES: JMPIC is a single-cycle instruction. |

EFFECT ON VIRTUAL INDICATOR ARRAY: This instruction
affects Virtual Indicator I6.

PROGRAMMING CONVENTIONS: None

6-91

MICROINSTRUCTION SET

JMPNA NVM SETUP JUMP A JMPNA

MNEMONIC: JMPNA
OP CODE: 35

FORMAT: 16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Register
0o 01 1 0 1 0 110 Jump Source RSU
0P Code; G, H, & | Fields J Field K Field

GIM2244

SUMMARY: (RK - H) — SURI1, SP PTRS (if BCT/+M7B0)
(JRJ) — CR if BCT
SETUP ADDR — CR if BCT/.M7B2.RR2/
EXEC ADDR — CR if BCT/.M7B2.RR2
M70F ADDR — CR if BCT/.M7B0

OPERATION: If an instruction is present (MARS7 Byte Pointers
= 1,0) and BCT is off, the Primary Setup Register (SUR1 16-01) is
loaded from the right halfword of the RSU specified by the K
FIELD as determined by the MARS7 Byte Pointers (the K FIELD
must be designated RSU15). The Tally Copy Register, SUR5 bits
08-01, is loaded from the least significant eight bits of the halfword.
Formats that include a Tally value will subsequently load the Tally
Register from SUR5. The setup hardware decodes the Command Op
Code in SURL1 to determine the NVM Format type and loads the
Scratch Pad Pointers.

If the BCT Indicator is true, the contents of the jump Register
specified by the J FIELD will be transferred to the CR and a
delayed jump will be initiated.

If BCT is false and the MARS7 Byte Pointers are pointing at
byte 2 of RSU-K (M7B2) and the NVM Format is not the RR2 type,
the Setup Address is loaded into the CR and a delayed jump is initi-
ated. MARS7 Byte Pointers are incremented by 2.

If BCT is false and the MARS7 Byte Pointers are pointing at
byte 2 of RSU-K (M7B2) and the NVM Format is the RR2 type, the
Execution Address is loaded into the CR and a delayed jump is initi-
ated. MARST7 Byte Pointers are incremented by 2.

If BCT is false and the MARS7 Byte Pointers are pointing at
byte 0 of RSU-K (M7B0), the MARS7 Overflow Fetch Address is
loaded into the CR and a delayed jump is initiated. MARS7 Byte
Pointers are not incremented.

6-92

MICROINSTRUCTION SET

NUMBER OF CYCLES: JMPNA is a two-cycle instruction.
SURI1 and the Pointers are loaded during the first cycle. The CR is
loaded during the second cycle. The jump cycle calculations are
based upon the CR loading in the second cycle.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-93

MICROINSTRUCTION SET

JMPNB NVM SETUP JUMP B JMPNB

MNEMONIC: JMPNB
OP CODE: 36

FORMAT: 16 15 14 13121110 9 8 7 6 5 4 3 2 1
o o1t 1+ 01 1 0|0 O O O Source RSU
0P Code; G, H, & | Fields J Field; Not Used K Field

GIM2245

SUMMARY: (RK - H) — SURI1, SP PTRS;
‘ SETUP ADDR — CR if RM or MM Formats
EXEC ADDR — CR if RR1, RR2, or RI Formats

OPERATION: The Primary Setup Register (SUR1 16-01) is load-
ed from the left halfword of the RSU specified by the K FIELD as
determined by the MARS7 Byte Pointers (the K FIELD must des-
ignate RSU15). The Tally Copy Register, SUR5 bits 08-01, is loaded
from the least significant eight bits of the halfword. Formats that
include a Tally value will subsequently load the Tally Register from
SURS. The setup hardware decodes the Command Op Code in SUR1
to determine the NVM Format type and loads the Scratch Pad
Pointers.

If the NVM Format is the MM type, the Setup Address is load-
ed into the CR and an immediate jump is initiated. If the format is
the RM type, the Setup Address is loaded into the CR and a delayed
jump is initiated.

If the NVM Format is the RR1 type, the Execution Address is
loaded into the CR and a delayed jump is initiated.

If the NVM Format is the RR2 or RI types, the Execution Ad-
dress is loaded into the CR and an immediate jump is initiated.

NUMBER OF CYCLES: JMPNB is a two-cycle instruction.
SURI1 and the Pointers are loaded during the first cycle. The CR is
loaded during the second cycle. The jump cycle calculations are
based upon the CR loading in the second cycle. Therefore, the imme-
diate jump version of JMPNB is effectively a four-cycle instruction.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-94

MICROINSTRUCTION SET

JMPNC NVM SETUP JUMP C JMPNC

MNEMONIC: JMPNC
OP CODE: 37

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o o 11t 01t 1 1]J]0 0 O OjO O O O

0P Code; G, H, & I Fields J Field; Not Used | K Field; Not Used

GIM2246

SUMMARY: EXECUTION ADDRESS — CR if RM/+IN/
INDIRECT ADDRESS — CR if RM AND IN

OPERATION: If the NVM Format is the RM type and the Indi-
rection (In) Indicator is true in the instruction, the Indirection Ad-
dress is loaded into the CR and a delayed jump is initiated. The Indi-
rection Indicator, bit 04 in SURI, is cleared following the execution
of this instruction.

If the NVM Format is not the RM type or if the Indirection In-
dicator is false, the Execution Address is loaded into the CR and a
delayed jump is initiated.

NUMBER OF CYCLES: JMPNC is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-95

MICROINSTRUCTION SET

JMPVA VRX SETUP JUMP A JMPVA

MNEMONIC: JMPVA
OP CODE: 38

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

001t 1t 1t 0 0 O0]J]O O O Of1 1 1 1

.) . Source RSU
OP Code; G, H, & I Fields J Field; Not Used | "rioli’ 5

GIM2247

SUMMARY: (RK - H) — SURI1
SETUP A ADDRESS — CR

OPERATION: The Primary Setup Register (SUR1 16-01) is load-
ed from the left halfword of the RSU specified by the K FIELD (the
K FIELD must designate RSU15).

The Setup ‘“A” Address is loaded into the CR and a delayed
jump is initiated.
NUMBER OF CYCLES: JMPVA is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-96

MICROINSTRUCTION SET

JMPVB VRX SETUP JUMP B JMPVB

MNEMONIC: JMPVB
OP CODE: 39

FORMAT: 16 1514 13121110 9 8 7 6 5 4 3 2 1

o o011 1 00 1}]O0O O OOt 1 1 1

OP Code; G, H, & I Fields J Field; Not Used | Source ASY

GiM2248

SUMMARY: (RK - H) — SURI1 (Rb)
— SUR5 (T)
SETUP “B” ADDRESS — CR

OPERATION: The Primary Setup Register (SUR1 08-01) is load-
ed from the least significant eight bits of the left halfword of the
RSU specified by the K FIELD (the K FIELD must be designated
RSU15). The Tally Copy Register (SUR5 08-01) is loaded from the
most significant eight bits.

The Setup ‘“B”’ Address is loaded into the CR and a delayed
jump is initiated.

NUMBER OF CYCLES: JMPVB is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-97

MICROINSTRUCTION SET

JMPVC VRX SETUP JUMP C JMPVC

MNEMONIC: JMPVC
OP CODE: 3A

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

0 o0 1 11 0 1 0f0 0 0 0|/o o0o0 0

OP Code; G, H, & | Fields J Field; Not Used | K Field; Not Used

GIM2249

SUMMARY: EXECUTION ADDRESS — CR
1 — TALLY 09 if T=0

OPERATION: The VRX Execution Address is loaded into the CR
and a delayed jump is initiated.

If the contents of the Tally Register equals zero, the Virtual
Tally should equal 256. A “‘one” is loaded into bit 09 of the Tally
Register.

NUMBER OF CYCLES: JMPVC is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-98

MICROINSTRUCTION SET

JOR JUMP ON REGISTER

MNEMONIC: JOR
OP CODE: 2C

JOR

FORMAT: 16 1514 1312 1110 9 8 7 6 5 4 3 2 1
o o1t o 1t 1 0 O Control Source RSU
0P Code; G, H, & | Fields J Field K Field

SUMMARY: (RK — RH) — CR

GIM2252A

OPERATION: This instruction is an immediate unconditional
jump. A halfword of data is transferred from the RSU addressed by
the K FIELD to the Control Register, the most significant sixteen
bits are not used. The contents of the RSU remain unchanged. The

previous contents of the Control Register are lost.

NUMBER OF CYCLES: JOR is a three-cycle instruction. The two

instructions following JOR are not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-99

MICROINSTRUCTION SET

JPMBN jumponemBusnNecaTive JPMBN

MNEMONIC: JMPBN
OP CODE: 3C

FORMAT: 16 156 14 13 12 1110 9 8 7 6 5 4 3 2 1

0o 11t 11 0 00 0 0O 0O OO O

OP Code; G, H, & | Fields J & K; Not Used

GIM2296

SUMMARY: (PM Bus - RH)/— CR
OPERATION: The least significant 16 bits of information that
are on the PM Bus at X1 time during the execution of the JPMB
instruction will be inverted (one’s complemented) and loaded into
the CR.

JMPBN is an immediate jump and therefore, the two instruc-
tions following JMPBN are not executed.
NUMBER OF CYCLES: JMPBN is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-100

MICROINSTRUCTION SET

JRM JUMP RELATIVE MINUS JRM

MNEMONIC: JRM
OP CODE: 6D

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o1 1 0 1t 1 0 1 Jump Length
OP Code; G, H, & | Fields J & K Fields

GIM2255

SUMMARY: Control Store Address - JK — CR

OPERATION: This instruction causes an immediate program
jump in the positive direction. The jump address is formed by
binarily subtracting the J and K FIELDs from the Control Register
contents (JRM instruction address). The maximum jump is 255 con-
secutive address locations. A Carryout of the sixteenth bit on the
addition is lost. The previous contents of the Control Register are
lost.

NUMBER OF CYCLES: JRM is a three-cycle instruction. The
two instructions following JRM are not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-101

MICROINSTRUCTION SET

JRMX jump rELATIVE MINUS EXxTERNAL JRMX

MNEMONIC: JRMX
OP CODE: B1

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1
1 0 11 0 O O 1 Jump Length
0P Code; G, H, & | Fields J & K Fields

GIM2304

SUMMARY: Control Store Address - JK — CR if external con-
dition

OPERATION: This instruction causes an immediate program
jump in the negative direction if the external condition is met. The
condition tested is system dependent and in the absence of any
system use for the external signal monitored by the Processor, the
condition will never be met. The jump address is formed by binarily
subtracting the J and K FIELDS from the Control Register con-
tents (JRMX instruction address). The maximum jump is 255 con-
secutive address locations. A carryout of the sixteenth bit on the
subtraction is lost. The previous contents of the Control Register
are lost.

NUMBER OF CYCLES: JRMX is a three-cycle instruction if the
condition is met and a one-cycle instruction if the condition is not
met. If the condition is met the two instructions following JRMX
are not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-102

MICROINSTRUCTION SET

J RO JUMP ON REGISTER ONES J RO

MNEMONIC: JRO
OP CODE: EO-EF

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
RSU
‘ . RSU
11 10 Literal Literal Byte
Addr 1 or
OF Gode H& | Fields J Fild K Field

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Literal

L Field

GIM2264

SUMMARY: If condition, L= CR;
Else, execute next sequential instruction.

OPERATION: This instruction is a conditional immediate jump
and can be used to jump to any location in Control Store. During ex-
ecution the H, I, J FIELDS are compared bit for bit against the
byte addressed by the K FIELD. If all one bits in the H, I, J
FIELDS match corresponding one bits in the Byte addressed by the
K FIELD, the L FIELD is transferred to the Control Register. The
previous contents of the Control Register are lost.

NUMBER OF CYCLES: JRO is a three-cycle instruction if the
condition is met and a two-cycle instruction if the condition is not
met. If the condition is met, the instruction following JRO is not ex-
ecuted.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-103

MICROINSTRUCTION SET

JRP JUMP RELATIVE PLUS JRP

MNEMONIC: JRP
OP CODE: 6C

FORMAT: 16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o1 1t o1 1t 0 O Jump Length
0P Code; G, H, & I Fields J & K Fields

GIM2254

SUMMARY: Control Store Address + JK — CR

OPERATION: This instruction causes an immediate program
jump in the positive direction. The jump address is formed by

I binarily adding the J K FIELDS to the Control Register contents
(JRP instruction address). The maximum jump is 255 consecutive
address locations. A Carryout of the sixteenth bit on the addition is
lost. The previous contents of the Control Register are lost.

NUMBER OF CYCLES: JRP is a three-cycle instruction. The two
instructions following JRP are not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-104

MICROINSTRUCTION SET

JRPX jumpreELaATIVEPLUSEXTERNAL JRPX

MNEMONIC: JRPX
OP CODE: BO

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
i 01 1 0 0 0 O Jump Length
0P Code; G, H, & | Fields J & K Fields

GIM2303

SUMMARY: Control Store Address + JK — CR if external
conditions

OPERATION: This instruction causes an immediate program
jump in the positive direction if the external condition is met. The
condition tested is system dependent and in the absence of any
system use for the external signal monitored by the Processor, the
condition will never be met.

The jump address is formed by binarily adding the J and K
FIELDS to the Control Register contents (JPPX instruction ad-
dress). The maximum jump is 255 consecutive address locations. A
carryout of the sixteenth bit on the addition is lost. The previous
contents of the Control Register are lost.

NUMBER OF CYCLES: JRPX is a three-cycle instruction if the
condition is met and a one-cycle instruction if the condition is not
met. If the condition is met the two instructions following JRPX are
not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-105

MICROINSTRUCTION SET

JRZ JUMP ON REGISTER ZEROS JRZ

MNEMONIC: JRZ
OP CODE: FO-FF

FORMAT: 16 16 14 13 12 11 10 9 8 7 6 5 4 3 2 1
RSU
: : RSU
1 Byt
1 1 1 Literal Literai Addr A();di
0P Code: G Field H, & | Fields J Field K Field
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Literal
L Field

GIM2264AA

SUMMARY: If condition, L. = CR;
Else, execute next sequential instruction.

OPERATION: This instruction is a conditional immediate jump
and can be used to jump to any location in Control Store. During ex-
ecution the H, I, J FIELDS are compared bit for bit against the
byte addressed by the K FIELD. If all one bits in the H, I, J
FIELDS match corresponding zero bits in the Byte addressed by
the K FIELD, the L FIELD is transferred to the Control Register.
The previous contents of the Control Register are lost.

NUMBER OF CYCLES: JRZ is a three-cycle instruction if the
condition is met and a two-cycle instruction if the condition is not
met. If the condition is met, the instruction following JRZ is not ex-
ecuted.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-106

MICROINSTRUCTION SET

J TNZ JUMP ON TALLY NOT ZERO JTNZ

MNEMONIC: JTNZ
OP CODE: BA

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
it o1 1t 1 0 1 0 Jump Length
0P Code; G, H, & | Fields J & K Fields
GIM2313

SUMMARY: If T not equal 0, Control Store Address - JK —
CR (T) - 1 — T; else, execute next sequential in-
struction.

OPERATION: This instruction is a conditional immediate
relative jump with a negative displacement. The Tally Register is
tested, if not zero, the J and K FIELDS are binarily subtracted
from the Control Store Address of the JTNZ instruction and then
transferred to the Control Register. The Tally Register is
decremented by one. The previous contents of the Control Register
are lost. The two instructions following this instruction are not ex-
ecuted.

If the Tally Register is zero the jump is not taken and the Tally
is not decremented.

NUMBER OF CYCLES: JTNZ is a single-cycle instruction if the
test condition is not met, and a three-cycle instruction if the test
condition is met.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-107

MICROINSTRUCTION SET

LB LOAD BYTE LB

MNEMONIC: LB
OP CODE: 59

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o1 0 1 1 0 0 1 Byte Literal
OP Code; G, H, & | Fields J & K Fields

GIM2186

SUMMARY: J,K — R0, BO

OPERATION: The byte literal contained in the J, K FIELDS is
loaded into byte 0 of RSU 0. The other three bytes of RSU 0 are not
disturbed.

NUMBER OF CYCLES: LB is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-108

MICROINSTRUCTION SET

LFA LOAD, FETCH, AND AUGMENT LFA

MNEMONIC: LFA
OP CODE: 05

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0O 0 O O O 1 O 1] AddrDestRSU | Load Source RSU
OP Code; G, H, & | Fields J Field K Field
GIM2138

SUMMARY: (RK) — PM Bus
(RK) + 4 — RJ

OPERATION: A virtual fetch (if AT is on) or a real fetch (if AT is
off) is initiated from local memory using the address in the RSU
specified by the K FIELD. The address in the K-RSU is augmented
by four and loaded into the Address Register specified by the J
FIELD.

NUMBER OF CYCLES: The Fetch and Augment operation is a
single-cycle operation.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The LFA instruction must be
followed by the RCV instruction to receive data from the PM Bus.

6-109

MICROINSTRUCTION SET

LOAD, FETCH, AND AUGMENT
LFAL LINKAGE LFAL

MNEMONIC: LFAL
OP CODE: 06

FORMAT: 16 1514 13121110 9 8 7 6 5 4 3 2 1
0 0 0 00 1t 1 O Addr Dest RSU | Load Source RSU
0P Code; G, H, & | Fields J Field | K Field
GIM2140

SUMMARY: (RK) — PM Bus
(RK) +4 — RJ

OPERATION: A virtual fetch (if AT is on) or a real fetch (if AT is
off) is initiated from local memory using the address in the RSU
specified by the K FIELD. The address in the K-RSU is augmented
by four and loaded into the Address Register specified by the J
FIELD. Linkage Protection is checked following address transla-
tion (if AT is on) in the DAT instead of read protection as on other
fetches.

NUMBER OF CYCLES: The Load, Fetch, and Augment with Linkage
operation is a single-cycle operation.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The LFAL instruction must
be followed by the RCV instruction to receive data from the PM Bus.

6-110

MICROINSTRUCTION SET

LFD LOAD, FETCH, AND DECREMENT LFD

MNEMONIC: LFD
OP CODE: 07

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

0O 0 0 0 0 1 1 1 Addr Dest RSU | Load Source RSU

0P Code; G, H, & | Fields J Field K Field

GiM2139

SUMMARY: (RK) — PM Bus
(RK) -4 — RJ

OPERATION: A virtual fetch (if AT is on) or a real fetch (if AT is
off) is initiated from local memory using the address in the RSU
specified by the K FIELD. The address in the K-RSU is decremented
by four and loaded into the Address Register specified by the J
FIELD.

NUMBER OF CYCLES: The Load, Fetch, and Decrement operation

is a single-cycle operation.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The LFD instruction must be
followed by the RCV instruction to receive data from the PM Bus.

6-111

MICROINSTRUCTION SET

LI N K LOAD LINK ADDRESS LI N K

MNEMONIC: LINK
OP CODE: 92

FORMAT: 16 16 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 0 0 t O O 1 O |O {Jump Register Literal
OP Code; G, H, & | Fields J Field K Field

GIM2290
SUMMARY: Control Store Address + K — JRJ
OPERATION: This instruction adds the Control Store Address
(of LINK) to the literal in the K FIELD and stores the result in the
Jump Register specified by the J FIELD.
NUMBER OF CYCLES: LINK is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None
PROGRAMMING CONVENTIONS: The J FIELD must not be

set to a non-existent Jump Register address (must not be greater
than 7).

6-112

MICROINSTRUCTION SET

LINKM 1oapLink appREss MINUs LINKM

MNEMONIC: LINKM
OP CODE: 61

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o1 10000 1]o0 Hgg,"s‘&r Literal
OP Code: G, H, & | Fields J Field K Field

GIM2301

SUMMARY: Control Store Address - K — JRJ
OPERATION: This instruction decrements the Control Store Ad-
dress (of LINKM) by the literal K and stores the result in the Jump
Register specified by the J FIELD.

NUMBER OF CYCLES: LINKM is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The J FIELD must not be

set to a non-existent Jump Register address (must not be greater
than 7).

6-113

MICROINSTRUCTION SET

LLD LOAD LEFT DIGIT LLD

MNEMONIC: LLD
OP CODE: 5A

FORMAT: 16151413 121110 9 8 7 6 5 4 3 2 1
Dest
0 1 0 1 1 0 1 of Dest| gy Digit Literal
RSU
Byte
OP Code; G, H, & I Fields J Field K Field
GIM2188

SUMMARY: K — RJ - BLD

OPERATION: The digit literal contained in the K FIELD is
loaded into the left digit in the byte of the RSU specified by the J
FIELD. The right digit in the byte of the destination RSU is not
disturbed.

NUMBER OF CYCLES: LLD is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-114

MICROINSTRUCTION SET

LRD LOAD RIGHT DIGIT LRD

MNEMONIC: LRD
OP CODE: 5B

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Dest

Dest N
o 1 0 1t 1 0 1 1 RSU Digit Literal
RSU | Byte 9

0P Code; G, H & | Fields J Field K Field

GIM2187
SUMMARY: K — RJ-BRD
OPERATION: The digit literal contained in the K FIELD is
loaded into the right digit in the byte of the RSU specified by the J

FIELD. The left digit in the byte of the destination RSU is not
disturbed.

NUMBER OF CYCLES: LRD is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-115

MICROINSTRUCTION SET

L R H LOAD RIGHT HALFWORD L R H

MNEMONIC: LRH
OP CODE: 5C

FORMAT: 16 156 14 13 12 1110 9 8 7 6 5 4 3 2 1

0 10 11 1 0 0OlO0O O O O Dest RSU

OP Code; G, H, & | Fields Not Used; J Field K Field

16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

Literal

L Field

GIM2184

SUMMARY: L — RK-RH

OPERATION: The trailing literal (L FIELD) of the LRH instruc-
tion is loaded into the right halfword of the RSU specified by the K
FIELD. The left halfword of the destination RSU is not disturbed.
NUMBER OF CYCLES: LRH is a two-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-116

MICROINSTRUCTION SET
LOAD RIGHT HALFWORD
LRHC CLEAR LEFT HALFWORD LRHC
MNEMONIC: LRHC
OP CODE: 5D

FORMAT: 16 1514 13 121110 9 8 7 6 5 4 3 2 1
0101110 1]0o o000 Dest RSU
OP Code; G, H, & | Fields Not Used; J Field K Field
16 1514 1312 1110 9 8 7 6 5 4 3 2 1
Literal
L Field

GIM2185

SUMMARY: L — RK-RH

OPERATION: The trailing literal (L. FIELD) of the LRHC in-
struction is loaded into the right halfword of the RSU specified by
the K FIELD. The left halfword of the destination RSU is set to
zero (cleared).

NUMBER OF CYCLES: LRHC is a two-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-117

MICROINSTRUCTION SET

LTRC vroaptaiiyricarciearierr LTRC

MNEMONIC: LTRC
OP CODE: 58

FORMAT: 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1
01 01 1 0 00 Byte Literal
0P Code; G, H, & | Fields J & K Fields

GIM2189

SUMMARY: J, K — TALLY Register - RB; 0 — TALLY
Register-LLB

OPERATION: The byte literal contained in the J, K FIELDS is
loaded into the right half (byte) of the Tally Register. The left half of
the Tally Register is set to zero (cleared).

NUMBER OF CYCLES: LTRC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction may affect
Indicator I7.

PROGRAMMING CONVENTIONS: The LTRC instruction must

not be executed immediately preceding any instruction that tests
the contents of the Tally Register.

6-118

MICROINSTRUCTION SET

LTS LOAD TALLY FROM SETUP LTS

MNEMONIC: LTS
OP CODE: 9B

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

it 0o 0 1t 1 0 1 110 0 O OjJO O O O

0P Code; G, H, & | Fields J Field; Not Used | K Field; Not Used

GIM2280

SUMMARY: 0’s — TALLY 16 - 09 (SUR5 08 - 01) — TALLY
08 - 01

OPERATION: The Tally Registers eight least significant bits are
loaded from the eight bits of SUR5. The eight most significant bits
of the Tally Register are loaded with zeros.

NUMBER OF CYCLES: LTS is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: The LTS instruction must

not be executed immediately preceding any instruction that tests
the contents of the Tally Register.

6-119

MICROINSTRUCTION SET

Mil MAP IBM INDICATORS Mil

MNEMONIC: MII
OP CODE: 54

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o1 o1 o 1 0 O Map Enables
0P Code; G, H, & | Fields J & K Fields

GIM2281

SUMMARY: Machine Indicators mapped to IBM 370 Virtual
Indicator Array.

OPERATION: The basic VLSI machine indicators are mapped to
the IBM 370 Condition Code (Virtual Indicators) when specific Map
Enables (J and K FIELDS) are set in the instruction.

11 (L) is mapped to Virtual Indicator CCO if J,K 01 is on.

I3 (G) is mapped to Virtual Indicator CC1 if J,K 02 is on.

I2 (E/) is mapped to Virtual Indicator CCO if J,K 03 is on.

14 (C) is mapped to Virtual Indicator CC1 if J,K 04 is on.

I4 (C) is mapped to Virtual Indicator CC1,0 if J,K 05 is on.

15 (O) is mapped to Virtual Indicator CC1,0 if J,K 06 is on.

J05 and J06 are mutually exclusive. Also, when either J05 or
J06 is on, J01-04 must be off.

NUMBER OF CYCLES: MII is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-120

MICROINSTRUCTION SET

MIN MAP NVM INDICATORS MIN

MNEMONIC: MIN
OP CODE: 55

FORMAT: 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1
o 1 o 1 0 1 0 1 Map Enables
0P Code; G, H, & | Fields J & K Fields

GIM2282

SUMMARY: Machine Indicators mapped to NVM Virtual In-
dicator Array.

OPERATION: The basic VLSI machine indicators are mapped to
the NVM Virtual Indicators when specific Map Enables (J and K
FIELDS) are set in the instruction.

I1 (L) is mapped to Virtual Indicator L if J,K 01 is on.

I2 (E) is mapped to Virtual Indicator E if J,K 02 is on.

I3 (G) is mapped to Virtual Indicator G if J,K 03 is on.

I4 (C) is mapped to Virtual Indicator O if J,K 04 is on.

14/(C/) is mapped to Virtual Indicator O if J,K 05 is on.

NUMBER OF CYCLES: MIN is a siﬁgle—cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-121

MICROINSTRUCTION SET

M |V MAP VRX INDICATORS M 'V

MNEMONIC: MIV
OP CODE: 56

FORMAT: 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1
o 1 o1 0 1 1 0 Map Enables
0P Code; G, H, & I Fields J & K Fields

GIM2283

SUMMARY: Machine Indicators mapped to VRX Virtual In-
dicator Array.

OPERATION: The basic VLSI machine indicators are mapped to
the VRX Virtual Indicators when specific Map Enables (J and K
FIELDS) are set in the instruction.

I1 (L) is mapped to Virtual Indicator L if J,K 01 is on.

12 (E) is mapped to Virtual Indicator E if J,K 02 is on.

I3 (G) is mapped to Virtual Indicator G if J,K 03 is on.

14 (C) is mapped to Virtual Indicator O if J,K 04 is on.

I5 (O) is mapped to Virtual Indicator O if J,K 05 is on.

A zero is mapped to Virtual Indicator RI if J,K 06 is on.

A one is mapped to Virtual Indicator RI if J,K 07 is on.
Note: 1J,K 06 and 07 are mutually exclusive, both cannot be on at
the same time. J,K 04 and 05 are also mutually exclusive.

NUMBER OF CYCLES: MIV is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-122

MICROINSTRUCTION SET

MRR MEMORY REFERENCE RETRY MRR

MNEMONIC: MRR
OP CODE: 02

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

0 0 0 0O 0 0O1 0JO O O Of SourceRSU

OP Code; G, H, & | Fields J Field; Not Used | K Field

GiM2147

SUMMARY: (RK) = PM Bus
(RX) = PM Bus if S.R 16,15=0,1
where X = S.R 14-11

OPERATION: This instruction is used to re-execute virtual
memory operations that were aborted due to address translation
errors (DAT Interrupt). The contents of the RSU specified by the K
FIELD are transferred via the PM Bus to the DAT logic as a Vir-
tual Address.

If State Register bits 16,15=0,1 then the operation is a Virtual
Store and data will be transferred over the PM Bus from the RSU
specified by the State Register bits 14-11. The Write Tags will be
supplied from State Register bits 10-07.

If State Register Bits 16,15#0,1 then the operation is a virtual J]
fetch with bits 16,15 controlling the mode of protection check to be
performed (Read, Linkage or Execute).

NUMBER OF CYCLES: MRR is a single-cycle instruction, but
when executing a store operation the PM Bus will be utilized for up
to 4 cycles.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-123

MICROINSTRUCTION SET

RC RESET CONTROLS RC

MNEMONIC: RC
OP CODE: 95

FORMAT: 16 1514 13121110 9 8 7 6 5 4 3 2 1
1 0 01 0 1 0 1 Byte Literal
0P Code; G, H, & I Fields J & K Fields

GIM2292
SUMMARY: (CA-LB)ANDJK — CA-LB
OPERATION: The left byte in the Control Array #1 (bits 16-09) is
logically ANDed with the inverted (logically negated) byte literal in
the J and K FIELDS. The result replaces the left byte in the Control
Array #1.
NUMBER OF CYCLES: RC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction potentially
affects Indicator I8.

PROGRAMMING CONVENTIONS: None

6-124

MICROINSTRUCTION SET

RCV RECEIVE FETCHED DATA RCV

MNEMONIC: RCV
OP CODE: 3D

FORMAT: 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1
o o0 1 1t 1 1 0 1 Dest RSU Control
0P Code; G, H, & | Fields J Field K Field

GIM2284
SUMMARY: (PM Bus) — RJ or R(SR14 - 11)

OPERATION: A word (32 bits) of data is transferred from the PM
Bus to RSU when that data is available. Until the data is available,
the Processor pipeline is halted. A trap or an interrupt will also
unlock the pipeline. If bit 2 in the K FIELD is off, the destination
RSU is specified by the J FIELD. If bit 2 in the K FIELD is on, the
destination RSU is specified by bits 14-11 of the State Register.

RCV is used in conjunction with Fetch instructions and TIES
from Scratch Pad. On Virtual Fetches (AT on) the destination RSU
must be odd-numbered.

If bit 1 in the K FIELD is on, the address of the Destination
RSU (the J FIELD) will be loaded into bits 14-11 of the State
Register provided AT is on.

RCV instruction remains frozen in the pipeline until the DIE signal

NUMBER OF CYCLES: RCV is a multi-cycle instruction. The l
is asserted.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: K FIELD control bits 1 and
2 must never be set on together.

6-125

MICROINSTRUCTION SET

RETURN ON INDICATOR BIT
RIBO PAIR ONES RIBO

MNEMONIC: RIBO
OP CODE: 64

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Jump Bit Pair | Bit Pair
0 1 1 0 0 1 0 OO npgegister | Selctr [Mask

0P Code; G, H, & | Fields J Field K Field

GIM2258

SUMMARY: If condition (JRJ) — CR
Else execute next sequential instruction

OPERATION: This instruction is a conditional immediate jump.
Bits 04,03 of the K FIELD select the Indicator Bit Pair to be com-
pared against the Mask, bits 02,01 of the K FIELD. Refer to
“Condition Selector” in this chapter for an explanation of the Bit
Pair Selector and Mask, as well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The jump is formed by transferring the contents
of Jump Register specified by the J FIELD to the Control Register.

NUMBER OF CYCLES: RIBO is a three-cycle instruction if the
condition is met and a one-cycle instruction if not. If the condition is
met the two instructions following RIBO are not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-126

MICROINSTRUCTION SET

RETURN ON INDICATOR BIT
RIBZ PAIR ZEROS RIBZ

MNEMONIC: RIBZ
OP CODE: 66

FORMAT: 161514 13121110 9 8 7 6 5 4 3 2 1

Jump Bit Pair | Bit Pair

0 1 1 .0 0 1 1 0]0| Register | Selctr | Mask

0P Code; G, H, & | Fields J Field K Field

GIM2259

SUMMARY: If condition (JRJ) — CR
Else execute next sequential instruction

OPERATION: This instruction is a conditional immediate jump.
Bits 04,03 of the K FIELD select the Indicator Bit Pair to be com-
pared against the Mask, bits 02,01 of the K FIELD. Refer to “Condi-
tion Selector” in this chapter for an explanation of Bit Pair Selector
and Mask, as well as for the Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The jump is formed by transferring the contents
of the Jump Register specified by the J FIELD to the Control
Register.

NUMBER OF CYCLES: RIBZ is a three-cycle instruction if the
condition is met and a one-cycle instruction if the condition is not
met. If the condition is met, the two instructions following RIBZ
are not executed.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-127

MICROINSTRUCTION SET

RIZ RESET INDICATORS TO ZERO RIZ

MNEMONIC: RIZ
OP CODE: 9F

FORMAT: 16 15 14 13 121110 9 8 7 6 5 4 3 2 1

i 00 t 11 1 110 0 0 0 0O 0O

0P Code; G, H, & | Fields J & K Fields; Not Used

GIM2295

SUMMARY: 0 — 14,15, 16

OPERATION: Indicators I4, I5 and 16 in the Indicator Array are
set to zero.

NUMBER OF CYCLES: RIZ is a single-cycle operation.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 14, I5 and I6.

PROGRAMMING CONVENTIONS: None

6-128

MICROINSTRUCTION SET

RTl RESTORE FROM TRAPS/INTERRUPTS RTI

MNEMONIC: RTI
OP CODE: 91

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

Not Not
1 0 01 0 O 0 1 Used Control Used Control

OP Code; G, H, & | Fields J Field K Field

GIM2289

SUMMARY: (Restore FIFO) — CR

OPERATION: This instruction pops the top entry off the halted
Restore FIFO and loads it into the CR. It is used in a restore se-
quence to partially restore the FIFO. Three RTI instructions are re-
quired to complete the sequence and restart the FIFO.

The first RTI instruction has the K FIELD set to zero. The sec-
ond RTI instruction has bit 01 of the K FIELD set to a one which
turns off the Trap Indicator (if it was on) and turns on the Normal
Interrupt Enable. If another trap or interrupt is pending, then both
the Trap Indicator and the Normal Interrupt enable will be ap-
propriately set/reset during the next instruction. The third RTI has
bit 02 of the K FIELD set to a one, which restarts the clocking of
the FIFO and loads the skip count from bits 15,16 of Control Array
1 unless another interrupt or trap is pending.

In the Restore sequence the RTI instructions which have K02
set to a zero are executed with the FIFQ already stopped. However,
if an RTI instruction is executed with K02 equal to zero and the
FIFO is being clocked, the execution of that RTI will halt the FIFO.

The J FIELD control bits 06 and 05 are used when the RTI is
part of a Breakpoint Trap Routine which restores control to the in-
struction address at which the Breakpoint was detected.

J05: This bit is used to enable the reinforcing of the Break-
point which caused the trap or the clearing of the Break-
point. With this bit a zero, J06 has no effect and the same
Breakpoint will be re-executed.

J06: If JO5 is a one and J06 is a zero, then the Breakpoint at
the ISU location specified by the top entry on the Restore
FIFO will be cleared (reset). If JO5 is a one and J06 is a
one, then the Breakpoint at the specified ISU location will

6-129

MICROINSTRUCTION SET

be reinforced (set). RTI is effectively a delayed jump in-
struction.

NUMBER OF CYCLES: RTI is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-130

MICROINSTRUCTION SET

S STORE S

MNEMONIC: S
OP CODE: 15

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

O 0 0 1 0 1 0 1 Write Tags Addr Data RSUs

OP Code; G, H, & | Fields J Field K Field

GIM2143

SUMMARY: (RKE) — PM Bus
(RKO) — PM Bus

OPERATION: A word (32 bits) of data is transferred from the
Data (odd numbered) RSU specified by the K FIELD to local
memory using the virtual address (AT on) or the real address (AT
off) in the address (even numbered) RSU specified by the K FIELD.

The Memory Write Tags to be enabled are specified by the J
FIELD:

Write Tag for Byte 0 - JO8
Write Tag for Byte 1 - JO7
Write Tag for Byte 2 - J06
Write Tag for Byte 3 - J05

If the entire J FIELD is set to zero, the Write Tags are supplied
by the contents of the MARS6 Write Tag Register.

NUMBER OF CYCLES: SR is a single-cycle instruction, but the
PM Bus is used for up to four cycles (for a partial virtual store).
Therefore, the instructions following S will be suspended if they at-
tempt to access the PM Bus while the store is completing.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-131

MICROINSTRUCTION SET

SA STORE AND AUGMENT SA

MNEMONIC: SA
OP CODE: 16

FORMAT: 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
00 0 1 0 1 1 0 Write Tags Addr RSU
OP Code; G, H, & | Fields J Field K Field

GIM2144

SUMMARY: (RKE) — PM Bus
(RKE) + 4 — RKE
(RKO) — PM Bus

OPERATION: A word (32 bits) of data is transferred from the
Data (odd numbered) RSU specified by the K FIELD to local
memory using the virtual address (AT on) or the real address (AT
off) in the address (even numbered) RSU specified by the K FIELD.
The address is augmented by four and loaded back into the Address
RSU.

The Memory Write Tags to be enabled are specified by the J
FIELD:

e Write Tag for Byte 0 - JO8
e Write Tag for Byte 1 - JO7
e Write Tag for Byte 2 - J06
e Write Tag for Byte 3 - J05

If the entire J FIELD is set to zero, the Write Tags are supplied
by the contents of the MARS6 Write Tag Register.

NUMBER OF CYCLES: SA is a single-cycle instruction, but the
PM Bus is used for up to four cycles (for a partial virtual store).
Therefore the instructions following SA will be suspended if they at-
tempt to access the PM Bus while the store is completing.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-132

MICROINSTRUCTION SET

SB SUBTRACT BYTE SB

MNEMONIC: SB
OP CODE: C1

FORMAT: 16 15 14 13121110 9 8 7 6 5 4 3 2 1

Source
Source Source
11 0 0 0 1t 1 1| Dest Dest | Source | “poyy

RSU RSU
RSU Byte Byte
OP Code; G, H, & I Fields J Field K Field

GiM2228
SUMMARY: (RJ-B)-(RK-B)— RJ-B
OPERATION: A byte from the RSU specified by the K FIELD is
binarily subtracted from a byte from the RSU specified by the J
FIELD. The result replaces the byte in the RSU specified by the J
FIELD.
NUMBER OF CYCLES: SB is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, I2, 13, and 14.

PROGRAMMING CONVENTIONS: None

6-133

MICROINSTRUCTION SET

SBC SUBTRACT BYTE WITH CARRY SBC

MNEMONIC: SBC
OP CODE: C9

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

Source Source

Dest | source | “Rsy

RSU | R
Byte SU | Byte

Source
11 0 0 1 0 0 1 Dest
RSU

0P Code; G, H, & | Fields J Field K Field

GIM2229
SUMMARY: (RJ-B)-(RK-B)+C — RJ-B
OPERATION: A byte from RSU specified by the K FIELD is
binarily subtracted from a byte from the RSU specified by the J
FIELD. The Carry Indicator (I4) is binarily added to the least
significant bit in the operation. The results replace the byte in the

RSU specified by the J FIELD. A borrow as a result of the subtrac-
tion will set 14 OFF, no borrow will set 14 ON.

NUMBER OF CYCLES: SBC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, 12, 13, and I4.

PROGRAMMING CONVENTIONS: None

6-134

MICROINSTRUCTION SET

SBL SUBTRACT BYTE LITERAL SBL

MNEMONIC: SBL
OP CODE: DE

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Source | Source

1 Dest it |
1 0O 1 1 1 1 O Dest RSU Digit Literal

RSU | Byte

OP Code; G, H, & | Fields J Field K Field

GimM2227
SUMMARY: (RJ-B)-K — RJ-B
OPERATION: A byte from RSU specified by the J FIELD is
decremented by the digit literal in the K FIELD. The results replace
the byte in the RSU specified by the J FIELD.
NUMBER OF CYCLES: SBL is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, 12, I3, and 14.

PROGRAMMING CONVENTIONS: None

6-135

MICROINSTRUCTION SET

SC SET CONTROLS SC

MNEMONIC: SC
OP CODE: 94

FORMAT: 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1
10 01 01t 0O Byte Literal
OP Code; G, H, & | Fields J & K Fields

GIM2291

SUMMARY: (CA-LB)ORJK — CA-LB

OPERATION: The left byte in the Control Array #1 (bits 16-09) is
logically ORed with the byte literal in the J and K FIELDS. The
result replaces the left byte in the Control Array #1.

NUMBER OF CYCLES: SC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction potentially
affects Indicator I8.

PROGRAMMING CONVENTIONS: None

6-136

MICROINSTRUCTION SET

SCO SET CARRY TO ONE SCO

MNEMONIC: SCO
OP CODE: 9E

FORMAT: 16 151413121110 9 8 7 6 65 4 3 2 1

10011 1t 1 0]J]O0 OO OOOTOTDO

OP Code; G, H, & | Fields J & K Fields; Not Used

GIM2294

SUMMARY: 1 — I4

OPERATION: The Carry Indicator (I4) in the Indicator Array is
set to a one.

NUMBER OF CYCLES: SCO is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I4.

PROGRAMMING CONVENTIONS: None

6-137

MICROINSTRUCTION SET

SD STORE AND DECREMENT SD

MNEMONIC: SD
OP CODE: 17

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
000 1t 0 1 1 1 Write Tags Addr RSU
OP Code; G, H, & | Fields J Field K Field

GIM2145A

SUMMARY: (RKE) — PM Bus
(RKE) -4 — RKE
(RKO) — PM Bus

OPERATION: A word (32 bits) of data is transferred from the
Data (odd numbered) RSU corresponding to the even numbered
RSU specified by the K FIELD to local memory using the virtual
address (AT on) or the real address (AT off) in the Address RSU.
The address is decremented by four and loaded back into the Ad-
dress RSU.

The Memory Write Tags to be enabled are specified by the J
FIELD:

¢ Write Tag for Byte 0 - JO8
e Write Tag for Byte 1 - JO7
e Write Tag for Byte 2 - J06
* Write Tag for Byte 3 - J05

If the entire J FIELD is set to zero, the Write Tags are supplied
by the contents of the MARS6 Write Tag Register.

NUMBER OF CYCLES: SD is a single-cycle instruction, but the
PM Bus is used for up to four cycles (for a partial virtual store).
Therefore the instructions following SD will be suspended if they at-
tempt to access the PM Bus while the store is completing.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-138

MICROINSTRUCTION SET

SETIA IBM SETUP ASSIST A SETIA

MNEMONIC: SETIA
OP CODE: 2E

FORMAT: 16 1514 13 121110 9 8 7 6 5 4 3 2 1
O 01 o 1t 1 1 O Dest RSU Source RSU
OP Code; G, H, & | Fields J Field K Field

GIM2276

SUMMARY: (RK - H) — SUR2, SPTR2 DISPLACEMENT
— RSU-J

OPERATION: The Secondary Setup Register (SUR2 16-01) is
loaded from either the left or the right halfword of the RSU
specified by the K FIELD as determined by the MARS7 Byte
Pointers (the K FIELD must specify RSU15). Scratch Pad Pointer
#2 is loaded from the “B”’ field of the Virtual Command.

~ The Displacement field in the Virtual Command is transferred
to the RSU specified by the J FIELD. The MARS7 Byte Pointers
are incremented by two.

NUMBER OF CYCLES: SETIA is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None .

PROGRAMMING CONVENTIONS: None

6-139

MICROINSTRUCTION SET

SETNA NVM SETUP ASSIST A SETNA

MNEMONIC: SETNA
OP CODE: 2F

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

o o1t 0 1 1 1 1{ DestRSU |1 1 1 1

.) . Source RSU
OP Code; G, H, & | Fields J Field K Field = 15

GIM2278A

SUMMARY: (RK - H) — SUR2, SPTR2

OPERATION: The Secondary Setup Register (SUR2 16-01) is
loaded from either the left or the right halfword of the RSU
specified by the K FIELD as determined by the MARS7 Byte
Pointers (the K FIELD must designate RSU15). Scratch Pad
Pointer #2 is loaded except for RI Formats.

If the RI Format, the Virtual Indicators are matched against
those bits that are true in the ‘““C’’ FIELD of the Virtual Instruction
(SURL 04-01). If a match exists on any ones in the “C’’ FIELD, the
internal Condition Code Match Indicator (I6) is set otherwise, it is
reset. The Branch Offset (SUR2 16-01) is transferred to the RSU
specified by the J FIELD. If bit 16 of SUR2 is a zero, then zeros are
loaded into the upper half of RSU-J. If bit 16 is a one, then ones are
loaded into the upper half of RSU-J. The MARS7 Byte Pointers are
incremented by 2.

If the RM or MM Formats, the Displacement (SUR2 12-01) is
transferred to the RSU specified by the J FIELD. The MARS7
Byte Pointers are incremented by 2.

If the RR Format is used and SETNA is executed, the results
are predictable but not specified.

NUMBER OF CYCLES: SETNA is a single-cycle instruction.

EFFECT ON VIRTUAL INDICATOR ARRAY: This instruction
affects Virtual Indicator I16.

PROGRAMMING CONVENTIONS: None

6-140

MICROINSTRUCTION SET

SETSX SETUP SIGN EXTENSION SETSX

MNEMONIC: SETSX
OP CODE: 9A

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

1t 0 01t 1 0 1 0j0 0 0 O Dest RSU

0P Code; G, H, & | Fields J Field; Not Used K Field

GIM2279

SUMMARY: (SUR216-01) — RK16-01,if SUR216=1 then
1 — RK32-17;if SUR216=0then0 — RK 32 -
17

OPERATION: The contents of Setup Register #2 (SUR2 16-01)
are transferred into the least significant sixteen bits of the RSU
specified by the K FIELD. SUR2 bit 16 is tested. If SUR2 bit 16 isa
zero, then zeros are transferred into the most significant sixteen
bits of RSU-K. If SUR2 bit 16 is a one, then ones are transferred in-
to the most significant sixteen bits of RSU-K.

NUMBER OF CYCLES: SETSX is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-141

MICROINSTRUCTION SET

S F SUBTRACT FIELD S F

MNEMONIC: SF
OP CODE: 41

FORMAT: 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1

6 1 0 o0 o0 0 0 11t OO0 11 O 1 1

OP Code; G, H, & | Fields MARS4 Data RSU | MARS5 Data RSU
J Field = 9 K Field = 11

GIM2232

SUMMARY: (RJ - B) - (RK - B) + C — R13; decrement Byte
Pointers; decrement Tally Register; set M#OF if
word boundary

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from the MARS5 Data
Register specified by the K FIELD and the MARS5 Byte Pointers
is subtracted binarily from a byte from the MARS4 Data Register
specified by the J FIELD and the MARS4 Byte Pointers. The result
is placed in the byte in the MARS6 Data Register (RSU138) specified
by the MARS6 Byte Pointers. Following the subtraction, the Byte
Pointers are decremented by one, and if one of the Byte Pointers
crossed the word boundary, the corresponding MARS Overflow
Flag (M#OF) will be set. The Tally Register is decremented by one
and the Direction Indicator Bit in the Field Array is set to a one.

NUMBER OF CYCLES: SF is a conditional multi-cycle instruc-
tion (maximum of 4 cycles) that holds in the execution stage of the
pipeline until a MARS overflow occurs or the Tally Register equals
zero.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I4.

PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding SF must not alter the Tally Register or the MARS Ad-
dress Registers used by SF.

6-142

MICROINSTRUCTION SET

SI BO SKIP ON INDICATOR BIT PAIR ONES Sl BO

MNEMONIC: SIBO
OP CODE: B8

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 0 1 1 1 0 o ofBthariBiPario o o o
0P Code; G, H, & | Fields J Field K Field; Not Used
GIM2311
SUMMARY: If condition, skip next sequential instruction;

Else, execute next sequential instruction.

OPERATION: This instruction conditionally causes the next in-
struction in the pipeline to be skipped. Bits 08,07 of the J FIELD
select the Indicator Bit Pair to be compared against the Mask, bits
06,05 of the J FIELD. Refer to “Condition Selector” in this chapter
for an explanation of Bit Pair Selector and Mask, as well as for the
Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The skip is executed by voiding the next instruc-
tion in the pipeline.

NUMBER OF CYCLES: SIBO is a single-cycle instruction if the
condition is not met.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: SIBO must only be used to
skip single word instructions.

6-143

MICROINSTRUCTION SET

SIBZ skiponiNDICATOR BIT PAIR ZEROS SIBZ

MNEMONIC: SIBZ
OP CODE: B9

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit Pair | Bit Pair
Selctr | Mask 0 000

—_

1 0 1 1 1 0 O

0P Code; G, H, & I Fields J Field K Field; Not Used

GIM2312

SUMMARY: If condition, skip next sequential instruction;
Else, execute next sequential instruction.

OPERATION: This instruction conditionally causes the next in-
struction in the pipeline to be skipped. Bits 08,07 of the J FIELD
select the Indicator Bit Pair to be compared against the Mask bits
06,05 of the J FIELD. Refer to “Condition Selector” in this chapter
for an explanation of Bit Pair Selector and Mask, as well as for the
Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The skip is executed by voiding the next instruc-
tion in the pipeline.

NUMBER OF CYCLES: SIBZ is a single-cycle instruction if the
condition is not met.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: SIBZ must only be used to
skip single word instructions.

6-144

MICROINSTRUCTION SET

SL STORE LITERAL SL

MNEMONIC: SL
OP CODE: 18-1B

FORMAT: 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
0 00 1 1 0 Literal Addr Data RSU
OP Code; G & H Fields 1 & J Fields K Field

GIM2146A

SUMMARY: 1 — PMBUS 24-10
0 — PMBUS 09
I,J — PMBUS 08-03
O — PMBUS 02, 01
(RK) — PM Bus

OPERATION: A word (32 bits) of data is transferred from the
RSU specified by the K FIELD to local memory using the real
memory address formed by concatenating ones to the right-justified
literal in the I, J FIELDS. The real address is a word address (0 mod
4) accessing the first 64-words of local memory.

NUMBER OF CYCLES: SL is a single-cycle instruction, but the
PM Bus is used for two cycles. Therefore, the instruction following
SL will be suspended if it attempts to access the PM Bus.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-145

MICROINSTRUCTION SET

SPDB sustracrrackeppecimaLyrE SPDB

MNEMONIC: SPDB
OP CODE: CF

FORMAT: 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1

Source | Source Source

Dest Source
11 0 0 1 1 1 1§ Dest RSU
RSU | RSU | RSU T gl

Byte

0P Code; G, H, & | Fields J Field K Field

GIM2230
SUMMARY: (RJ-B)-(RK-B) — RJ-B
OPERATION: A byte from the RSU specified by the K FIELD is
subtracted packed decimally from a byte from the RSU specified by
the J FIELD. The result replaces the byte in the RSU specified by
the J FIELD.
NUMBER OF CYCLES: SPDB is a single-cycle operation.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, 12, I3, I4 and I5.

PROGRAMMING CONVENTIONS: None

6-146

MICROINSTRUCTION SET

SUBTRACT PACKED DECIMAL
SPDBC

SPDBC BYTE WITH CARRY

MNEMONIC: SPDBC
OP CODE: D1

FORMAT: 16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Source | Source Source
1 1 0 1 0 0 0 1| Dest | Dest | souce| Rsu

RSU
RSU | BS0 | RSU | Byte

0P Code; G, H, & | Fields J Field K Field

GIM2231
SUMMARY: (RJ-B)-(RK-B)+ C — (RJ - B)
OPERATION: A byte from the RSU specified by the K FIELD is
subtracted packed decimally from a byte from the RSU specified by
the J FIELD; the result is added to the Carry Bit (I4) from a

previous instruction. The result replaces the byte in the RSU
specified by the J FIELD.

NUMBER OF CYCLES: SPDBC is a single-cycle operation.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 11, 12, I3, I4 and I5.

PROGRAMMING CONVENTIONS: None

6-147

MICROINSTRUCTION SET

SPDF sustracrpackeppecivaLrieo SPDF

MNEMONIC: SPDF
OP CODE: 47

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o 1 0 O O 1 1 11 0O 0 1 1 0 1 1

. " MARS4 Data RSU | MARS5 Data RSU

0P Code; G, H, & | Fields J Field = 9 K Field = 11

GIM2233

SUMMARY: (RJ-B)- (RK - B) + C — R13; decrement Byte
Pointer; decrement Tally Register; set M#OF if
word boundary

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from the MARS5 Data
Register specified by the K FIELD and the MARS5 Byte Pointers
is subtracted packed decimally from a byte from the MARS4 Data
Register specified by the J FIELD and the MARS4 Byte Pointers.
The result is placed in the byte in the MARS6 Data Register
(RSU13) specified by the MARS6 Byte Pointers. Following the sub-
traction, the Byte Pointers are decremented by one, and if one of the
Byte Pointers crossed the word boundary, the corresponding
MARS Overflow Flag (M#OF) will be set. The Tally Register is
decremented by one and the Direction Indicator Bit in the Field Ar-
ray is set to a one.

NUMBER OF CYCLES: SPDF is a conditional multi-cycle in-
struction (maximum of 4 cycles) that holds in the execution stage of
the pipeline until a MARS overflow occurs or the Tally Register
equals zero.

EFFECT ON INDICATOR ARRAY: This instruction affects 14,
and I5.

PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding SPDF must not alter the Tally Register or the MARS
Address Registers used by SPDF.

6-148

MICROINSTRUCTION SET

SR STORE REAL SR

MNEMONIC: SR
OP CODE: 14

FORMAT: 16 15 14 13121110 9 8 7 6 5 4 3 2 1

o 0 o1 0 1t 0 O Write Tags Addr Data RSUs

OP Code; G, H, & | Fields J Field K Field

GIM2142

SUMMARY: (RKE) — PM Bus
(RKO) — PM Bus

OPERATION: A word (32 bits) of data is transferred from the
Data (odd numbered) RSU specified by the K FIELD to local
memory using the real address in the address (even numbered) RSU
specified by the K FIELD.

The Memory Write Tags to be enabled are specified by the J
FIELD:

Write Tag for Byte 0 - JO8
Write Tag for Byte 1 - JO7
Write Tag for Byte 2 - J06
Write Tag for Byte 3 - J05

If the entire J FIELD is set to zero, the Write Tags are supplied
by the contents of the MARS6 Write Tag Register.

NUMBER OF CYCLES: SR is a single-cycle instruction, but the
PM Bus is used for up to three cycles (for a partial real store).
Therefore, the instructions following SR will be suspended if they
attempt to access the PM Bus while the store is completing.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-149

MICROINSTRUCTION SET

SRBO skironrecisTER BiTPATRONES SRBO

MNEMONIC: SRBO
OP CODE: C4

FORMAT: 16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1
N N Source
Bit Pair | Bit Pair | Source
t1 000 100 Selctr | Mask RSU gstu
yte
OP Code; G, H, & | Fields J Field K Field
GIM2273

SUMMARY: If condition, skip next sequential instruction;
Else, execute next sequential instruction.

OPERATION: This instruction conditionally causes the next in-
struction in the pipeline te be skipped. The K FIELD selects the
RSU byte to be tested. Bits 08,07 of the J FIELD select the Re-
gister Bit Pair to be compared against the Mask, bits 06,05 of the
J FIELD. Refer to “Condition Selector” in this chapter for an ex-
planation of Bit Pair Selector and Mask, as well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The skip is executed by voiding the next instruc-
tion in the pipeline.

NUMBER OF CYCLES: SRBO is a single-cycle instruction if the
condition is not met.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: SRBO must only be used to
skip single-cycle instructions.

6-150

MICROINSTRUCTION SET

SRBZ skiroNREGISTER BIT PAIR ZEROS SRBZ

MNEMONIC: SRBZ
OP CODE: C5

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 0 0 0 1 o 1 [BitPar)BiPar Source S(F){%rlﬁe

Selctr Mask RSU Byte

0P Code; G, H, & | Fields J Field K Field

GIM2274

SUMMARY: If condition, skip next sequential instruction;
Else, execute next sequential instruction.

OPERATION: This instruction conditionally causes the next in-
struction in the pipeline to be skipped. The K FIELD selects the
RSU byte to be tested. Bits 08,07 of the J FIELD select the Re-
gister Bit Pair to be compared against the Mask, bits 06,05 of the
J FIELD. Refer to “Condition Selector” in this chapter for an ex-
planation of Bit Pair Selector and Mask, as well as for the Test Bits.

This instruction tests for zeros in the Test Bits. A logical zero
satisfies the test. The skip is executed by voiding the next instruc-
tion in the pipeline

NUMBER OF CYCLES: SRBZ is a single-cycle instruction if the
condition is not met.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: SRBZ must only be used to
skip single-cycle instructions.

6-151

MICROINSTRUCTION SET

SRB30 skironrecisTER BYTE3ONESs SRB30O

MNEMONIC: SRB30O
OP CODE: 60

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

Bit Pair. | Bit Pair
0 1 1 0 0 0 0 0ggecton| eat| Source RSU

OP Code; G, H, & | Fields J Field K Field

GIM1001,

SUMMARY: If condition, skip next sequential instruction;
Else, execute next sequential instruction.

OPERATION: This instruction conditionally causes the next in-
struction in the pipeline to be skipped. The K FIELD selects the
RSU from which byte 3 is to be tested. Bits 08 and 07 of the J
FIELD select the Register Bit Pair to be compared against the Mask
(bits 06 and 05 of the J FIELD). Refer to “Condition Selector” in
this chapter for an explanation of Bit Pair Selector and Mask, as
well as for the Test Bits.

This instruction tests for ones in the Test Bits. A logical one
satisfies the test. The skip is executed by voiding the next instruc-
tion in the pipeline.

NUMBER OF CYCLES: SRB3O is a single-cycle instruction, if
the condition is not met.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: SRB30 must only be used
to skip single-cycle instructions.

6-152

MICROINSTRUCTION SET

SRE SKIP ON REGISTERS EQUAL SRE

MNEMONIC: SRE
OP CODE: C3

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Source Source

1 1 0 0 0 0 1 1 |Souce] pgy |Source| RSy

RSU | Byte | RSU | Byte

0P Code; G, H, & | Fields J Field K Field

GIM2271

SUMMARY: If condition, skip next sequential instruction;
Else, execute next sequential instruction.

OPERATION: The bytes of data addressed by the J and K
FIELDS are accessed and binarily compared, if the two bytes are
equal the next instruction is not executed. The contents of the
registers remain unchanged.

NUMBER OF CYCLES: SRE is a single-cycle instruction, if the
condition is not met.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: SRE must only be used to
skip single-cycle instructions.

6-153

MICROINSTRUCTION SET

SRU SKIP ON REGISTERS UNEQUAL SRU

MNEMONIC: SRU
OP CODE: C2

FORMAT: 16 156 14 13 12 1110 9 8 7 6 5 4 3 2 1

Source Source
1.1 .0 0 0 0 1 ofSpee] psy Source | “psuy
Byte Byte

OP Code; G, H, & | Fields J Field K Field

GiM2272

SUMMARY: If condition, skip next sequential instruction;
Else, execute next sequential instruction.

OPERATION: The bytes of data addressed by the J and K
FIELDS are accessed and binarily compared, if the two bytes are
unequal the next instruction is not executed. The contents of the
registers remain unchanged.

NUMBER OF CYCLES: SRU is a single-cycle instruction if the
condition is not met.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: SRU must only be used to
skip single-cycle instructions.

6-154

MICROINSTRUCTION SET

SUBTRACT UNPACKED DECIMAL
SUDF FIELD SUDF

MNEMONIC: SUDF
OP CODE: 49

FORMAT: 16 15 14 13 121110 9 8 7 6 5 4 3 2 1
0o 1t o 0O 1 0 O 1}1 0O 0 1 1 0 1 1

X - MARS4 Data RSU | MARS5 Data RSU

0P Code; G, H, & I Fields I Field = 9 K Field = 11

GIM2234

SUMMARY: (RJ - B)-(RK - B) + C — R13; decrement Byte
Pointers; decrement Tally Register; set M#OF if
word boundary

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, the low-order digit from the
MARSS5 Data Register specified by the K FIELD and the MARS5
Byte Pointers is subtracted decimally from the low-order digit from
the MARS4 Data Register specified by the J FIELD and the
MARS4 Byte Pointers. The result is placed in the low-order digit in
the MARS6 Data Register (RSU13) specified by the MARS6 Byte
Pointers. The Hex value 0011 is loaded into the high-order digit as
the ASCII zone character. Following the subtraction, the Byte
Pointers are decremented by one, and if one of the Byte Pointers
crossed the word boundary, then the corresponding MARS Over-
flow Flag (M#OF) will be set. The Tally Register is decremented by
one and the Direction Indicator Bit in the Field Array is set to a one.

NUMBER OF CYCLES: SUDF is a conditional multi-cycle in-
struction (maximum of 4 cycles) that holds in the execution stage of
the pipeline until a MARS overflow occurs or the Tally Register
equals zero.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I4 and I6.

PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding SUDF must not alter the Tally Register or the MARS
Address Registers used by SUDF.

6-155

MICROINSTRUCTION SET

SW SUBTRACT WORD SW

MNEMONIC: SW
OP CODE: 4B

FORMAT: 161514 13121110 9 8 7 6 5 4 3 2 1

0O 1 0 0 1 0 1 1| Source DestRSU Source RSU

OP Code; G, H, & | Fields J Field K Field

GIM2224

SUMMARY: (RJ)-(RK) — RJ
OPERATION: A word from the RSU specified by the K FIELD is
subtracted binarily from a word from the RSU specified by the J

FIELD. The result replaces the operand in the RSU specified by the
J FIELD.

NUMBER OF CYCLES: SW is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, I2, I3, 14, and I5.

PROGRAMMING CONVENTIONS: None

6-156

MICROINSTRUCTION SET

SWAR suirr worp arrrameTic ricar SWAR

MNEMONIC: SWAR
OP CODE: A0

FORMAT: 16 1514 1312 1110 9 8 7 6 5 4 3 2 1

1 0 1 0 O O O O] Source Register Dest Register

0P Code; G, H, & | Fields J Field K Field

GIM2195

SUMMARY: (RJ) SHIFTED RIGHT — RK

OPERATION: The contents of the source RSU (32 bits) are ac-
cessed and shifted right one bit. The least significant bit (01) is
transferred to 14 in the Indicator Array (Carry). The most significant
bit (32), which is the sign bit, remains in the 32nd bit position as
well as being shifted to the 31st bit position.

NUMBER OF CYCLES: SWAR is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 14.

PROGRAMMING CONVENTIONS: None

6-157

MICROINSTRUCTION SET

SWC SUBTRACT WORD WITH CARRY SWC

MNEMONIC: SWC
OP CODE: 4D

FORMAT: 16 1514 13121110 9 8 7 6 5 4 3 2 1

0O 1t 0 O 1 1 0O 1| Source DestRSU Source RSU

OP Code; G, H, & | Fields J Field K Field

GIM2223

SUMMARY: (RJ)-(RK)+ C — RJ

OPERATION: A word from the RSU specified by the K FIELD is
subtracted binarily from a word from the RSU specified by the J
FIELD. The Carry Indicator (I4) is binarily added to the least
significant bit of the adder. The result replaces the operand in the
RSU specified by the J FIELD. A borrow as a result of the subtrac-
tion will set 14 OFF, no borrow will set 14 ON.

NUMBER OF CYCLES: SWC is a single-cycle instruction

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I1, I2, 13, I4, and I5.

PROGRAMMING CONVENTIONS: None

6-158

MICROINSTRUCTION SET

SWCL suirrworpcircuLarLerr SWCL

MNEMONIC: SWCL
OP CODE: A5

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

1 0 1 0 O 1 O 1 | Source Register Dest Register

0P Code; G, H, & | Fields J Field K Field

GIM2194

SUMMARY: (RJ) SHIFTED LEFT — RK

OPERATION: The contents of the source RSU (32 bits) are ac-
cessed and shifted left one bit. The most significant bit (32) is
shifted to the least significant bit position (1). The contents of the
source register remain unchanged.

NUMBER OF CYCLES: SWCL is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-159

MICROINSTRUCTION SET

SWL SUBTRACT WORD WITH LITERAL SWL

MNEMONIC: SWL
OP CODE: AF

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

1 0 1 0 1 1 1 1| Source DestRSU Digit Literal

0P Code; G, H, & | Fields J Field K Field

GIM2225
SUMMARY: (RJ)-K — RJ
OPERATION: A word from the RSU specified by the J FIELD is
decremented by the digit literal in the K FIELD. The result replaces
the word in the RSU specified by the J FIELD.
NUMBER OF CYCLES: SWL is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicators I1, I2, I3, I4, and I5.

PROGRAMMING CONVENTIONS: None

6-160

MICROINSTRUCTION SET

SWLL SHIFT WORD LOGICAL LEFT

MNEMONIC: SWLL
OP CODE: Al

FORMAT:; 16 15 14 13 12 11 10 9

SWLL

8 7 6 5 4 3 2 1

1 01 0 0O 0 O

1

Source RSU

Dest RSU

0P Code; G, H, & | Fields

J Field

K Field

SUMMARY: (RJ) SHIFTED LEFT — RK

GIM2190

OPERATION: The contents of the source RSU (32 bits) are ac-
cessed and shifted left one bit. The least significant bit (01) becomes

dicator (I4) in the Indicator Array. The contents of the source regis-

a zero. The most significant bit (32) is transferred to the Carry In- |

ter remain unchanged.

NUMBER OF CYCLES: SWLL is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY:

dicator 14.

PROGRAMMING CONVENTIONS: None

This instruction affects In-

6-161

MICROINSTRUCTION SET

SWLLC

SHIFT WORD LOGICAL LEFT
WITH CARRY

MNEMONIC: SWLLC

OP CODE:

FORMAT:

SUMMARY:

A2

SWLLC

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 01 0 0 0 1

O | Source Register

Dest Register

0P Code; G, H, & | Fields

J Field

K Field

(RJ) SHIFTED LEFT — RK

GIM2191

OPERATION: The contents of the source RSU (32 bits) are ac-
cessed and shifted left one bit. The least significant bit (01) is set ac-
cording to the previous value of 14 in the Indicator Array. The most

I significant bit (32) is transferred to I4 in the Indicator Array (Carry).
The contents of the source register remain unchanged.

NUMBER OF CYCLES: SWLLC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY:

dicator I4.

This instruction affects In-

PROGRAMMING CONVENTIONS: None

6-162

MICROINSTRUCTION SET

SUBTRACT WORD LITERAL
SWLNI NO INDICATOR CHANGE SWLNI

MNEMONIC: SWLNI
OP CODE: 9D

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 0 O 1 1 1 0 1| Source/Dest RSU Digit Literal
oP Cod_e; G, H, & | Fields J Field K Field

GIM2226

SUMMARY: (RJ)-K — RJ

OPERATION: A word from the RSU specified by the J FIELD is
decremented by the digit literal in the K FIELD. The result replaces
the word in the RSU specified by the J FIELD.

NUMBER OF CYCLES: SWLNI is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-163

MICROINSTRUCTION SET

SWLR surrrworprocicaLricar SWLR

MNEMONIC: SWLR
OP CODE: A3

FORMAT: 161514131211 10 9 8 7 6 5 4 3 2 1

1 0 1 0 0 O 1 1| Source Register Dest Register

OP Code; G, H, & | Fields J Field K Field

GIM2192

SUMMARY: (RJ) SHIFTED RIGHT — RK

OPERATION: The contents of the source RSU (32 bits) are ac-
cessed and shifted right one bit. The most significant bit (32) is set
to a zero. The least significant bit (01) is transferred to 14 in the In-
dicator Array (Carry). The contents of the source register remain
unchanged.

NUMBER OF CYCLES: SWLR is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I4.

PROGRAMMING CONVENTIONS: None

6-164

MICROINSTRUCTION SET

SHIFT WORD LOGICAL RIGHT
SWLRC WITH CARRY SWLRC

MNEMONIC: SWLRC
OP CODE: A4

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

1 0 1 0 O 1 0 O] Source Register Dest Register

0P Code; G, H, & I Fields J Field K Field

GIM2193A
SUMMARY: (RJ) SHIFTED RIGHT — RK
OPERATION: The contents of the source RSU (32 bits) are ac-
cessed and shifted right one bit. The most significant bit (32) is set
according to the previous value of I4 in the Indicator Array. The
least significant bit (1) is transferred to 14 in the Indicator Array
(Carry). The contents of the source register remain unchanged. |

NUMBER OF CYCLES: SWLRC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 14.

PROGRAMMING CONVENTIONS: None

6-165

MICROINSTRUCTION SET

TB TRANSFER BYTE TB

MNEMONIC: TB
OP CODE: CD

FORMAT: 16 1514 13121110 9 8 7 6 5 4 3 2 1

Source Dest
1 1 0 0 1 1 o 1|Souce gy | Dest | pgy
Byte Byte

0P Code; G, H, & I Fields J Field K Field

GIM2153
SUMMARY: (RJ-B) —RK-B
OPERATION: A byte from the RSU specified by the J FIELD is
transferred to the byte in the RSU specified by the K FIELD. The
other three bytes in RSU-K are not affected.
NUMBER OF CYCLES: TB is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-166

MICROINSTRUCTION SET

TBF TRANSFER BYTE TO FIELD TBF

MNEMONIC: TBF
OP CODE: BF

FORMAT: 161514131211 10 9 8 7 6 5 4 3 2 1
Source
10111111Sg‘§ﬁensu11o1
Byte

MARS6 Data RSU

0P Code; G, H, & | Fields J Field K Field = 13

GIM2168
SUMMARY: (RJ-B) — RK-B
OPERATION: A byte from the RSU specified by the J FIELD is
transferred to the byte in the MARS6 Data Register specified by
the K FIELD and the MARS6 Byte Pointers. The corresponding
MARSG6 Write Tag is set. The Tally Register is not used, the Byte
Pointers are not modified and the MARS6 Overflow Flag is not set.
NUMBER OF CYCLES: TBF is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-167

MICROINSTRUCTION SET

TRANSFER BYTE TO

TBFD FIELD DECREMENT TBFD
MNEMONIC: TBFD '

OP CODE: BC

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

Source
101111003;"%'3‘3 RSU |1 1 0 1
Byte
OP Code; G, H, & I Fields Jrild | MRRSO Data ASU
GIM2169

SUMMARY: (RJ - B) — RK - B; decrement Byte Pointers;
decrement Tally Register; set M60OF if word boun-
dary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, a byte from the RSU
specified by the J FIELD is transferred to the byte in the MARS6
Data Register specified by the K FIELD and the MARS6 Byte
Pointers. The corresponding MARS6 Write Tag is set. Following
the transfer, the Byte Pointers are decremented by one and the
MARSS6 Overflow Flag (M60F) is set if the Byte Pointers crossed
the word boundary. The Tally Register is decremented by one and
the Direction Indicator Bit in the Field Array is set to a one.

If the Tally Register decrements to zero, the MARS6 Overflow
Flag will be set if the Byte Pointers crossed the word boundary.

NUMBER OF CYCLES: TBFD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-168

MICROINSTRUCTION SET
TRANSFER BYTE TO
TBFDN noraiiyomawos TBFDN
MNEMONIC: TBFDN
OP CODE: BE

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

Source
1.0 1 1 1 1 1 oS sy |1 1 0 1
Byte

0P Code; G, H, & I Fields JField | MERSE Data ASU

GIM2170

SUMMARY: (RJ - B) — RK - B; decrement Byte Pointers; set
MS6OF if word boundary.

OPERATION: A byte from the RSU specified by the J FIELD is
transferred to the byte in the MARS6 Data Register specified by
the K FIELD and the MARS6 Byte Pointers. The corresponding
MARS6 Write Tag is set. Following the transfer, the Byte Pointers
are decremented by one and the MARS6 Overflow Flag (M60F) is
set if the Byte Pointers crossed the word boundary. The Direction
Indicator Bit in the Field Array is set to a one. This instruction does
not affect the Tally Register.

NUMBER OF CYCLES: TBFDN is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-169

MICROINSTRUCTION SET

TRANSFER BYTE TO
TBFI FIELD INCREMENT TBFI

MNEMONIC: TBFI
OP CODE: BD

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1
Source
10 1 1 1 1 0 1|SpgEelRSU |1 1 0 1
Byte
‘ - - MARS6 Data RSU
OP Code; G, H, & | Fields J Field oo Data B
GIM2173

SUMMARY: (RK - B) — RJ - B; increment Byte Pointers;
decrement Tally Register; set M#OF if word
boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, a byte from the RSU
specified by the J FIELD is transferred to the byte in the MARS6
Data Register specified by the K FIELD and the MARS6 Byte
Pointers. The corresponding MARS6 Write Tag is set. Following
the transfer, the Byte Pointers are incremented by one and the
MARSS6 Overflow Flag (M60OF) is set if the Byte Pointers crossed
the word boundary. The Tally Register is decremented by one and
the Direction Indicator Bit in the Field Array is set to a zero.

If the Tally Register decrements to zero, the MARS6 Overflow
Flag will be set if the Byte Pointers crossed the word boundary.

NUMBER OF CYCLES: TBFI is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-170

MICROINSTRUCTION SET

TRANSFER BYTE TO
FIELD INCREMENT
TBFIN NO TALLY CHANGE TBFIN
MNEMONIC: TBFIN
OP CODE: BB

FORMAT: 16 1514 13121110 9 8 7 6 5 4 3 2 1
Source
10 1 11 0 1 1SRy 11 1 0 1
Byte
. : ’ MARS6 Data RSU
0P Code; G, H, & | Fields J Field K Field = 13
GIM2171

SUMMARY: (RJ - B) — RK - B; increment Byte Pointers; set
M6OF if word boundary.

OPERATION: A byte from the RSU specified by the J FIELD is
transferred to the byte in the MARS6 Data Register specified by
the K FIELD and the MARS6 Byte Pointers. The corresponding
MARS6 Write Tag is set. Following the transfer, the Byte Pointers
are incremented by one and the MARS6 Overflow Flag (M60F) is
set if the Byte Pointers crossed the word boundary. The Direction
Indicator Bit in the Field Array is set to a zero. This instruction
does not affect the Tally Register.

NUMBER OF CYCLES: TBFIN is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-171

MICROINSTRUCTION SET

TF B TRANSFER FIELD TO BYTE T F B

MNEMONIC: TFB
OP CODE: 2B

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1
Dest

0 0 1 0 1 0 1 1| Dest RSU | MARS Data RSU
RSU Byte

OP Cade; G, H, & I Fields J Field g 10T

GIM2177
SUMMARY: (RK-B) — RJ-B

OPERATION: A byte from MARS# Data Register specified by
the K FIELD and the MARS# Byte Pointers is transferred to the
byte in the RSU specified by the J FIELD. The Tally Register is not
used, the Byte Pointers are not modified and the MARS# Overflow
Flag is not set.

NUMBER OF CYCLES: TFB is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-172

MICROINSTRUCTION SET
TRANSFER FIELD TO
TFBD BYTE DECREMENT TFBD
MNEMONIC: TFBD
OP CODE: 28

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1

Dest | Dest
o o1t 0 1 0 O O RSU SSU MARS Data RSU
yte

OP Code; G, H, & I Fields J Field o s

GIM2174

SUMMARY: (RK - B) — RJ - B; decrement Byte Pointers;
decrement Tally Register; set M#OF if word
boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, a byte from MARS# Data
Register specified by the K FIELD and the MARS# Byte Pointers
is transferred to the byte in the RSU specified by the J FIELD.
Following the transfer, the Byte Pointers are decremented by one
and the MARS# Overflow Flag (M#OF) is set if the Byte Pointers
crossed the word boundary. The Tally Register is decremented by
one and the Direction Indicator Bit in the Field Array is set to a one.

NUMBER OF CYCLES: TBBD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-173

MICROINSTRUCTION SET
TRANSFER FIELD TO
TFBDN NO TALLY CHANGE TFBDN
MNEMONIC: TFBDN
OP CODE: 2A

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Dest Dest
0O o1 o1 o t o RSU | MARS Data RSU
RSU B
yte
. ; . K Field =
0P Code; G, H, & | Fields J Field 9. 11, or 15

GIM2175

SUMMARY: (RK - B) — RJ - B; decrement Byte Pointers; set
M#OF if word boundary.

OPERATION: A byte from MARS# Data Register specified by
the K FIELD and the MARS# Byte Pointers is transferred to the
byte in the RSU specified by the J FIELD. Following the transfer,
the Byte Pointers are decremented by one and the MARS#
Overflow Flag (M#OF) is set if the Byte Pointers crossed the word
boundary. The Direction Indicator Bit in the Field Array is set to a
one. This instruction does not affect the Tally Register.

NUMBER OF CYCLES: TFBDN is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: TFBDN affects Indicator
I5 and I6.

PROGRAMMING CONVENTIONS: None

6-174

MICROINSTRUCTION SET

TRANSFER FIELD TO
TFBI BYTE INCREMENT TFBI

MNEMONIC: TFBI
OP CODE: 29

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Dest Dest
o 0 1 0 t 0 O 1 es RSU MARS Data RSU
RSU B
yte
R : : K Field =
0P Code; G, H, & | Field J Field 911, or 15
GIM2176

SUMMARY: (RJ - B) — RK - B; increment Byte Pointers;
decrement Tally Register; set M#OF if word
boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, a byte from MARS# Data
Register specified by the K FIELD and the MARS# Byte Pointers
is transferred to the byte in the RSU specified by the J FIELD.
Following the transfer, the Byte Pointers are incremented by one
and the MARS# Overflow Flag (M#OF) set if the Byte Pointers
crossed the word boundary. The Tally Register is decremented by
one and the Direction Indicator Bit in the Field Array is set to a
zero.
/
NUMBER OF CYCLES: TFBI is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-175

MICROINSTRUCTION SET

TRANSFER FIELD TO
BYTE INCREMENT

TFBIN NO TALLY CHANGE TFBIN
MNEMONIC: TFBIN
OP CODE: 3F
FORMAT: 161514131211 10 9 8 7 6 5 4 3 2 1
00 11 1 1 1 1| best E‘éﬁ MARS Data RSU
OP Code; G, H, & | Fields J Field g*f ﬁe'gr T

GIM2172

' SUMMARY: (RK-B) — RJ - B; increment Byte Pointers; set

M#OF if word boundary.

OPERATION: A byte from the MARS# Data Register specified
by the K FIELD and the MARS# Byte Pointers is transferred to
the byte in the RSU specified by the J FIELD. Following the
transfer, the Byte Pointers are incremented by one and the MARS#
Overflow Flag (M#OF) is set if the Byte Pointers crossed the word
boundary. The Direction Indicator Bit in the Field Array is set to a
zero. This instruction does not affect the Tally Register.

NUMBER OF CYCLES: TBFIN is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY:

dicator I5 and 16.

PROGRAMMING CONVENTIONS:

6-176

None

This instruction affects In-

MICROINSTRUCTION SET

TRANSFER FIELD TO
TFFD FIELD DECREMENT TFFD

MNEMONIC: TFFD
OP CODE: 26

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o 0 1 o 0 1 1 01 1 0 1 1 0 0 1
R : MARS6 Data RSU | MARS4 Data RSU
OP Code; G, H, & | Fields J Field = 13 « Field = 9
GIM2158

SUMMARY: (RK - B) — RJ - B; decrement Byte Pointers;
decrement Tally Register; set M#OF if word
boundary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from MARS4 Data
Register (RSU9) specified by the K FIELD and the MARS4 Byte
Pointers are transferred to the byte in the MARS6 Data Register
(RSU13) specified by the J FIELD and the MARS6 Byte Pointers.
Following the transfer, the Byte Pointers are decremented by one
and if either set of Byte Pointers crossed the word boundary, then
the corresponding MARS Overflow Flag (M#OF) will be set. The
Tally Register is decremented by one and the Direction Indicator
Bit in the Field Array is set to a one.

NUMBER OF CYCLES: TFFD is a conditional multi-cycle in-
struction (maximum of four cycles) that holds in the execution stage
of the pipeline until a MARS overflow occurs or the Tally Register
equals zero.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMINMG CONVENTIONS: The instruction immedi-

ately preceding TFFD must not alter the Tally Register or the
MARS Address Registers used by TFFD.

6-177

MICROINSTRUCTION SET
TRANSFER FIELD TO
TFFI FIELD INCREMENT TFFI
MNEMONIC: TFFI
OP CODE: 27

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 o0 1 0 0 1 1 111 1 0 { 10 0 1
. ; MARS6 Data RSU | MARS4 Data RSU
0P Code; G, H, & | Fields J Field = 13 K Field = 9
GIM2159

SUMMARY: (RK - B) — RJ - B; increment Byte Pointers; dec-
rement Tally Register; set M#OF if word bound-
ary.

OPERATION: If the Tally Register equals zero, the execution of
this instruction is voided. Otherwise, a byte from MARS4 Data
Register (RSUY) specified by the K FIELD and the MARS4 Byte
Pointers are transferred to the byte in the MARS6 Data Register
(RSU13) specified by the J FIELD and the MARS6 Byte Pointers.
Following the transfer, the Byte Pointers are incremented by one
and if either set of Byte Pointers crossed the word boundary, then
the corresponding MARS Overflow Flag (M#OF) will be set. The
Tally Register is decremented by one and the Direction Indicator
Bit in the Field Array is set to a zero.

NUMBER OF CYCLES: TFFI is a conditional multi-cycle in-
struction (maximum of four cycles) that holds in the execution stage
of the pipeline until a MARS overflow occurs or the Tally Register
equals zero.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: The instruction immediate-

ly preceding TFFI must not alter the Tally Register or the MARS
Address Registers used by TFFI.

6-178

MICROINSTRUCTION SET
TRANSFER FIELD TO
TFLHD Lerraavrworppecrement TFLHD
MNEMONIC: TFLHD
OP CODE: 22

FORMAT: 16 15 14 13 121110 9 8 7 6 5 4 3 2 1
o 01 0O 0 O 1 0 Dest RSU MARS Data RSU

. ; . K Field =

OP Code; G, H, & | Fields J Field 9,11 or 15

GIM2164

SUMMARY: (RK - H) — RJ - LH; decrement MARS Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, a halfword from the MARS
Data Register specified by the K FIELD and the MARS# Byte
Pointers is transferred to the left halfword of the RSU specified by
the J FIELD. Following the transfer, the Byte Pointers are
decremented by two and the MARS Overflow Flag (M#OF) set if the
Byte Pointers crossed the word boundary. The Tally is decremented
by two and the Direction Indicator Bit in the Field Array is set to a
one.

NUMBER OF CYCLES: TFLHD is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-179

MICROINSTRUCTION SET

TFLHI “Hatrworpincrement TFLHI
MNEMONIC: TFLHI
OP CODE: 23
FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1
0 0 1 0 0 O 1 1| DestRSU | MARS Data RSU
OP Code; G, H, & I Fields J Field g e TS
GM2165
SUMMARY: (RK - H) — RJ - LH; increment MARS Byte

Pointers; decrement Tally Register; set M#OF if

word boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, a halfword from the MARS
Data Register specified by the K FIELD and the MARS# Byte
Pointers is transferred to the left halfword of the RSU specified by
the J FIELD. Following the transfer, the Byte Pointers are in-
cremented by two and the Mars Overflow Flag (M#OF) set if the
Byte Pointers crossed the word boundary. The Tally Register is
decremented by two and the Direction Indicator Bit in the Field Ar-
ray is set to a zero.

NUMBER OF CYCLES: TFLHI is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY:

None

PROGRAMMING CONVENTIONS: None

6-180

MICROINSTRUCTION SET
TRANSFER FIELD TO RIGHT
TFRHD warrworpbpecrRement TFRHD

MNEMONIC: TFRHD
OP CODE: 24

FORMAT: 16 15 14 13 12 1110 9 8 7 6 65 4 3 2 1

o 0o 1t 0 o0 1 0 o0 Dest RSU MARS Data RSU

. ! ; K Field =
OP Code; G, H, & | Fields J Field 9,11 or 15

GIM2166

SUMMARY: (RK - H — RJ - RH; decrement MARS Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, a halfword from the MARS
Data Register specified by the K FIELD and the MARS# Byte
Pointers is transferred to the right halfword of the RSU specified by
the J FIELD. Following the transfer, the Byte Pointers are
decremented by two and the MARS Overflow Flag (M#OF) is set if
the Byte Pointers crossed the word boundary. The Tally Register is
decremented by two and the Direction Indicator Bit in the Field Ar-
ray is set to a one.

NUMBER OF CYCLES: TFRHD is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-181

MICROINSTRUCTION SET
TRANSFER FIELD TO RIGHT
TFRHI HALFWORD INCREMENT TFRHI
MNEMONIC: TFRHI

OP CODE: 25

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0O 0 1 0 0 t 0 1 Dest RSU MARS Data RSU
- . - K Field =
OP Code; G, H, & I Fields J Field 9,11 or 15
GIM2167

SUMMARY: (RK - H) — RJ - RH; increment MARS Byte
Pointers; decrement Tally Register; set M#OF if
word boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, a halfword from the MARS
Data register specified by the K FIELD and the MARS# Byte
Pointers is transferred to the right halfword of the RSU specified by
the J FIELD. Following the transfer, the Byte Pointers are in-
cremented by two and the MARS Overflow Flag (M#OF) is set if the
Byte Pointers crossed the word boundary. The Tally Register is
decremented by two and the Direction Indicator Bit in the Field Ar-
ray is set to a zero.

NUMBER OF CYCLES: TFRHI is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING éON VENTIONS: None

6-182

MICROINSTRUCTION SET

TIE TRANSFER IN EXTERNAL (32-63)

MNEMONIC: TIE
OP CODE: 00-01

TIE

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0O O 0 O] Register Addr Vector Dest RSU
OP Code; G & H Fields 1& J Fields K Field

SUMMARY: (XIJ) — RK

GIM2180

OPERATION: The contents of one of the 64 Processor Registers
specified by the I,J FIELDS are transferred into the RSU specified
by the K FIELD. The Register Address Vector is a binary value
which is added to a base value of 32;¢. This gives the decimal ERU
number. In the case where the register is less than 32 bits, and is
one of the 32 ERUs, all unspecified bits will be set to zero in the

RSU.

NUMBER OF CYCLES: TIE is a conditional multi-cycle instruc-

tion due to contention on the PM Bus.

EFFECT ON INDICATOR ARRAY:

None

PROGRAMMING CONVENTIONS: None

6-183

MICROINSTRUCTION SET

Tl TRANSFER IN INTERNAL (0-31) Tl

MNEMONIC: TII

OP CODE: 20-21

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 1 0 O O O] RegisterAddr Vector Dest RSU

I OP Code; G & H Fields | & J Fields K Field

SUMMARY: (XI1J) — RK

GIM2181

OPERATION: The contents of one of the 64 Processor Registers
specified by the I, J FIELDS are transferred into the RSU specified
by the K FIELD. In the case where the register is one of the 32
IRUs, it will be transferred either right-justified or left-justified as a
16 bit container. The other 16 bits of the destination RSU will not
be disturbed. If the IRU is less than 16 bits in length then the

unspecified bits will be set to zero.

NUMBER OF CYCLES: TII is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY:

None

PROGRAMMING CONVENTIONS: None

6-184

MICROINSTRUCTION SET

TIP TRANSFER IN PORT (64-127) TIP

MNEMONIC: TIP
OP CODE: 0C-OF

FORMAT: 6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 0 1 1 1/0 Port Addr Dest RSU
OP Code; G & H Fields 1& J Fields K Field

GIM2183

SUMMARY: (XI1J) — RK

OPERATION: The contents of the I/O Port (one of the last 64
ERUs) on the PM Bus specified by the I,J FIELDS are transferred
into the RSU specified by the K FIELD. The I/O Port Address is
a binary value which is added to a base value of 6410. This gives
the decimal ERU number. In cases where the I/O Port is less than
32 bits, all unspecified bits must be set to zero by the 1/0 Port.

NUMBER OF CYCLES: TIP is a single-cycle instruction,
although contention on the PM Bus may halt the Processor until
the PM Bus is available.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-185

MICROINSTRUCTION SET

TLOLD TMSEHEET TLDLD

MNEMONIC: TLDLD
OP CODE: D2

FORMAT: 161514 13121110 9 8 7 6 5 4 3 2 1

Source Dest
110 1 0 o 1 ofSwee| sy | Dest | psy
U Byte Byte

OP Code; G, H, & | Fields J Field K Field

GIM2154

SUMMARY: (RJ-LD) — RK-LD

OPERATION: The left digit in the byte specified by the J FIELD
is transferred to the left digit in the byte of the RSU specified by the
K FIELD. The right digit in the destination byte is not affected.
NUMBER OF CYCLES: TLDLD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator 15 and I6.

PROGRAMMING CONVENTIONS: None

6-186

MICROINSTRUCTION SET
TRANSFER LEFT DIGIT
TLDRD TO RIGHT DIGIT TLDRD
MNEMONIC: TLDRD
OP CODE: D3

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Source Dest
110 1 0 0 1 1|Swce | pey | Dest | Ry
Byte Byte
0P Code; G, H, & | Fields J Field K Field

GIM2155
SUMMARY: (RJ-LD) — RK-RD
OPERATION: The left digit in the byte specified by the J FIELD
is transferred to the right digit in the byte of the RSU specified by
the K FIELD. The left digit in the destination byte is not affected.
NUMBER OF CYCLES: TLDRD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-187

'MICROINSTRUCTION SET
TRANSFER LEFT HALFWORD
TLHFD TO FIELD DECREMENT TLHFD
MNEMONIC: TLHFD
OP CODE: A8

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 1t 0 0 1 1 0 SourceRSU | 1 1 0 1

.] . MARS6 Data RSU
OP Code; G, H, & I Fields J Field K Field = 13

GIM2160

SUMMARY: (RJ - LH) — RK - H; decrement MARS6 Byte
Pointers; decrement Tally Register; set M6OF if
word boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, the left halfword of the RSU
specified by the J FIELD is transferred to RSU13 (MARS6 Data
Register) specified by the MARS6 Byte Pointers. Following the
transfer, the Byte Pointers are decremented by two and the MARS6
Overflow Flag (M60F) is set if the Byte Pointers crossed the word
boundary. The Tally Register is decremented by two and the Direc-
tion Indicator Bit in the Field Array is set to a one.

If the Tally Register decrements to zero and one or more of the
MARSG6 Write Tags are on, the MARS6 Overflow Flag will be set.

NUMBER OF CYCLES: TLHFD is a single-cycle instruction,
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-188

MICROINSTRUCTION SET
TRANSFER LEFT HALFWORD
TLHFI TO FIELD INCREMENT TLHFI
MNEMONIC: TLHFI
OP CODE: A7

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 1

i 0 1 0 O 1 1 1} SourceRSU |1 1 o 1

MARS6 Data RSU

0P Code; G, H, & | Fields J Field K Field = 13

GIM2161

SUMMARY: (RJ - LH) — RK - H; increment MARS6 Byte
Pointers; decrement Tally Register; set M6OF if
word boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, the left halfword of the RSU
specified by the J FIELD is transferred to RSU13 (MARS6 Data
Register) specified by the MARS6 Byte Pointers. Following the
transfer, the Byte Pointers are incremented by two and the MARS6
Overflow Flag (M60F) is set if the Byte Pointers crossed the word
boundary. The Tally Register is decremented by two and the Direc-
tion Indicator Bit in the Field Array is set to a zero.

If the Tally Register decrements to zero and one or more of the
MARS6 Write Tags are on, the MARS6 Overflow Flag will be set.

NUMBER OF CYCLES: TLHFI is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-189

MICROINSTRUCTION SET
TRANSFER LEFT HALFWORD
TLHLH TO LEFT HALFWORD TLHLH
MNEMONIC: TLHLH
OP CODE: AA

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 01t o1 0 1 0 Source RSU Dest RSU
0P Code; G, H, & I Fields J Field K Field

GIM2149A
SUMMARY: (RJ - LH) — RK - LH
OPERATION: The left halfword in the RSU specified by the J
FIELD is transferred to the left halfword in the RSU specified by
the K FIELD. The right halfword in the destination RSU is not
affected.
NUMBER OF CYCLES: TLHLH is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-190

MICROINSTRUCTION SET

TRANSFER LEFT HALFWORD

TLHRH TO RIGHT HALFWORD TLHRH
MNEMONIC: TLHRH

OP CODE: AB

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 01 01 0 1 1 Source RSU Dest RSU
0P Code; G, H, & | Fields J Field K Field

GIM2150A

SUMMARY: (RJ-LH) — RK -RH

OPERATION: The left halfword in the RSU specified by the J
FIELD is transferred to the right halfword in the RSU specified by
the K FIELD. The left halfword in the destination RSU is not
affected.

NUMBER OF CYCLES: TLHRH is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-191

MICROINSTRUCTION SET

TOE transFerouTExTERNALG263 TOE
MNEMONIC: TOE
OP CODE: 10-11
FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 0 1 0 0 O]} Register Addr Vector Source RSU
OP Code; G & H Fields 1& J Fields K Field

SUMMARY: (RK) — XIJ

GIM2178

OPERATION: The contents of the RSU specified by the K FIELD
are transferred into one of the 32 ERUs specified by the I,J FIELDS
and portions of the OP-CODE. The Register Address Vector is a
binary value which is added to a base value of 32;,. This gives the

decimal ERU number.

NUMBER OF CYCLES: TOE is a conditional multi-cycle instruc-

tion due to contention on the PM Bus.

EFFECT ON INDICATOR ARRAY:

PROGRAMMING CONVENTIONS:

6-192

None

None

MICROINSTRUCTION SET

TOI TRANSFER OUT INTERNAL (0-31) TOI

MNEMONIC: TOI
OP CODE: 30-31

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 1 1 0 0 0] RegisterAddr Vector Source RSU

OP Code; G & H Fields | & J Fields K Field |

GIM2179

SUMMARY: (RK) — XIJ

OPERATION: The contents of the RSU specified by the K
FIELD are transferred into one of the 32 IRUs specified by the I, J,
FIELDS and a portion of the OP-CODE.

NUMBER OF CYCLES: TOI is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-193

MICROINSTRUCTION SET

TOP TRANSFER OUT PORT (64-127) TOP

MNEMONIC: TOP

OP CODE: 1C-IF

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
00 0 1 1 1 1/0 Port Addr Source RSU
OP Code; G & H Fields 1 & J Fields K Field

SUMMARY: (RK) — XIJ

GIM2182

OPERATION: The contents of the RSU specified by the K FIELD
are transferred to the I/0 Port (one of the last 64 ERUs) on the
PM Bus. The I/0 Port Address is a binary value which is added to
a base value of 6419. This number gives the decimal ERU number.

NUMBER OF CYCLES: TOP is a single-cycle instruction,
although contention on the PM Bus may halt the processor until the

PM Bus is available.

EFFECT ON INDICATOR ARRAY:

None

PROGRAMMING CONVENTIONS: None

6-194

MICROINSTRUCTION SET
TRANSFER RIGHT DIGIT
TRDLD TO LEFT DIGIT TRDLD
MNEMONIC: TRDLD
OP CODE: D4

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1

Source Source Dest Dest
11+ 01 0 1 0 O RSU RSU
RSU Byte RSU Byte

0P Code; G, H, & | Fields J Field K Field

GIM2156
SUMMARY: (RJ-RD) — RK-LD
OPERATION: The right digit in the byte specified by the J
FIELD is transferred to the left digit in the byte of the RSU
specified by the K FIELD. The right digit in the destination byte is
not affected.

NUMBER OF CYCLES: TRDLD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-195

MICROINSTRUCTION SET

TRANSFER RIGHT DIGIT
TRDRD

TO RIGHT DIGIT TRDRD

MNEMONIC: TRDRD
OP CODE: D5

FORMAT: 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1

Source Dest

Source Dest
it 1 0 1 0 1 0 1 RSU RSU
RSU Byte RSU Byte

0P Code; G, H, & | Fields J Field K Field

GIM2157

SUMMARY: (RJ-RD) — RK-RD

OPERATION: The right digit in the byte specified by the J
FIELD is transferred to the right digit in the byte specified by the
K FIELD. The left digit in the destination byte is not affected.
NUMBER OF CYCLES: TRDRD is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: This instruction affects In-
dicator I5 and I6.

PROGRAMMING CONVENTIONS: None

6-196

MICROINSTRUCTION SET
TRANSFER RIGHT HALFWORD
TRHFD TO FIELD DECREMENT TRHFD
MNEMONIC: TRHFD
OP CODE: A8

FORMAT: 16 151413121110 9 8 7 6 5 4 3 2 |{

10 1 0 1 0 O O} sSouceRSU |1 1 o 1

MARS6 Data RSU

OP Code; G, H, & | Fields J Field K Field = 13

GiM2162

SUMMARY: (RJ - RH) — RK - H; decrement MARS6 Byte
Pointers; decrement Tally Register; set M60OF if
word boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, the right halfword of the
RSU specified by the J FIELD is transferred to RSU13 (MARS6
Data Register) specified by the MARS6 Byte Pointers. Following
the transfer, the Byte Pointers are decremented by two and the
MARS6 Overflow Flag (M60F) is set if the Byte Pointers crossed
the word boundary. The Tally Register is decremented by two and
the Direction Indicator Bit in the Field Array is set to a one.

If the Tally Register decrements to zero and one or more of the
MARS6 Write Tags are on, the MARS6 Overflow Flag will be set.

NUMBER OF CYCLES: TRHFD is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-197

MICROINSTRUCTION SET

TRANSFER RIGHT HALFWORD
TRHFI TO FIELD INCREMENT TRHFI

MNEMONIC: TRHFI
OP CODE: A9

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
i 0 1 0 1 0 o0 1 Source RSU 1 1 0 1
. ; , MARS6 Data RSU

OP Code; G, H, & | Fields J Field K Field = 13

GIM2163

SUMMARY: (RJ - RH) — RK - H; increment MARS6 Byte
Pointers; decrement Tally Register; set M6OF if
word boundary.

OPERATION: If the Tally Register is equal to zero, the execution
of this instruction is voided. Otherwise, the right halfword of the
RSU specified by the J FIELD is transferred to RSU13 (MARS6
Data Register) specified by the MARS6 Byte Pointers. Following
the transfer, the Byte Pointers are incremented by two and the
MARSS6 Overflow Flag (M60F) is set if the Byte Pointers crossed
the word boundary. The Tally Register is decremented by two and
the Direction Indicator Bit in the Field Array is set to a zero.

If the Tally Register decrements to zero and one or more of the
MARS6 Write Tags are on, the MARS6 Overflow Flag will be set.

NUMBER OF CYCLES: TRHFI is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-198

MICROINSTRUCTION SET

TRANSFER RIGHT HALFWORD
TR H L H TO LEFT HALFWORD T R H L H

MNEMONIC: TRHLH
OP CODE: AC

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 01 0 t 1 0 O Source RSU Dest RSU
0P Code; G, H, & | Fields J Field K Field

GIM2151
SUMMARY: (RJ-RH) — RK-LH
OPERATION: The right halfword in the RSU specified by the J
FIELD is transferred to the left halfword in the RSU specified by
the K FIELD. The right halfword in the destination RSU is not
affected.
NUMBER OF CYCLES: TRHLH is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-199

MICROINSTRUCTION SET
TRANSFER RIGHT HALFWORD
TRHRH TO RIGHT HALFWORD TRHRH
MNEMONIC: TRHRH
OP CODE: AD

FORMAT: 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1
1 01 0 1 1 0 1 Source RSU Dest RSU
OP Code; G, H, & I Fields J Field K Field

GIM2152

SUMMARY: (RJ-RH) — RK - RH

OPERATION: The right halfword in the RSU specified by the J
FIELD is transferred to the right halfword in the RSU specified by
the K FIELD. The left halfword in the destination RSU is not
affected.

NUMBER OF CYCLES: TRHRH is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-200

MICROINSTRUCTION SET

TSB TRANSFER BYTE FROM SETUP TSB

MNEMONIC: TSB
OP CODE: 96

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
i1 00 1 0 1 1 0 Dest RSU 0O 0 0 O
OP Code; G, H, & | Fields J Field K Field; Not Used

GIM2302

SUMMARY: (SUR108 -01) — RJ

OPERATION: Bits 08-01 of SURI1 (the additional byte of the Vir-
tual Op Code for the S Format or the I(2) literal for the SI Format
during IBM emulation) are transferred right-justified and zero filled
in byte 2 to the right-half of the RSU specified by the J FIELD. The
left-half is not disturbed. During VRX emulation, the byte trans-
ferred corresponds to either the Ra or the Rb field.

This instruction is also valid for any Virtual Machine emulation
where SUR1 is used.

NUMBER OF CYCLES: TSB is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-201

MICROINSTRUCTION SET

TRANSFER BYTE FROM
TSBC SETUP AND CLEAR TSBC
MNEMONIC: TSBC
OP CODE: 99

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 0 0 1 1 0 O 1 Dest RSU 0O 0 0 O
0P Code; G, H, & | Fields J Field K Field; Not Used

GIM2277

SUMMARY: (SURI1 08 - 01) — RJ

OPERATION: Bits 08-01 of SURI1 (the additional byte of the Vir-
tual Op Code for the S Format or the I(2) literal for the SI Format
during IBM evaluation) are transferred right-justified and zero
filled to the RSU specified by the J FIELD. During VRX emulation
the byte transferred corresponds to either the Ra or Rb field.

This instruction is also valid for any Virtual Machine emulation
where SURI1 is used.

NUMBER OF CYCLES: TSBC is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-202

MICROINSTRUCTION SET
TRANSFER LEFT DIGIT FROM
TSLDC SETUP AND CLEAR TSLDC
MNEMONIC: TSLDC
OP CODE: 97

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 0 1 0 1 1 1| DestRSU 0 0 0 O

0P Code; G, H, & | Fields J Field K Field; Not Used

GIM2285

SUMMARY: (SUR1 08 - 05) — RJ

OPERATION: Bits 08-05 of SURI1 (the literal R1 or N of the Vir-

tual Instruction during NVM emulation) are transferred right-

justified and zero filled to the RSU specified by the J FIELD.
This instruction is also valid for any Virtual Machine emulation

where SURI1 is used.

NUMBER OF CYCLES: TSLDC is a single-cycle instruction.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-203

MICROINSTRUCTION SET

TRANSFER RIGHT DIGIT FROM
TSRDC SETUP AND CLEAR TSRDC
MNEMONIC: TSRDC

OP CODE: 98

FORMAT: 16 15 14 13 12 11 10 9 8 7 €6 5 4 3 2 1

1 0 01 1t 0 0 O Dest RSU 0O 0 0 O

0P Code; G, H, & I Fields J Field K Field; Not Used

GIM2286

SUMMARY: (SUR104-01) — RJ
OPERATION: Bits 04-01 of SURI1 (the literal R2 or M of the Vir-
tual Instruction during NVM emulation) are transferred right-
justified and zero filled to the RSU specified by the J FIELD.

This instruction is also valid for any Virtual Machine emulation
where SURL1 is used.
NUMBER OF CYCLES: TSRDC is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-204

MICROINSTRUCTION SET

TW TRANSFER WORD TW

MNEMONIC: TW
OP CODE: 51

FORMAT: 16 156 1413 1211 10 9 8 7 6 5 4 3 2 1
o1 0 1 0 O O 1 Source RSU Dest RSU
0P Code; G, H, & | Fields J Field K Field

GIM2148

SUMMARY: (RJ) — RK

OPERATION: A word (32 bits) from the RSU specified by the J
FIELD is transferred to the word in the RSU specified by the K
FIELD.

NUMBER OF CYCLES: TW is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-205

MICROINSTRUCTION SET

U P KL UNPACK LEFT DIGIT U P KL

MNEMONIC: UPKL
OP CODE: Dé6

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Source Dest
11 0 1 0 1 1 ofSouce| gy | Dest | pgj

RSU- | prte | ASU | gy

0P Code; G, H, & I Fields J Field K Field

GIM2287

SUMMARY: (RJ - BLD) — RK - BRD
ZONE — RK - BLD

OPERATION: The left digit in the byte specified by the J FIELD
is transferred to the right digit in the byte of the RSU specified by
the K FIELD. The value of the transferred digit is monitored. If it is
equal to nine or less, the ASCII zone character 3 is inserted into the
left digit of the destination byte. If it is greater than nine, the
ASCII zone character 2 is inserted into the left digit of the destina-
tion byte.

NUMBER OF CYCLES: UPKL is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-206

MICROINSTRUCTION SET

UPKR UNPACK RIGHT DIGIT UPKR

MNEMONIC: UPKR
OP CODE: D7

FORMAT: 16 156 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Source Dest
Sourc
110 1 0 1 1 1| py | RSU ggﬁ RSU
Byte Byte
0P Code; G, H, & | Fields J Field K Field

GIM2288

SUMMARY: (RJ - BRD) — RK - BRD
ZONE — RK - BLD

OPERATION: The right digit in the byte specified by the J
FIELD is transferred to the right digit in the byte of the RSU
specified by the K FIELD. The value of the digit is monitored. If it
is equal to nine or less, the ASCII Zone character 3 is inserted into
the left digit of the destination byte. If it is greater than nine, the
ASCII Zone character 2 is inserted into the left digit of the destina-
tion byte.

NUMBER OF CYCLES: UPKR is a single-cycle instruction.
EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-207

MICROINSTRUCTION SET

WPMB WAIT ON PMBUS WPMB

MNEMONIC: WPMB
OP CODE: 13

FORMAT: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

o oo 11t o011t 1}0 0 O 01O 0 O O

0P Code; G, H, & | Fields J Field; Not Used | K Field; Not Used

GIM2275

SUMMARY: No operation

OPERATION: This instruction performs no operation but does re-
quire PM Bus availability. If the PM Bus is available then WPMB
executes in a single cycle. Otherwise, the Processor stops until the
Bus becomes available before executing the instruction.

NUMBER OF CYCLES: WPMB is a conditional single-cycle in-
struction.

EFFECT ON INDICATOR ARRAY: None

PROGRAMMING CONVENTIONS: None

6-208

APPENDICES

APPENDICES
CONTENTS
Appendix A, Glossaryof Terms.ot A-1
Appendix B, Setup Flows., B1
Appendix C, Breakpoint Operation. C1
Appendix D, Memory Retries.ot D1
Appendix E, Fetching from ISU. E-1
Appendix F, Non-Interruptable Instructions. F1
Appendix G, Array Matrices. i G-1
Appendix H, PBCD and UBCD Setting. H-1
Appendix I, Instruction Emulation Example. 11

©Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in U.S.A.

GLOSSARY OF TERMS

APPENDIX A
GLOSSARY OF TERMS

TERM DEFINITION/DESCRIPTION

ALU Arithmetic Logic Unit:

The unit which performs binary and decimal
arithmetic operations, boolean operations,
and shift functions in the CPC.

AM Associative Memory:

There are 16 AM entries in the DAT unit.
Each AM entry contains a 22-bit Virtual
Page Number (VPN).

AMR Address Monitor Register:

A 32-bit double stage register in the ATC
used to monitor virtual addresses during
Virtual Memory Message transfers.

AT Address Translation:

The flag located in Control Array #1 which
controls whether the ATC translates virtual
messages into real messages.

ATC Address Translation Chip (NCR/32-010)

BAC Bus Assist Chip (NCR/32-801)

bank A block of memory defined by the number of
addresses and the number of bits at each
address.

BAV Bus Available:

A signal asserted by the Bus Priority Logic
to indicate to the CPC that the PM Bus will
be available on the next System Clock cycle.

©Copyright 1984, NCR Corporation
Dayton, Ohio
All Rights Reserved Printed in U.S.A. A-1

GLOSSARY OF TERMS

TERM
BCT

BIN

bit

Bus Priority
Logic

byte
BWE

CAS

CLOCKO

CLOCK1

CMD Register

A-2

DEFINITION/DESCRIPTION

Between Commands Testing:

A firmware flag located in Control Array #1
of the CPC and used to branch to special
routines.

Bus Interrupt Register:
A 32-bit register in the ATC used by System

Interface Chips (SIC) to report input/output
status.

A single binary logic data unit.

The circuitry that controls the time-sharing
of the PM Bus. Basically, it monitors the
REQ lines and sets BAV and the SEL lines
to enable use of the PM Bus.

8 bits of data in parallel or series.

Byte Write Enable:

Bits 28-25 of the PM Bus on Real Memory
Stores which act as ‘“Write Enables” for
Bytes 0 to 3.

Column Address Signal:

A signal set by the Memory Interface to
clock the 8-bit column address (PMBUS11-
18) into the 64K Dynamic RAM Address
Latch.

The first half, or Phase 0, of a System Clock
cycle. Also referred to in text as *“X0”’.

The second half, or Phase 1 of a System
Clock cycle. Also referred to in text as
“Xl”'

Command Register:

A 32-bit register in the SIC loaded by the
CPC with command information using a
TOE operation. When read with a TIE the
CPC will retrieve the SIC status.

TERM

Control Array #1

Control Array #2

CPC

CR

DAT

DAT No Match
Interrupt

DDR

GLOSSARY OF TERMS
DEFINITION/DESCRIPTION

An 8-bit register in the CPC which holds
control bits and flags used during instruc-
tion executions.

A 16-bit register in the ATC used to set the
operating mode of the ATC. It is accessible
with a TIE or TOE.

Central Processor Chip (NCR/32-000)

Control Register:

A 16-bit counting register in the CPC used
to address the instructions in the ISU ROM.

Dynamic Address Translation:

A unit in the ATC used during Virtual
Memory Fetch and Store operations to
translate virtual addresses to real
addresses.

Dynamic Address Translation No Match
Interrupt:

An interrupt generated by the DAT unit in
the ATC when an address search of the AM
fails to find a matching address.

Descriptor Data Register:

A 32-bit register in the ATC used to hold the
contents of the RAR the cycle following a
Virtual Memory operation. The DDR acts as
a history register for the RAR and may be
accessed with a TIE.

Data Input Enable:

A Signal set at X1 and held through the
next X0 by the Memory Interface to indi-
cate to the CPC or ATC that data for a
Memory Fetch operation will be available
during the next System Clock cycle. During

A-3

GLOSSARY OF TERMS

TERM

EAC
EACI

ECC

ERU

Execute Stage

Fetch Stage

field

A4

DEFINITION/DESCRIPTION

Memory Store operations the Memory
Interface asserts DIE to indicate it is ready
to accept data.

Extended Arithmetic Chip (NCR/32-020)

Extended Arithmetic Chip Information:

A signal output by the EAC indicating that
the result of a math or logic operation is
ready for retrieval.

Error Correction/Check:

Circuitry in the ATC that checks the ac-
curacy of data on the PM Bus using the Syn-
drome (check) Bits. When possible the data
is corrected. If a data error cannot be cor-
rected an error signal is passed to the CPC
or SIC to indicate that intervention is
required.

External Register Enable/Permit:

A signal set by the CPC or SIC at X0 to
notify the ATC, EAC, or SIC that one of its
External Registers is being addressed. The
ATC will assert EREP at X1 when the ATC
decodes a write to the BIN register.

External Register Unit:

Any one of the registers external to the CPC
available for fetch/store operations via the
PM Bus.

The third stage of the 3-stage CPC pipeline
which executes instructions and writes re-
sults into appropriate RSUs.

The first stage of the 3-stage CPC pipeline
which fetches instructions from the ISU
ROM and writes them into the IR.

A block of memory defined by its length and
start address (normally 1 to 64K-1 bytes).

TERM

Field Mask

Full-Word

Half-Word

I-Bus

I/0

IAR

IMR

Indicator Array

INH

Instruction
(micro)

GLOSSARY OF TERMS

DEFINITION/DESCRIPTION

(See Test Mask Operand and Indicator
Array)

Same as a Word; 32-bits of data in parallel
or in series.

Left and Right: 16 bits of data in parallel or
in series.

The main internal 32-bit bus within the CPC
which interconnects the RSU, the IR, the
ALU, the CR, the restore FIFO and the PM
Bus Interface.

Input/Output (normally an interface).

Instruction Address Register:

A 16-bit register in the CPC which holds the
address of the instruction in the Interpret
Stage of the pipeline.

Interrupt Mask Register:

A register in the ATC which provides selec-
tive masking of all interrupt bits in the
I/TA.

An 8-bit register (IRU16) in the CPC which
contains indicator flags that reflect the re-
sults of an instruction execution.

(See also Test Mask Operand.)

Inhibit:
An input line which may be used to disable
the Refresh control in the ATC when either

static RAM or an external refresh controller
is used.

Any one of the 179 Op-codes from the CPC’s
Microcode Instruction Set.

A-5

GLOSSARY OF TERMS

TERM

INT

Interpret Stage

IR

IRU

ISU

ISUO1-16

ISU ROM

I/'TA

ITMR

A-6

DEFINITION/DESCRIPTION

Interrupt:

An input signal to the CPC indicating the
presence of an interrupt condition.

The second stage of the 3-stage CPC pipe-
line which decodes instructions and reads
operands from the RSU.

Instruction Register:

A 16-bit register in the CPC which holds the
instructions fetched from the ISU ROM.

Internal Register Unit:

One of 22 special-purpose registers in the
CPC designed to ease virtual machine emula-
tion.

Instruction Storage Unit:

A functional unit consisting of ROM chips
which contain the microcode instructions
fetched and executed by the CPC.

Instruction Storage Bus (bits 01 to 16):

The bus between the CPC and the ISU used
to fetch instructions:

Instruction Storage Unit ROM (NCR/
32-901)

Interrupt/Trap Array:

Each trap or interrupt has a unique bit
assigned to it in the ATC I/TA.

Interval Timer/Monitor Register:

A 32-bit register in the ATC that contains a
value corresponding to a desired interval of
time. When the ITMR and TOD Registers
match a TOD Interrrupt is initiated to the
I/TA.

TERM

JRJ

Jump Registers

literal

MAE

Main Memory

MARS

MARS Byte
Pointers

MARS Write
Tag

MDEE

GLOSSARY OF TERMS

DEFINITION/DESCRIPTION

Jump Register ““‘J"’:

The jump register in the CPC addressed by
the J-Field.

Eight addressable 16-bit registers in the
CPC that can be used to hold jump
addresses.

The term applied to a binary code that
represents a numeric value, an ASCII char-
acter, or a memory address in the Operand
Field of the CPC Instruction Set.

Memory Address Enable:

A signal asserted by the CPC, ATC, or SIC
at X0 when making a Real Memory Message
transfer via the PM Bus.

The primary storage area for programs and
data. The Main Memory is connected to the
PM Bus via the Memory Interface.

Memory Assist Registers:

Odd/even RSU pairs of the 16 RSU regis-
ters, numbered MARSO to MARS7, and
used during field instruction execution or
memory store operations.

The two least significant bits of
RSUS(MARS4), RSU10(MARS5), RSU12-
(MARSS6), and RSU14(MARS?7) used for in-
directly addressing RSU9, RSU11, RSU13,
and RSU15.

A 4-bit code loaded into the Write Tag
Register and output as Byte Write Enables
(PMWTO0-3) on the PM Bus.

Memory Data Enable/Error:

A signal set by the Memory Interface at X0
to indicate that memory data is available for
a Memory Fetch. The ATC will assert

A-7

GLOSSARY OF TERMS

TERM

MEMERR

message

microcode

microcommand

micro-instruction

MSU

nibble

NIE

NVM

Op-Code

A-8

DEFINITION/DESCRIPTION

MDEE at X1 if the data on the PM Bus con-
tains an uncorrectable error.

Memory Error:

A signal set at X1 by the ATC to indicate
any error (single or multiple) condition
detected by the ECC logic during Memory
Fetch, Store, or Refresh operations.

Any combination of bits transferred during
a Memory Fetch or Store operation.

A bit or group of bits assigned a specific
function. May also be the same as a micro-
instruction.

The 8-bit Op-Code portion of a microinstruc-
tion from the CPC Instruction Set.

A 16 or 32-bit instruction from the CPC In-
struction Set.

Memory Storage Unit:

The MSU is synonomous with Main
Memory.

4 bits of data or half of a Byte.

Normal Interrupt Enable:

The flag in CPC Control Array #1 which
enables the recognition of interrupts.

New Virtual Machine:

The Virtual Machine for all new NCR Soft-
ware products and designed for the NCR
9300 series.

Operation Code:

Has the same meaning as ‘“‘Command Code”’
in this manual and refers to a portion (G, H,

TERM

Operand

Operand Pointer
#1 & #2

Operand
Registers

Overflow Flags

PM Bus

packed BCD

Page Descriptor

PFN

GLOSSARY OF TERMS
DEFINITION/DESCRIPTION

I Fields) of the microinstruction in the CPC
Instruction Set.

Operands are 4, 8, 16, or 32-bit literals. They
contain an address, binary/decimal data, a
set of code flags, a printable ASCII
character, or a combination of these.

These two 7-bit incrementing/decrementing
pointers are used to access the Scratch Pad
portion of memory.

The J and K Operand Registers in the CPC
which are loaded from the RSU during the
Interpret Stage.

Indicators which are set in the CPC during
Field Instructions or Setup Instructions
when a MARS Byte Pointer crosses the
word boundary.

Processor-Memory Bus (1 to 32):

The common address/data bus used for
transferring data (Messages) between the
NCR/32 Processor Family system units. The
bus includes several handshaking and con-
trol lines.

Data representation in which two Binary
Coded Decimal digits are contained in one
byte.

The Page Descriptor, used in the DAT unit
of the ATC, contains 25-bits: 8-bits of Pro-
tection Check, a 14-bit Page Frame Number,
2-bits of AM entry control, and an Invalid
Register (entry) bit.

Page Frame Number:

A part of the Page Descriptor in the ATC
which contains 12 to 14 bits. The PFN is

A-9

GLOSSARY OF TERMS

TERM

PMCHK1-7

PMR

PMRST

PMWTo0-3

PRIV

DEFINITION/DESCRIPTION

concatenated with the page displacement to
form the Real Memory address.

Processor-Memory Check (1 to 7):

The seven Syndrome (check) Bits sent or
received by the Memory Interface at X0 and
used by the ECC logic in the ATC to main-
tain integrity of the data on the PM Bus.

Purge Mask Register:

A 22-bit register in the ATC that is used to
selectively purge the Associative Memory
(AM). When one or more bits are set in the
PMR, the AM ignores the corresponding
VAR bits in the association process for the
Purge operation.

Processor-Memory Reset:

A common reset signal to all PM Bus inter-
faces during power-up or programmable
reset sequences to initialize all appropriate
logic.

Processor Memory Write Tags (0 to 3):

Assigned to Bytes 0 through 3 as “Write
Enables”. The appropriate tags are set dur-
ing Virtual Memory Store Message opera-
tions.

Privilege:

An ATC input pin used to directly set or
reset the Privilege Bit in Control Array #2.
It is reserved for use by a future perform-
ance booster chip. Assertion of PRIV during
X0 allows clearing or setting of the Privilege
Flag during the subsequent X1 clock accord-
ing to the state of PRIV at that time; where
assertion of PRIV during X1 sets the
Privilege Flag.

GLOSSARY OF TERMS

TERM DEFINITION/DESCRIPTION
Privilege See PRIV above.

Flag
PSR Page Size Register:

A 3-bit register in the ATC which specifies
the page size in use.

PVT Processor Virtual Transfer:

A PM Bus signal asserted by the CPC dur-
ing X0 (phase 0) when transferring a Virtual
Memory Message, and during X1 on all PM
Bus memory transfers.

PWFAIL Power Failure (or Special Interrupt):

(SPINT) A signal activated by the system Power

Control Logic to notify the CPC that a
power failure is imminent. It may also be
used for any other special-purpose external
interrupt condition.

RAM Random Access Memory:
May be Dynamic (DRAM) or Static
(SRAM).

RAR Real Address Register:

A 32-bit register in the ATC that contains
the Real Memory address and the Byte
Write Tags. The ATC will load the RAR
from the PM Bus during CPC or SIC Real
Memory Fetch operations, and from the
DAT during Virtual Memory operations.

RAS Row Address Signal:

A signal set by the Memory Interface to
clock the 8-bit row address (PMBUS03-10)
into the 64K Dynamic RAM Address Latch.

Real Memory A memory access operation which applies
the address directly via the PM Bus without
address translation.

A-11

GLOSSARY OF TERMS
TERM

REQO-n

REQS

reset

Restore FIFO

ROM

RSU

Scratch Pad

SEL1-n

A-12

DEFINITION/DESCRIPTION

Subsystem Bus Request (Line 0 to n):

Priority request lines, one for each unit on
the PM Bus, used to indicate a need to use
the PM Bus. The lines are active at XO0.
REQO is the highest priority and always
assigned to the ATC.

Request Special:

A signal asserted by the ATC under special
conditions to give the PM Bus to the CPC
and block all other requests for access to the
PM Bus.

Used to indicate a signal in its inactive
state. It may be either an inactive high
(logic 1) or an inactive low (logic 0) depend-
ing on signal polarities. See also “‘set”’.

A three-deep, 16-bit, first in, first out (FIFO)
shift register in the CPC used to hold the ad-
dresses of the instructions in the pipeline at
the time of a trap or an interrupt.

Read Only Memory:
Memory whch can only be read, not written.

Register Storage Unit:

The unit in the CPC which contains the six-
teen 32-bit general purpose registers. See
also MARS.

RAM area set aside for the CPC firmware to
use as fast-access temporary storage ad-
dressable via the Operand Pointers.

Select (1 to n):

The signal lines asserted by the Bus Priority
Logic circuit and sampled by the PM Bus
devices at X1 to establish which device has
access to the PM Bus during the next

TERM

set

Set Up
Registers

SIC
SIR
SIT

SPINT

SR

Stack Pointer

STAT Register

State Register

GLOSSARY OF TERMS
DEFINITION/DESCRIPTION

System Clock cycle. The highest priority is
automatically the ATC; therefore SELO is
not used.

Used to indicate a signal in its active state.
It may be either an active high (logic 1) or
active low (logic 0) depending on the signal
polarities. See also ‘“‘Reset”’.

See SUR1-5

System Interface Controller (NCR/32-500)
System Interface Receiver (NCR/32-590)
System Interface Transmitter (NCR/32-580)

Special Interrupt:

An ATC special-purpose interrupt input (see
PWFAIL).

Syndrome Register:

A T-bit register in the ATC that contains the
Syndrome Bits arriving from memory via
the PMCHK lines. The CPC can perform
TOE and TIE operations on the SR.

A 5-bit incrementing/decrementing pointer
in the CPC used to access the 32-entry Oper-
and Stack portion of the Scratch Pad.

Status. Register: /

A 32-bit register in the SIC that contains
the SIC transmission status.

A 16-bit register in the CPC which holds the
information required to retry a Virtual
Memory operation that resulted in a DAT
No Match Interrupt.

A-13

GLOSSARY OF TERMS

TERM
SURI1-5

Syndrome Bit

System Clock

Tally Register

Test Mask
Operands

TI

TIE

TII

A-14

DEFINITION/DESCRIPTION

Set Up Register #1 to #5:

Used by the CPC for special hardware
assistance in decoding the Virtual Com-
mands during specific virtual machine
emulation.

There are seven Syndrome Bits generated
by the ATC and stored with each 32-bit
word as check bits during Memory Store
operations. They are loaded into the ATC
SR during Memory Fetch operations and
used for ECC verification.

The circuitry in a NCR/32 VLSI Processor
Family system which generates the 6.6
MHz, two phase (X0 & X1), System Clock
from the 13.3 MHz input frequency. Each
System Clock cycle has a period time of 150
nano-seconds. (See also CLOCKO)

A 16-bit decrementing register in the CPC
used during Field operations to count the
bytes being processed.

Conditional Jump or Conditional Skip In-
structions which test the Indicator Array or
a byte in the RSU against the H, I, J, or K
Field Mask. A transfer occurs when the test
is valid.

Trap Indicator:

The indicator in Control Array #1 which dis-
ables the processing of traps.

Transfer In External:

An external reference instruction executed
by the CPC which may either read from an
ERU or trigger a fetch from Scratch Pad
memory.

Transfer In Internal:
A CPC internal transfer instruction which

TERM

TIP

TOD

TOE

TOI

TOP

TRAP

unpacked BCD

VAR

VARB

GLOSSARY OF TERMS
DEFINITION/DESCRIPTION

moves data from the Internal Register Unit
(IRU) into an RSU.

Transfer In Port:

A CPC operation which transfers data from
an ERU port (ERU64-127) into an RSU.

Time-Of-Day Register/Counter:

An incrementing register in the ATC which
can be used to store the current time and to
generate timed interval interrupts.

Transfer Out External:

An external reference instruction executed
by the CPC to either write data to an ERU
or to trigger a store to Scratch Pad Memory.

Transer Out Internal:

A CPC internal transfer instruction which
moves data from an RSU to an IRU.
Transfer Out Port:

A CPC operation which transfers data to an
ERU port (ERU64-127) from an RSU.
Trap:

An input signal to the CPC indicating the
presence of a trap condition.

Data representation in which a Binary Cod-
ed Decimal digit (least significant nibble) is
combined with its ASCII digit character
(most significant nibble) in a byte.

Virtual Address Register:

A 32-bit register in the ATC that is loaded
with the virtual address during Virtual
Memory operations.

Virtual Address Register Buffer:
A 32-bit register in the ATC that contains

A-15

GLOSSARY OF TERMS

TERM

Virtual
Address

Virtual
Indicators

Virtual Memory
Reference

VLSI

VPN

VRX

Write Tag
Register

Word
Or Full-Word

LEGEND:

A-16

DEFINITION/DESCRIPTION

the previous virtual address used for an
address translation. It may be retrieved by
the CPC if a DAT No Match Interrupt was
set.

Address asserted by the CPC which must be
translated into a real address by the ATC.
The translated real address is composed of
the ATC Virtual Page Number and Page
Displacement.

A 16-bit register in the CPC which holds the
flags and indicators relevant to Virtual
Command execution.

A memory access operation that requires
the address be translated in the ATC. It
may also be referred to as relative address-
ing. (See also Page Descriptor and Virtual
Address.)

Very Large Scale Integration:
The term describing high density device
layout using MOS cells.

Virtual Page Number:

The 22-bit content portion of each of the 16
AM entries used in the DAT unit of the
ATC.

Virtual Resource Executive:

The hardware independent high-level In-
struction Set for the NCR 8500 series
systems.

A 4-bit register which controls the Byte
Write Enables (PMWT0-3) during Virtual
Memory Store operations.

32-bits of data in parallel or series.

“n” indicates an arbitrary number.

SETUP FLOWS

APPENDIX B
SETUP FLOWS

SETUP FLOWS

The special Setup microinstructions in the Processor have been
designed so that, for optimum performance, they must be used in
precise sequences with other microinstructions. The flow diagrams
in this appendix specify those sequences for the three explicitly sup-
ported Virtual Machines, and indicate which portions of the
sequences are fixed and which portions are variable.

VRX SETUP FLOWS
The VRX Setup Flows are depicted in Figures D-1A through D-3B.

E
Return to common VRX Setup flow
DRIBO | nless BCT (18) is on
E+1y
E+2 Both instructions are executed
(End of a VRX
Execution Flow)
l <«4— E+3 is executed (a jump to the BCT flow) if BCT is on
~
1 l
LFA Initiate Fetch of the next Virtual
Instruction via MARS7
2]
LTS Load Tally with previous “T”
(SUR#5) — Tally
3 v
RCV Receive Virtual Instruction
4 y
. Move partial “A” Address from
TRHLH | i) of MARST to LH of RSUX
TO D-1B

GIMB003

Figure B-1A VRX Common Setup Flow

B-1

SETUP FLOWS

From D-1A

JMPVA Q,Ra—»SUR#1; Setup Addr.—» CR

B-2

TOE Load SUR#2 from LH of RSUX

Both instructions
7 y are executed

Transfer Partial “A” from SUR#2
SETSX | to an RSU with sign extension

on bit 16

SUR#1 bit 16=0 (Double Stage Command)

N Go to flow which
computes Effective
~ ‘A" for Double

. St Commands
Go to flow which l age Lomman

(a) computes Effective “A” (b)
for Single Stage Commands

GIMB0OO4

Figure B-1B VRX Common Setup Flow

(a)

N+1

N+ v

SETUP FLOWS

Effective Address Flow entered based

upon Index Register number and

indexing mode from Common VRX Flow or
) D.S. Effective “A” Flow.

Calculation for Single

Stage commands, Effective
“B” Address calculation

for Double Stage commands

Execution Addr.—»CR
11— Tally bit 9 if T=0

Both instructions
are executed

m
«— |e}e

First Instruction
in Execution Flow

GIMB00S

Figure B-2 VRX 8.S. Effective “A” Flow

and D.S. Effective “B” Flow

B-3

Effective Address Flow entered based

(b) upon Index Register number and
N l Indexing mode from Common VRX Flow
N+1
y Effective “A” Address
p calculation for
double stage commands
N+2 ¢
y
\ 4 .
LFA Initiate Fetch for next Virtual
Instruction via MARS7
2
3 A
RCV Receive Virtual Instruction
To D-3B

GIMBOC6

Figure B-3A VRX D.S. Effective “A” Flow

From D-3A

Move Partial “B” Address from
RH of MARS7 to LH of RSUX

Load SUR#2 with partial “B”
from LH of RSUX

Rb—SUR#1, T —SUR#5

SETUPB Addr.—#CR

Transfer Partial “A” to an RSU

with sign extension on bit 16 Both

instructions

Load Tally with “T” value, are executed

(SUR#5)—Tally

(a)

Figure B-3B

Go to flow for Effective
“B” Address calculation

GIMBOO7

VRX D.S. Effective “A” Flow

SMO74 dN13S

SETUP FLOWS

NVM Setup Flows
The NVM Setup Flows are depicted in Figures D-4 through D-7C.
The NVM Descriptor Setup Flow is shown in Figure D-8.

E
Load SUR#1, SUR#5, SP. Ptrs;
JMPNA (JRJ)—»CR if BCT
Jump Addr —»CR if BCT/
E+1 Y
Both instructions
E+2V are executed
M7 Overflow/
Y
N RR2 Format/
Y
N
l Go to NVM l RR2 l Go to NVM
(e) MARS7 Overflow Execution (f) Setup
Flow Flow Flow

GIMBOO7-1

Figure B-4 NVM Jump from Execution

B-5

SETUP FLOWS

Entered from NVM
Execution Flow

Initiate Fetch for Virtual
Instruction via MARS7

Load Tally with a Literal

Receive Virtual Instruction

Load SUR#1, SUR#5, SP. Ptrs.;
Jump Addr.—»CR

Initiate Fetch from

Scratch Pad via ERU 36 ‘Executed
If
RR1 or RM
Receive (R2) for RR1, Format
(X) for RM

RM + MM Formats

Note: For X=0, (X) are
guaranteed to be Zero
by the hardware

N

B-6

«—

RR1, RR2, RI (@) RM or MM
Execution Flows Setup Flows

GIMB0OO8

Figure B-5 NVM MARS7 Overflow Flow

). Entered from NVM
Execution Flow

SETUP FLOWS

Rl Format
Y 1
N LFA Initiate Fetch for Virtual -
Instruction via MARS7
2
JMPNC Exec. Addr. — CR
3
RCV :Re;:éivte. Virtual
Both nstruction
Are 4
Exec’td A
5
Load SUR#2
SETNA Offset —®»RSU,
RI Cond. Code Check
Exec. l
Flow
' '
To D-6B

GIMB009

Figure B-6A NVM Setup Flows (from Exec.)

SETUP FLOWS

From D-6A
RR1 Format
Y
1
N (v
JMPNC Exec. Addr.—»CR
2
TIE Initiate Fetch from
Scratch Pad via ERU36
Both
Are 3 !
Exec'td RCV Receive
(R2)
~
RR1
Execution
y Flow
\ RM Format
/ Y 1 J
N TIE Initiate Fetch from
Scratch Pad via ERU36
2y
RCV Receive (X)
v l Note: for X=0, (X) are
guaranteed to be
To D-6C To D-6C Zero by the hardware
GIMB009-1
Figure B-6B

B-8

NVM Setup Flows (from Exec.)

SETUP FLOWS

From D-6B From D-6B
3
LFA Initiate Fetch for Virtual
Instruction via MARS7
4
Load Tally with
LTRC a literal
S /
RCV Receive Virtual Instruction
6 v
Load SUR#2, SP PTR#2,
SETNA | pisp—pRSU
7 A
Indir. Addr.— CRif IN
JMPNC | Eyec. Addr.—-CR if IN/
8 v
TIE Initiate Fetch from Scratch
Pad via ERU 36
9 y
Receive
RCV
l (B)
e |
v RM Indirection
To D-6D or Execution Flow
GIMBO10
Figure B-6C NVM Setup Flows (from Exec.)

B-9

SETUP FLOWS

B-10

From D-6C -

LFA

SETNA

v

To D-6E

Figure B-6D

Initiate Fetch for Virtual
Instruction via MARS7

Load Tally from SUR#5

Receive Virtual Instruction

Load SUR#2, SP PTR#2,
DISP—»RSU

Initiate Fetch from Scratch
Pad via ERU 36

Receive
(B1)

Load SUR#2, SP PTR#2,
DISP—P»RSU

MM Format Setup

GIMBO11

NVM Setup Fiows (from Exec.)

SETUP FLOWS

From D-6D
s |
JMPNC Exec. Addr. —» CR
9
TIE Initiate Fetch from Scratch
pad via ERU 36 Both
10 instructions
A
Receive are executed
RCV (B2)
~
|
MM Format
Execution
Flow
GIMBO12
Figure B-6E NVM Setup Flows (from Exec.)
@) Entered from NVM
MARS?7 Overflow flow
RM Format
v
N
8 Indir. Addr.—»CRif IN
Exec. Addr.—CR if IN/
Both I
Are 9 Initiate Fetch from Scratch
Exec’td Pad via ERU 36E
F —
o Receive
R 10 (B)
M RCV
A
T v
~
v l
To D-7B RM Indirection or

Execution

Flow

GIMBO13

Figure B-7A NVM RM and MM Setup Flows (from Overflow)

B-11

SETUP FLOWS

From D-7A
r |
Load SUR#2, SP PTR#2,
SETNA. | pjsp—p-RSU
s _y
Initiate Fetch from Scratch
TIE Pad via ERU 36
9 y o ‘
eceive
RCV (B1)
10 y
LFA Initiate Fetch for Virtual
Instruction via MARS7
1M 3
LTS Load Tally from SUR#5
12 Y
RCV Receive Virtual Instruction
13
Load SUR#2, SP PTR#2,
SETNA | pisSp—p-RSU
To D-7C
Figure B-7B

B-12

<4— MM Format

NVM RM and MM Setup Flows (from Overfiow)

GIMBO14

From D-78

14

JMPNC

15§

TIE

ad

RCV

SETUP FLOWS

Exec. Addr.—CR

Initiate Fetch from Scratch
Pad via ERU 36

Receive
(B2)

«—) <+

MM Execution
Flow

GIMB015

Figure B-7C NVM RM and MM Setup Flows (from Overflow)

LTS

Transfer the Length field from
the RH of the RSU containing
the Descriptor to the LH of RSU-X

Load the Tally Register (16 bits)
from the Length field (RH of the
RSU containing the Descriptor)

Load SUR#1 from the LH of the
RSU containing the Descriptor
(SUR#4 bits 16-08) —»CR 16-08
(SUR#1 bits 16-14) —»CR 07-05
0 —»CR 04-01

Load SUR#5 from

LH of RSU-X Exec'td if
(SUR#1 bits 12-09)
are not equal

Load the Tally Register (8 bits to zero

with leading zeros) from SUR#5

—) +—

NVM Descriptor
Execution Flow

GIMBO16

Figure B-8 NVM Descriptor Setup Flow

B-13

SETUP FLOWS

IBM SETUP FLOWS

The IBM Setup Flows are depicted in Figures D-9 through D-12C.

E Load SUR#1, SUR#5, SP PTRS;
JMPIA (JRJ)—»CR if BCT
Jump Addr—»CR if BCT/
Both instructions
E+2 are executed

M7 Overflow/

N

~

<
+—— | —

l Go to IBM
- Go to IBM
(h) m(l;\vljs7 Overflow (i) Setup Flow

Figure B-9 IBM Jump from Execution

B-14

GIMBO17

(h)

LFA

RCV

JMPIB

SETUP FLOWS

Entered from IBM
Execution Flow

Initiate Fetch for Virtual
Instruction via MARS7

Receive Virtual Instruction

Load SUR#1, SUR#5, SP PTRS;
Jump Addr—»CR

Initiate Fetch from
Scratch Pad

A Both
via ERU 36 exec'td if
RR or RX
Receive (R) for RR, Formats
(X) for RX
RR Format

Note: for X=0, (X) are
guaranteed to be
Zero by the hardware

= €+

Special
IBM
Setup Flow

Go to E l
RR Format

Execution
Flow

GIMB0O18

Figure B-10 IBM MARS7 Overflow Flow

B-15

SETUP FLOWS

(i) Entered from IBM
Execution Flow

RR Format

Y
g 'y

JMPIC Exec Addr —pCR

Initiate Fetch from Scratch

TIE Pad via ERU 36
Both
are 3 47
Exec’td RCV Receive
(R)
Y
e |
RR Format

Execution Flow

4

\ RX Format
N / v 1 y

TIE Initiate Fetch from Scratch
Pad via ERU
2 y
RCV Receive (X)
T Note: for X=0, the (X)
J' l are guaranteed to be
ToD-11B To D-11B Zero by the hardware

GIMBO019

Figure B-11A IBM Setup Fiows (from Exec.)

B-16

SETUP FLOWS

From D-11A From D-11A
s 4
Initiate Fetch for Virtual
LFA Instruction via MARS7
4
5 2
RCV Receive Virtual Instruction
: - SP PTR
Load SUR#2, #2,
SETIA | pisp—-RSU
[]
JMPIC Exec. Addr.— CR
8 y
Initiate Fetch from
Both TIE Scratch Pad via ERU 36
are
executed S
RCV Receive (B
® Note: for B=0, the (B)
l are guaranteed to be
Zero by the hardware
~
= |
RX Format
Execution Flow
v
To D-11B
GIMB020
Figure B-11B IBM Setup Flows (from Exec.)

B-17

SETUP FLOWS

From D-11B
RS, SI, S Formats
Y
N 1 \ 4
LFA Initiate Fetch for
Virtual Instruction
2 Y
(SUR#1 bits 08-01)—p RSU
SETIB with leading zero fill
3 \
RCV Receive Virtual Instruction
4 Y
Load SUR#2, SP PTR#2,
SETIA 1 pisP—»RSU
5 v
JMPIC Exec. Addr.—CR
6 y
TIE Initiate Fetch from
Scratch Pad via ERU 36
Both
are 7
B \ 4
exec'td Receive
RCV B
(B) Note: for B=0, the (B)
l are guaranteed to be
Zero by the hardware
~
e |
RS, SI, S Formats
A Execution Flow
To D-11D

GIMB021

Figure B-11C IBM Setup Flows (from Exec.)

B-18

SETUP FLOWS

From D-11C
1 l (SS Setup Flow)
Initiate Fetch for
LFA Virtual Instruction
2
LTS Load Tally from SUR#5
4
Load SUR#2, SP PTR#2,
SETIA | pispP—RSU
5 v
Initiate Fetch from Scratch
TEE | Ppad via ERU 36
6
RCV Receive (B1) Note: for B1=0, (B1)
are guaranteed to be
7] Zero by the hardware
Load SUR#2, SP PTR#2,
SETIA DISP—»RSU
To D-11E
GIMB0O22

Figure B-11D IBM Setup Flows (from Exec.)

From D-11D
8
JMPIC Exec. Addr. —» CR
9 4
TIE Initiate Fetch from Scratch
Pad via ERU36
10 o
Receive (B2
RCV 82) Both
Note: for B2=0, (B2) are
‘ are guaranteed to be exec'td
Zero by the hardware
~
e |

SS Execution Flow

GIMB023

Figure B-11E IBM Setup Flows (from Exec.)

B-19

SETUP FLOWS

i} Entered from IBM
MARS7 Overflow Flow

RS, RX Formats

B-20

Y 7 *
N SETIA Load SUR#2, SP PTR#2,
DISP—» RSU
8 y
JMPIC Exec. Addr.—»CR
9 ¢
TIE Initiate Fetch from Scratch
Both Pad via ERU 36
are
10
exec'td A 4)
Receive (B
RCV (B)
Note: for B=0, (B)
l are guaranteed to be
Zero by the hardware
~
e |
RS, RX Format
Execution Flow
S, Sl Formats
Y 7 1
N
SETIB (SUR#1 bits 08-01)—» RSU
with leading zero fill
To D-12B To D-12B
GIMB024
Figure B-12A IBM Setup Flows (from Overflow)

SETUP FLOWS

From D-12A From D-12A
:
Load SUR#2, SP PTR#2,
SETIA DISP—»RSU
O v
JMPIC Exec. Addr—p CR
10 Y
TIE Initiate Fetch from Scratch
Both Pad via ERU 36
are 11
exec’td oV Receive (B)
R Note: for B=0, (B)
l are guaranteed to be
Zero by the hardware
c 4
S, Sl Execution
Flow
[
Load SUR#2, SP PTR#2,
SETIA | pisP—RSU
8 ! <4— SS Setup Flow
Initiate Fetch -
TIE from Scratch Pad
l via ERU 36
To D-12C

GIMBO025

Figure B-12B IBM Setup Fiows (from Overflow)

B-21

SETUP FLOWS

From D-12B.

Receive Note: for B1=0, (B1)
RCV (B1) are guaranteed to be

Zero by the hardware
10 v
Initiate Fetch for Virtual
LFA Instruction via MARS7
11
LTS Load Tally from SUR#5
12 v
RCV Receive Virtual Instruction
13 \
: Load SUR#2, SP PTR#2,
SETIA | pisp—RSU
14 J,
JMPIC Exec. Addr.—»CR
15
TIE Initiate Fetch from Scratch
Pad via ERU 36
16

RCV Receive (B2) Note: for B2=0, (B2)
l are guaranteed to be
~

Zero by the hardware

SS Format
Execution Flow

GIMBO26

Figure B-12C IBM Setup Flows (from Overflow)

B-22

BREAKPOINT OPERATION

APPENDIX C
BREAKPOINT OPERATION

BREAKPOINT OPERATION

This section describes an example of how to initialize, detect, and
process breakpoints. Note, however, that external hardware must
be designed and implemented for servicing breakpoints.

When the CPC is powered up or a System Reset is issued, all
potential Breakpoints are disabled. A Breakpoint Enable bit is
maintained in the Maintenance Control Register which can be read
via the Maintenance Status Register. At the time of system in-
itialization, hardware resets this bit to disable any spurious Break-.
points which might be present.

Each time that the Breakpoint routine is entered and Break-
points are to be used, the Breakpoint Enable bit should be tested by
a Breakpoint microinstruction routine. If the bit is clear, then the
Breakpoint routine should proceed to clear all physical ISU loca-
tions of any potential Breakpoints. After purging the Breakpoint
RAM, a TOP should be executed to the Maintenance Control
Register to turn the Breakpoint Enable bit on.

A Breakpoint is cleared via the modified DJOR instruction. The
ISU address at which the Breakpoint is to be cleared is placed into
the right half of an RSU, then that RSU is addressed by the K-field
of the DJOR instruction. J-field bit 01 is set to a one and J02 is set
to a zero in the DJOR. The instruction following the DJOR must
then be an unconditional immediate jump to void the jump which
would occur from the DJOR unless, coincidentally, that jump is
desired.

Likewise, a Breakpoint is set via the DJOR. Instead of setting
JO02 to a zero, it is set to a one.

SAVING THE INTERRUPT FIFO

Both the interrupt and the trap service routines should be written to
include a test of the Breakpoint Enable bit. If Breakpoints are not
enabled, then the routine executes as it normally would. Two cycles
(TIP and SRBZ) are required for the test.

If the Breakpoint Enable bit is on, then the contents of the
FIFO should be saved and the FIFO restarted. In a trap service
routine the Trap Indicator must also be reset. This allows both serv-
ice routines to be trapped by a Breakpoint trap and provide a link
back to the service routine.

BREAKPOINT OPERATION

DETECTING BREAKPOINTS

External hardware on the Processor board detects the presence of a
Breakpoint during the Fetch stage of a primitive instruction and
tracks the Breakpoint, depending upon the specific hardware im-
plementation, to either the Interpret Stage (X0) or to the Execute
Stage (X0). If Breakpoints are enabled, the hardware sets the Break-
point trap bit in the Maintenance Status Register and sources the
TRAP/signal to the CPC.

When the trap is detected, the Firmware routine transfers in the
Maintenance Status Register and tests the Breakpoint trap bit. If
the bit is off and the Breakpoint Enable bit is on, then the FIFO is
saved as described previously. If the Breakpoint trap is on, then the
FIFO is not saved even though the Breakpoint Enable bit will be on.
Since the Breakpoint trap executes similar to other traps, the FIFO
will have been stopped, and TI turned on. The trap is cleared by a
transfer out to the Maintenance Control Register with the Break-
point trap bit off.

If the hardware implementation tracks the Breakpoint address
to the Execute Stage, then the instruction at that address will be ex-
ecuted provided a previous instruction did not establish a skip con-
dition. The standard RTI sequence is used to Restore from the
Breakpoint trap. ‘

If the hardware implementation tracks the Breakpoint address
to the Interpret Stage, then the instruction at that address will not
be executed until the Restore from the Breakpoint routine is per-
formed. That instruction will be the first instruction executed
following the three RTI instructions.

The Breakpoint routine can (in the latter implementation only)
determine whether or not that the Breakpoint instruction will be ex-
ecuted upon Restoring by testing the Skip Count in Control Array
#1. Any non-zero count indicates that the Breakpoint instruction
will subsequently be aborted.

RETURN FROM BREAKPOINT ROUTINE
The return from the Breakpoint routine is performed via the FIFO
using three RTI instructions. When returning to an interruptable
routine the sequence is the same as for any trap. When returning to
a non-interruptable routine, as determined by a test of NIE, an RC
instruction is executed to reset TI and then the three RTI instruc-
tions are executed. The second RTI will not have control bit 01 set,
though, as normally is the case since NIE should not be set on.

The first RTI of the Restore sequence for an Interpret Stage
tracked Breakpoint must have bit JO5 of the instruction set on. This
is the Breakpoint enable control for setting or resetting Break-

c2

BREAKPOINT OPERATION

points. Since the RTI instruction will present the Breakpoint ad-
dress to the detection logic again, the J05 enable control being on
prevents the same Breakpoint from occurring upon the Restore
from itself.

Bit J06 (=1) can be used to reinforce the Breakpoint bit if it is
intended to leave a Breakpoint at that address or it can be used
(J06=0) to clear the Breakpoint at that address.

PLACEMENT OF BREAKPOINTS

Using the trap method for Breakpoints implies that the return from
a Breakpoint will be to the next logical instruction following the
Breakpoint. The strategy, then, in placing Breakpoints in a pro-
gram is to locate a Breakpoint at the last instruction that is desired
to be executed. Since the return is not to the Breakpoint instruction,
but rather to the next instruction, there is no problem with leaving a
Breakpoint set after taking that Breakpoint. As indicated in F1.3, it
is possible to test the skip count to determine whether or not the
next instruction will be executed upon the return from Breakpoint
and then if desired, to abort the Breakpoint routine.

RESTRICTIONS ON THE USE OF BREAKPOINTS
Breakpoints cannot be set during any routines where the FIFO is
not active if recovery is intended. This includes the Breakpoint serv-
ice routine and the front end of the interrupt and trap service
routines prior to the saving of the FIFO.

In debugging trap routines (other than the Breakpoint routine)
using the Breakpoint scheme where T1I is turned off, it will become
necessary to disable interrupts via the Interrupt Mask Register if
NIE is on.

The remainder of the Breakpoint restrictions are system de-
pendent based upon whether the Breakpoint is tracked to the Inter-
pret Stage (instruction not executed) or to the Execute Stage (in-
struction executed).

C3

MEMORY RETRIES

APPENDIX D
MEMORY RETRIES

MEMORY RETRIES AFTER NO-MATCH INTERRUPTS

A Virtual Memory Store or Fetch operation is aborted and a No-
Match Interrupt generated if an Address Translation Fault occurs.
Since the Virtual Store and Virtual Fetch instruction sequences are
inherently different, and since distinctions between Stores and
Fetches should ideally be transparent to the No-Match Service
Routine, some hardware facilities have been added to the CPC to
facilitate DAT fault recovery.

The Virtual Store sequence involves executing a Store, Store
and Augment, or a Store and Decrement instruction (with AT on)
followed by any interruptable instruction. The Virtual Fetch se-
quence involves executing a Fetch, Fetch and Augment, Fetch and
Augment with Linkage, or Fetch and Decrement instruction (with
AT on) followed by an interruptable instruction followed by a Re-
ceive Fetched Data (RCV) instruction. A No-Match interrupt on a
Virtual Store operation will occur during the instruction after the
Virtual Store instruction. On a Virtual Fetch operation the inter-
rupt will occur during the Receive Fetch Data instruction. In both
cases the instruction in the execution stage at the time of the inter-
rupt will be executed.

A retry of the aborted memory operation is performed during
the interrupt service routine by executing a program sequence that
is identical for Stores or Fetches. Special retry hardware is used to
make the required distinctions. That sequence consists of a Memory
Reference Retry (MRR) instruction followed by an interruptable in-
struction followed by a Received Fetched Data instruction (with bit
2 of the K-field set to a one).

At the time the original Virtual Store or Fetch instruction exe-
cutes, the Protection Code information, the Source/Destination
Data RSU Address and the Write Tags are all saved in the State
Register. The State Register is not clocked again until the next Vir-
tual Memory instruction or RCV instruction is executed. The RCV
instruction clocks its Destination RSU Address into the State Reg-
ister, though, only if bit 01 in the K-field is on.

The MRR instruction retriggers the memory reference portion
of the Store or Fetch that caused the No-Match interrupt. The ad-
dress augment or decrement has already been accomplished. MRR
uses the contents of the RSU specified by the K-field as the Virtual
Address for the memory operation. The Data RSU Address saved in
the State Register is used to specify a Source Data RSU (note that

D-1

MEMORY RETRIES

this data is relevant only on Store operations and that the instruc-
tion which follows any store instruction which might generate a vir-
tual interrupt cannot alter this data). The Write Tags are supplied
from the State Register as well as the Protection Code which acts as
the eventual Store or Fetch designator. _

During execution of the MRR instruction the hardware decodes
the Protection Code to determine if a Store operation is being per-
formed. If so, skip controls are set which cause the subsequent two
instructions to be voided. For a Fetch operation these two instruc-
tions are executed. The RCV instruction in this sequence must have
bit 1 of the K-field set off and bit 2 of the K-field set on. This will
prevent the State Register from being altered while at the same
time allowing the RSU Address saved in the State Register to
specify the Destination RSU for the fetched data (overriding the
J-field).

The resulting Virtual Memory operation may result in another
No-Match Interrupt-if Firmware has not successfully created the
Associative Memory entry, or an Access Violation Interrupt if a
protection check error was detected. Either interrupt will not be
recognized by the Processor until the Restore from Interrupt Se-
quence has been completed at which time the Normal Interrupt
Enable control is turned back on. The program will be restored to
execute first the same instruction which was in interpretation at the
point of the original interrupt. If a DAT interrupt is then pending,
the instruction will not be executed until after the completion of the
subsequent interrupt routine. The same information required to per-
form the retry on the first interrupt will still be present in the State
Register for the second interrupt.

Refer to Figure B-1 for a flow chart of the Virtual Memory
Retry sequence.

D-2

MEMORY RETRIES

l Virtual Memory Store

Virtual Memory Fetch

(1)

S, SA, SD

A 4

Any
Interruptable
Instruction

Virtual Store
Inst. Executed
(AT on)

«—— No-Match Interrupt

Instruction
Executed;
Interrupt Addr.
—»CR

(M

F, LFA
LFAL, LFD

y

Any
Interruptable
Instruction

@

RCV (K01 = 1)

NOTES:

(3)

MRR

y

Any

Interruptable
Instruction

(4)

v

(RCV (K02 = 1)

Skip if Store,
Else Execute

Virtual Fetch
Inst. Executed
(AT on)

Inst. Executed

«4—— No-Match Interrupt

Inst. Executed;
?—» RSU-J

(RSU-K)—»P-M Bus (Addr
(RSU-SR)—» P-M Bus (Dat

Skip if Store Eise
(P-M Bus) —» RSU-SR

1. Protection code, RSU-KO Address and Write Tags saved in State Register
2. RSU-J Address saved in State Register if KO1=1
3. Protection code, RSU Address, Write Tags supplied from State Register
4. RSU Address supplied from State Register if K02 =1

Figure D-1

D-3

GIMBOO1

Virtual Memory Retry Sequence

FETCHING FROM ISU

APPENDIX E
FETCHING FROM ISU

FETCHING FROM ISU

The CPC instruction set does not support an explicit instruction
which allows fetching of data (tables, etc.) from the ISU. However, a
sequence exists which effectively performs the same function. This
sequence depends upon the use of a two word instruction beginning
as the second instruction located beneath an unconditional delayed
jump. Ordinarily this is considered a violation of a restriction in-
volving delayed jumps since the literal used by the two word in-
struction will not follow the coded flow. In realizing what the hard-
ware does in this circumstance, though, the restriction can be
overlooked and used to effect a Fetch from Control Store.

The sequence to produce a Fetch from Control Store is:
1. Delayed Jump .
2. Delayed Jump
3. LRH or LRHC
4. X

The Delayed Jump in line 1 should be able to specify the desired
Control Store Address to be fetched from (e.g., DJOR, DRIBO,
etc.). The Delayed Jump in line 2 should return the program flow to
the desired instruction code (could be instruction 4). The LRH or
LRHC instruction when it executes will pick up the instruction, to
be used as a literal, that is in the pipeline interpret stage while the
LRH or LRHC is in the execute stage. With the above sequence,
that instruction (literal) will be the instruction referenced by the
delayed jump in line 1.

Thus, by varying the address specified by the first delayed
jump, this sequence can be used to Fetch any number of words from
ISU.

E-1

NON-INTERRUPTIBLE INSTRUCTIONS

APPENDIX F
NON-INTERRUPTABLE INSTRUCTIONS

NON-INTERRUPTABLE INSTRUCTIONS

The following instructions are non-interruptable.

OP CODE
HEX) INSTRUCTION

02 MEMORY REFERENCE RETRY
03 FETCH (REAL)
04 FETCH
05 LOAD, FETCH AND AUGMENT
06 LOAD, FETCH AND AUG. (W. LINKAGE)
07 LOAD, FETCH AND DECREMENT
08-0B FETCH (LITERAL)
00,01 TRANSFER IN EXTERNAL (ERU32-63)

NOTE: Any instruction that references the PM Bus is non-inter-
ruptable during the period that the Bus is unavailable.

APPENDIX G
ARRAY MATRICES

CONTROL ARRAY AND INTERRUPT/TRAP ARRAY MATRIX
Control Array and Interrupt/Trap Array Matrix for Virtual Mem-
~ory Operations.

Control Array Bits

cat | ca2 [cas| caa [cas | cae | CA8 | virt. (1)
(PRV) | (BPE) | (ME) | (VME) | (AS) | (NPC) | (STE) | Oper.
int. ITA7 X X 11 o0 2) X 0 | store
Array (MI) (c)
Bits ITA7 X X | o X X | X 1| Store
(MI) (u)
ITA8 X 1 X 0 2) X X | M7 Fetch
(VBPI) (c)
ITA9 X X X X 2) X X | Store
(CP1) (3), (4)
ITA10 X X X X (2) X X Fetch/Store
(NMI1) (5)
ITA11 | (8) X X X (2) 0 X | Fetch/Store
(AV1)) (4)
ITAB X X 1 1 (2) X X | Store
(VM) (©)
Notes:

(1) AT must be on for all virtual operations

(2) Address comparisons are dependent upon this bit

(3) Page is being written into for the first time

(4) This interrupt is dependent upon a successful Associative Search

(5) This interrupt occurs on an unsuccessful Associative Search

(6) This set of Protection Check bits used is dependent upon this bit

(c) = Conditional interrupt (dependent upon virtual address matching Address Monitor
Register contents)

(u) = Unconditional interrupt

X = Don’t care

GIMTEB002

G-1

PBCD AND UBCD SETTING

APPENDIX H
PBCD AND UBCD SETTING

Conditions Setting Indicators PBCD and UBCD

CPC Set IS If: Set IS If: Set 16 If:
Instr. LD not 0-9 RD not 0-9 LD not 3
TLDLD X X X
TLDRD X X X
TRDLD X X X
TRDRD X X X
TFFD X X X
TFFI X X X
TBF X X X
TBFD X X X
TBFDN X X X
TBFIN X X X
TFBIN X X X
TBFI X X X
TFBD X X X
TFBDN X X X
TFBI X X X
TFB X X X
APDB X X X
APDBC X X X
APDF X X X
AUDF X X
SPDB X X X
SPDBC X X X
SPDF X X X
SUDF X X
CFU X X X
CBFU X X X

Note: PBCD and UPBCD are set by Hardware, and once set,
must be reset by Firmware.

GIMTEBO27

INSTRUCTION EMULATION EXAMPLE

APPENDIX |
INSTRUCTION EMULATION EXAMPLE

This appendix describes the detailed flow for the execution of the
IBM “OR” instruction in RX (register-and-indexed storage) format
by the NCR 32 bit VLSI Chip Set. This IBM instruction requires a
minimum of 3.6 microseconds and a maximum of 6.0 microseconds
for execution, when the system cycle time is 150 ns per micro-
instruction.

The detailed microinstruction flow of this IBM ‘“OR” instruc-
tion is shown below.

Detailed flow for: O R1,D2(X2,B2) [RX]
0 8 12 16 20 31

‘56’ R1 X2 B2 D2

Is Next Command already present? (If the last com-

N JMPIA mand ended on a halfword boundary, the first half-
XBCT word of the next command is already present. If the
last command ended on a fullword boundary, the
first halfword of the next command is not present).
Y

Transfer bytes 2 & 3 of current instruction word
(first halfword of next command) to SUR #1 and in-
crement byte pointers by 2.

Transfer byte 3 of current instruction word to SUR
#5 (to be used for tally if needed).

Load operand pointer #1 to point to GR location in
scratchpad from R1 field.

Load operand pointer #2 to point to GR location in
scratchpad from X2 field.

GIMIOO1

I-1

INSTRUCTION EMULATION EXAMPLE

Determine IBM instruction form and initiate a de-

\ 4

layed jump to the appropriate setup flow.

NN

RR RX RS| sl S
A

Any
Instruction

Any
Instruction

—Start of Setup—

-2

RXSET
TIE XOPDT
RCV BB,0

4

LFA PSW2,PSW2
NOOP
RCV IARD, 1

A 4

SETIA WB

TIE XOPDT
RCV M4A,0

JMPIC

Ss

The JUMPIA is executed at the end of the current
instruction. After it completes, the current instruc-
tion can use the next two cycles to “finish up™.

Jump is effective at this point to the RX setup flow
(the next instruction (0) is RX format).

Get contents of X2 (or O if X2 = 0).

Fetch next instruction word from memory (B2 D2),
increment instruction address by 4 and update in-
struction address register.

Transfer bytes 0 & 1 (B2,D2) of current instruction
word to SUR #2 (as pointed to by byte pointers) and
increment byte pointers by 2.

Load operand pointer #2 to point to GR location in
scratchpad addressed by B2 field.

Transfer D2 field to WB right justified, zero filled.

Get contents of B2 (or 0 if X2 = 0).

Just in case this instruction tests the condition
code, test the mask field (SUR #1 bits 08-05)
against the condition code and set a match/no match
flag.

INSTRUCTION EMULATION EXAMPLE

Determine the execution flow address for this IBM
instruction as a function of the opcode (base
address + (opcode * 16)) and initiate a delayed
jump to that address.

Calculate B2 + D2.

AW M4A BB

Calculate B2 + D2 + X2.

—Start of Execution— !

Setup is now complete and the delayed jump to the
execution flow is effective at this point. Available to
the command is:

1. Operand Pointer #1 points to R1.
2. MJ4A points to B2 + D2 + X2.

F M4A

Initiate fetch of B2D2X2 from memory.

LTRC 4

Load tally register to non zero.

A

RCV M4D,1

Get data from memory.

Test to see if B2 D2 X2 pointed to a word boundary.
If so we can handle the operand directly, if not we
need to process byte by byte to align the operands.
(If = OMOD4 boundary skip next instruction).

DJRP $1

Unconditional delayed jump to OMOD4 flow.

-
>
\

-3

INSTRUCTION EMULATION EXAMPLE

!

TIE XOPDO
RCV BA,0

JRO OOF

A

$1 BOW BA M4D

\ 4

TOE XOPDO,BA

A

JMPIA XBCT

AWL BA,0

y

Mil ZRO

1
:

-4

Get data from R1.
If OMODA4, delayed jump will be effective here. If not

=0MOD4, then execute the next instruction.

Go to the overflow code module to complete
execution if not = OMOD4.

OR the two words together.

Store away the results.

Start the setup of the next instruction.

Now finish up this instruction. Determine if resuits
were 0.

Map result to condition code.

Delayed jump to appropriate setup flow is effective
here.

INSTRUCTION EMULATION EXAMPLE

DEFINITION OF TERMS

XBCT -

XOPDO —
XOPDT —
BA —
BB —
PSW2 -
IARD —
WB —
M4A —
M4D —
S21 -
Moo -
ZRO —

The address of the routine to process between
commands testing.

Equate for operand data #1 (ERU 32).

Equate for operand data #2 (ERU 35).

Equate for byte addressable internal register 2.
Equate for byte addressable internal register 3.
Equate for MARS 7 address register (register 14).
Equate for MARS 7 data register (register 15).
Equate for word addressable register 5.

Equate for MARS 4 address register (register 8).
Equate for MARS 4 data register (register 9).
Equate to select bits 2 and 1.

Equate to select both bits off.

Equate to cause mapping of =0 to IBM condition
codes.

-5

APPENDIX |
SUMMARY

The Sieve of Eratosthenes has recently become a popular benchmark
for microprocessor performance. The Sieve algorithm has been im-
plemented on the NCR/32 chip set using two completely different
approaches. The two approaches are used to illustrate various aspects
of microprogramming the NCR/32. Execution characteristics and
optimization techniques are also discussed.

The performance of the NCR/32 is also discussed. The execution
time of the NCR/32 for ten iterations of the Sieve is compared with
similar values published in BYTE magazine for other commercial
microprocessors. As shown in the following graph, the NCR/32 out-
performs the nearest competitor by a factor of 2.75.

NCR132 h .18 seconds

M68000 .
8MHz .49 seconds

8086
8MHz

1.90 seconds

TM-16
(bit-slice)

1.98 seconds

28001 1.73 seconds

1

:

S5MHz 4.0 seconds

6809 5.1 seconds

Z80
6.8 seconds

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 68

INTRODUCTION

The Sieve of Eratosthenes is a classical algorithm for finding prime
numbers. This algorithm was developed in the third century B.C. by
Eratosthenes, a Greek mathematician. More recently, the Sieve has
become a popular benchmark for estimating performance of micro-
processors, compilers, and high level languages.

The Sieve algorithm assumes the existence of an array repre-
senting the odd natural numbers. The even numbers are not included,
since they are divisible by two. The algorithm eliminates the non-
prime numbers by crossing out all the multiples of the prime numbers
within the array. First, the multiples of three are eliminated by crossing
out the third number following three, the third number following
that number, and so forth, until the end of the array is reached.
Next, all multiples of each remaining prime number are crossed out
in the same manner, until only the primes remain.

The Sieve benchmark, as defined in the BYTE magazine articles
of September 1981 and January 1983, specifies 10 iterations of the
algorithm and an array size of 8190. Thus, the resulting program
finds the number of prime numbers between 3 and 16361 ten times.

The Sieve is a valuable performance benchmark for several
reasons. First, the algorithm involves no multiplication or division.
Thus, machines without native multiply/divide commands are not
handicapped. Second, the benchmark is memory intensive, giving a
broader estimation of system performance. Third, the algorithm is
very straightforward, thus simplifying the generated code and mini-
mizing the impact of coding efficiency.

A slight variation of the Sieve algorithm notes the fact that
any prime which is greater than the square root of the largest number
in the array will have no multiples within the array. Program execu-
tion time can be reduced by comparing each prime number with this
square root. If the prime is greater than the square root, the rou-
tine which eliminates the multiples of the prime is skipped. The
implementation of this algorithm generally results in a performance
improvement of approximately 25 percent.

NCR/32-000 IMPLEMENTATION

The Sieve algorithm has been implemented in NCR/32-000 micro-
code using two different coding approaches. Both approaches use an
array of memory words as the flag array. However, while the first
and simplest approach uses each memory WORD as one flag, the
second approach uses each memory BYTE as a flag. The second
approach reduces the time spent on memory accesses, but requires
more complex code utilizing the field commands of the NCR/32.

-7

WORD-FLAG APPROACH

The word-flag approach uses a memory array of 8190 entries. Each
memory word represents an odd number between zero and 16,361.
Non-prime numbers are identified by 32-bit flags. This approach is
simpler and less efficient than the byte-flag approach.

Program Flow

The program flow for the word-flag approach is illustrated in Figure
1. The code is divided into six functional blocks and five conditional
branches. For ease of referral, the functional blocks will be assigned
numbers, as follows:

Block 1: Initialize Registers.

Block 2: Decrement Iteration Count.
Block 3: Clear Flag Array.

Block 4: Load Word and Augment Pointer.
Block 5: Increment Prime Number Count.
Block 6: Cross Out Next Multiple.

Block 1 initializes the CPC registers for entry into the routine.
It loads the dimensions and location of the memory array, the literal
value of the flag, the number of iterations, and a jump address. None
of these values need to be reset for successive iterations of the Sieve
routine. Block 1 is listed in Figure 2. Note that the term “LIT” (lines
28, 30, 32, 34, 36) is not an instruction, but denotes a 16 bit literal
as an operand for the previous instruction.

Line Address Instr. Oper.

27 00200 LRHC SIZE ; INIT. SIZE CONSTANT
REGISTER

28 00201 LIT SZE ; SIZE END ADDRESS

29 00202 LRHC ITER ; SET TOTAL NUMBER OF
ITERATIONS +1

30 00203 LIT D#11 ; 10 ITERATIONS

31 00204 LRHC R5 ; LOAD R5 WITH LAST, WHICH
IS A CEILING

32 00205 LIT LAST ; ON THE HIGHEST PRIME
FACTOR

33 00206 LRHC FLAG ; LOAD FLAG REGISTER

34 00207 LIT FLG ; WITH FLAG CHARACTER

35 00208 LRHC | ; LOAD J1 WITH LOOP3
FOR LONG

36 00209 LIT LOOP3 ; CONDITIONAL JUMP

37 0020A TOI J1,1

Figure 2. Initialize Registers block.

NOTE: Lines 1-26 contain the program header and the register
definitions.

-8

Following initialization, the iteration counter is decremented (Block
2). This is done by line 38 (address 020B hex). If the iteration counter
does not equal zero, the program flow progresses to Block 3.

The primary function of Block 3 (Figure 3) is to clear the memory
block which will be used as the flag array. It also clears registers
which must be reset for each iteration of the Sieve routine, such
as COUNT, the prime number count, and ADDR, the memory pointer
for the flag array. The memory array is cleared using a delayed jump
(DJIBOM) for maximum efficiency.

Line Address Instr. Oper.

40 0020D LRHC ADDR ; INIT. MEMORY POINTER

41 0020E LIT BASE ; BASE ADDRESS OF ARRAY

42 0020F BEW COUNT,COUNT ; CLEAR COUNT

43 00210 BEW LI ; CLEAR |

44 00211 Cwu ADDR,SIZE ; SET IAFLAGS FOR LOOP
ENTRY

45 00212 LOOP2: DJIBOM LT,($-LOOP2) ; LOOP UNTIL ALL FLAGS ARE
CLEARED

46 00213 SA H#FEADDR ; CLEAR MEMORY LOCATION

47 00214 Ccwu ADDR,SIZE ; SET IAFLAGS

48 00215 LRHC ADDR ; RESET ADDR POINTER

49 00216 LIT BASE ; TO BASE VALUE.

Figure 3. Clear Flag Array block.

Block 4 (Figure 4) fetches a new array word from memory and
increments ADDR using the LFA (Load, Fetch and Augment) com-
mand. The code then checks to see if the end of the array is reached.
If not, the code determines whether the memory address contains a
flag (denoting a non-prime number) or zero (denoting a prime number).
If a non-prime is found, Block 4 is repeated.

Line Address Instr. Oper.
50 00217 LOOP3: LFA ADDR,ADDR ; RETRIEVE LOCATION ADDR
51 00218 LOOP4: CWU ADDR,SIZE ; LOOK FOR END OF ARRAY

52 00219 RCV WORD ; RETRIEVE WORD FROM
P-M BUS

53 0021A JIBOM GT($-LOOP1) ; EXIT IF ADDR>SIZE

54 0021B cwu WORD,FLAG ; SEE IF WORD=FLAG

55 0021C DJIBOM EQ,($-LOOP4) ;LOOP IF EQUAL

56 0021D AWL 1L,H#1 ; INCREMENT |

57 0021E LFA ADDR,ADDR ; FETCH NEXT WORD

Figure 4. Load Word and Increment Pointer block.

If a prime number is found, Block 5 (Figure 5) is executed. In
addition to incrementing the prime number count (COUNT), Block 5
calculates the actual value of the prime represented by the memory
location containing the zero. Following Block 5, the memory pointer

-9

Initialize
Registers

<

Decrement
Iteration Count

Yes Last

Done

I-10

Iteration?

Clear Flag
Array

—>y
Load Word and
Augment Pointer

End of Yes

Array?

Non-prime
Found?

Increment Prime
Number Count

Factor
Ceiling
Exceeded?

Yes

Cross Out
Next Multiple

End of No

Array?

Figure 1. Word-flag program flow.

is compared with LAST. LAST represents the largest prime number
whose multiples will result in the elimination of non-primes within
the array. If ADDR is greater than LAST, Block 6 is bypassed. The
comparison of LAST with ADDR is optional, and results in a per-
formance improvement of 28 percent.

Line Address Instr. Oper.

58 0021F cwu 1.R5 ; LOOK FOR PRIME FACTOR
CEILING

59 00220 DJIBOM GT($-LOOP3) ;IF CEILING, DON'T BOTHER

60 ; TRYING TO CROSS
ANYTHING OUT.

61 ; LOOK FOR NEXT PRIME.

62 00221 AWL COUNTH#1 ; INCREMENT PRIME NUMBER
COUNT.

63 00222 SWL ADDR,H#4 ; COMPENSATE FOR EXTRA
AUGMENT.

64 00223 LFD EXOUTADDR ; LOAD DECREMENTED ADDR
INTO EXOUT

65 00224 SWLL I,PRIME ; PRIME = 21 + 1

66 00225 AWL PRIME, H#1 ;

67 00226 SWLL PRIME,PRIME ; MULTIPLY PRIME BY FOUR

68 00227 SWLL PRIME,PRIME ;

Figure 5. Increment Prime Number Count block.

When a prime number is found whose multiples may result in the
flagging of non-primes, Block 6 (Figure 6) is executed. Block 6 uses
a pointer denoted as EXOUT. EXOUT is initialized to the current
value of (ADDR-4) before Block 6 is entered. It is incremented by
PRIME, the actual value of the detected prime number, and a flag
is stored at this address. This sequence is continued until EXOUT
exceeds the ceiling of the array. Thus, all multiples of the detected
prime number within the array are flagged. Following the execution
of Block 6, the program proceeds back to Block 4.

Line Address Instr. Oper.
69 00228 LOOP5: CWU EXOUTSIZE ; CHECK FOR END OF ARRAY
70 00229 RIBO J1,GT ; EXITIF END
71 0022A DJRM ($-LOOP5) ~ ;LOOPUNTIL ALL FLAGS
ARE SET
72 0022B S H#FEXOUT ; SAVE FLAG IN MEMORY
73 0022C AW EXOUT,PRIME ; AUGMENT EXOUT BY 4+PRIME

Figure 6. Cross Out Next Multiple block.

I-11

Execution Characteristics

Figure 7 illustrates the frequency of execution of each of the func-
tional blocks. This analysis is very useful when optimizing the per-
formance of the microcode routine. By moving instructions from
frequently executed routines to those which are scarcely utilized,
significant improvements in performance can be obtained.

Block 1 initializes the contents of certain registers and is executed
only once. Block 2 and Block 3 are executed once for each iteration of
the Sieve algorithm. These blocks decrement the iteration count, clear
the flag array, and initialize registers which must be reset for each
Sieve iteration.

Block 1:

Block 2:

Block 3:

1
10
10
Block 5: - 18,990

111,840

1 L | 1 | | |]]] [l |
10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 110K 12bK

Number of occurrences

Figure 7. Block execution frequency.

-12

Block 4 executes 81,910 times. This value corresponds directly
to the dimension of the flag array in memory. The array contains 8190
flags, and the routine fetches an extra word to fulfill the loop’s exit
condition. The Sieve is executed ten times, yielding the expected value.

Block 5 executes 18,990 times. This value is equal to the actual
number of primes within the array, multiplied by ten iterations.

Block 6 is the most frequently executed block. Since the number
of multiples crossed out in one iteration (11,184) is greater than the
number of non-primes within the array, many non-primes are flagged
more than once.

From Figure 7 it is obvious that Blocks 4 and 6 must perform their
function as efficiently as possible. This fact is further illustrated by
Figure 8, which specifies the actual percentage of the total execution
time occupied by each block. Note that Block 3 occupies a signifi-
cant percentage of the total execution time due to an internal loop
which iterates 8191 times for each iteration of the Sieve.

Program Optimization
Since the NCR/32 is programmable at the microcode level, many
aspects of program optimization do not become obvious through code
inspection. Microcoding offers greater control of program execution
to the programmer due to the lack of automatic sequencing by an
internal microinstruction store.

The most effective optimization tools within the NCR/32 instruc-
tion set are the delayed jump instructions. Since the NCR/32 has a
three stage internal instruction pipeline, the delayed jumps allow
the instructions in the interpret and execute stages of the pipeline
to execute before the jump is taken. Regular jump instructions simply
nullify these two instructions, resulting in two machine cycles where
no code is executed.

Delayed jumps are used in lines 45, 55, 59, and 71 of this routine.
The use of these instructions saves two cycles each time the jump is
taken, and thus results in performance improvements of 163,800;
125,840; 36,680; and 223,680 machine cycles. The total improvement
of 550,000 machine cycles represents approximately one third of the
measured total of 1,543,000 machine cycles for the Sieve benchmark.

Performance gains can also be realized by inserting a single-cycle
instruction (which does not use the PM Bus) between the fetch (LFA)
and receive (RCV) commands. This is allowed because the valid data
is not presented on the PM Bus by the present memory interface until
two cycles after the fetch was initiated. This technique is used in line
51 and results in a performance improvement of 81,910 machine cycles.

I-13

Block 1:

Block 2:

Block 3:

Block 4:

Block 5:

Block 6:

1-14

| .0006%

.005%

. 5.5%

| | | | |] | l 1
1 I I)

|] I I I]
5% 10% 15% 20% 25% 30%. 35% 40% 45%
% of Execution Time

Figure 8. Percentage of execution time.

Program performance is also enhanced by removing instructions
from frequently executed loops and placing them in other locations
in the program. For instance, the jump from Block 6 to Block 4
requires a conditional jump of greater than 16 locations. This jump
may be implemented using the JIBOL command, which requires a
trailing literal. However, by loading a jump register with the desired
jump address during Block 1 (which is executed once), the RIBO
instruction can be used, shortening the loop (lines 69-73) by one
instruction. The resulting performance improvement is 111,840
machine cycles.

“BYTE-FLAG” APPROACH

The second approach to the Sieve algorithm is characterized by the
use of 8-bit rather than 32-bit flags. This approach is aided by the
field commands of the NCR/32 instruction set. The higher performance
of the byte-flag approach is a result of the reduction in the number
of memory accesses.

Field Commands

The NCR/32 field commands facilitate the processing of large (1 to
64k-1) fields composed of bytes. The instructions operate on one,
two, or three fields simultaneously, and remain frozen in the instruction
pipeline until either a word boundary is crossed or the Tally register
equals zero. The specific field instruction used in the byte-flag imple-
mentation of the Sieve is the CBFU (Compare Byte to Field Unsigned)
command, which is described later in this text.

Program Flow
Program flow for the byte-flag approach is illustrated in Figure 9. A
comparison with the word-flag flow (Figure 1) reveals that the
byte-flag approach uses a larger number of functional blocks and a
more complex control scheme. This is due in part to the complexity
of the field commands. /

Again, the functional blocks are ass1gned the following numbers
for ease of referral:

Block 1: Initialize Registers.

Block 2: Decrement Iteration Count.
Block 3: Clear Flag Array.

Block 4: Load Word and Augment Pointer.
Block 5: Field Compare.

Block 6: Overflow Routine.

Block 7: Increment Prime Number Count.
Block 8: Cross Out Next Multiple.

I-15

Initialize
Registers

Yes

Decrement
Iteration Count

Last
Iteration?

Clear Flag
Array

Overflow
Routine

A

Yes

Yes

Load Word and
Augment Pointer

v

Field

Compare

MARS
Overflow?

1-16

Figure 9.

Increment Prime

Number Count

Load Word and

Augment Pointer

Factor
Ceiling

Yes

Exceeded?

Cross Out

Next Multiple

Byte-flag program flow.

Blocks 1 through 4 perform virtually the same function in the byte-flag
approach as in the word-flag approach. However, additional initializa-
tion is needed to load the Tally register and various jump registers.
Additionally, the flag value must be stored in two registers to accom-
modate the field commands.

Note that in lines 74-75, ADDR is initialized to BASE +1 rather
than to BASE. If this is not done, then nine will be counted as a prime
number. This occurs because the flag representing the number nine
will already be contained in the WORD register when that location in
memory is flagged as non-prime. Initializing ADDR to BASE+1
causes the first WORD of the array to contain flags representing
“x 357" rather than “357 9.

Once the memory word is loaded, Block 5, the field compare,
is executed. Block 5 consists of the CBFU command. The flow for
this command is illustrated in Figure 10.

The CBFU command compares a word to a target byte, one byte
at a time. The field byte is selected from the word in the MARSS5 data
register by the MARSS5 byte pointers. The CBFU command holds in
the execution stage of the instruction pipeline until either the Tally
register equals zero, a field byte does not match the target byte, or a
MARSS overflow is detected. An overflow occurs when the MARSS data
register byte pointers (the two low order bits of R11) are incremented
beyond the boundary of word specified by the MARS5 address
register (R10). Thus, if the two low order bits of R11 are both equal
to one and the byte pointers are incremented, an overflow occurs.

Following the field compare, the JFA command is executed. This
jump does not occur unless a MARS overflow flag is set. If a flag is
set, the Field Array Bits (bits 1-5) of the State Register (IRU9)
are left justified, zero filled, and concatenated with the most significant
byte of Jump Register 7 to form the jump address. Thus, a MARS5
overflow will jump to a specific routine designed to handle that overflow.

Block 6 (Figure 11) is the MARS5 Overflow Routine. This routine
clears the overflow flag in the State Register, loads a new word from
memory, and augments the memory pointer. At the conclusion of the
overflow routine, the program loops back to the field compare (Block 5).

Line Address Instr. Oper.

105 00310 MS50VF: ORG H#310 ; OVERFLOW ROUTINE

106 00310 BEW 1Ll ;

107 00311 TOI STREG,| ; CLEAR OVERFLOW FLAGS

108 00312 DRIBZ J1,UN ; DLY'D RETURN TO LOOP4

109 00313 LFA ADDR,ADDR ; FETCH NEW WORD AND
RETURN

110 00314 RCV WORD

Figure 11. MARSS5 Overflow Routine.

Enter

Yes Tally
=87

No

Compare
Byte

Increment MARSS
Byte Pointers

Bytes Not
Equal?

Yes
<

Decrement
Tally Register

Yes MARS5
A Overflow?
A 4
Exit

Figure 10. CBFU command flow.

-18

If the field compare is halted and an overflow is not detected, a
byte has been found which does not match the target byte. This
indicates that the number represented by that byte is a prime number.
In this case, Block 7 is executed.

Block 7 (Figure 12) performs virtually the same function as Block
5 of the word-flag approach. However, the value of the prime number
is calculated based on the value of the Tally register rather than on a
counting register.

Line Address Instr. Oper.
80 00226 Ti TALLY,I : RETRIEVE TALLY VALUE
81 00227 BAW Il ; SEE IF TALLY=0
82 00228 RIBO J2,2 ; IF SO, NEXT ITERATION
83 00229 SRB30 H#0,ADDR ; LOAD ONLY IF NECESSARY
84 0022A LFA ADDR,ADDR
85 0022B SRB30 H#0,ADDR ; RCV ONLY IF NECESSARY
86 0022C RCV WORD
87 0022D LSTCHK: CwuU I,LAST ; LOOK FOR LAST FACTOR
WHICH

88 : WILL EX OUT NON-PRIMES.
89 0022E DJIBOM LT,($-LOOP4) ;IF FOUND, FIELD COMPARE
90 0022F AWL COUNTH#1 ; INCREMENT PRIME COUNT
91 00230 LIT H#AAAA ; NO-OP

Figure 12. Increment Prime Number Count block.

Block 8 (Figure 13) performs the same function as Block 6 of the
word-flag approach. However, since the flags are being stored at byte
rather than word addresses, the TBF (Transfer Byte to Field) command
isnecessary to set the MARS6 Byte Write Tags. Also, since MARS6is
the only MARS pair which automatically supplies Memory Write
Tags, MARS6 Data (R13) must be loaded (during initialization) with
4 flag bytes.

Line Address Instr. Oper.
98 00237 LOOP5: AW EXOUTPRIME ; AUGMENT EXOUT BY PRIME
99. 00238 CWU EXOUTSIZE ; CHECK FOR END OF ARRAY
100 00239 DJIBOM H#0,($-LOOP5) ; LOOP IF NOT END
101 0023A TBF R3B3 ; SET MARS6 WRITE TAG
REGISTER
102 0023B S H#0,EXOUT ; SAVE FLAG IN MEMORY

Figure 13. Cross Out Next Multiple block.

1-19

Execution Characteristics

Figure 14 is a histogram depicting the execution frequency of the
blocks defined above. It is interesting to compare this figure with the
comparable histogram (Figure 7) for the word-flag approach. Note
that the byte-flag approach reduces the number of Block 4 (load word
and augment pointer) iterations to one quarter of the original value.
The other significant difference between the two approaches is the
addition of the field compare (Block 5; 96,240 iterations) in the byte-
flag program.

Block 1:

Block 2:

Block 3:

Block 4:

Block 5:

Block 6:

Block 7:

Block 8:

1-20

10

10

20,490

15,820

18,990

96,240

120,910

} |]

| i 1 1 []] [

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 110K 120K

Figure 14.

Number of occurrences

Block execution frequency.

A comparison of the execution time percentages (Figures 8 and 15)
reveals the greater efficiency of the byte-flag approach. In this
approach, flagging of the non-prime numbers in the array accounts for
more than fifty percent of total execution time. This percentage is so
high for two reasons. Block 8 in the byte-flag approach is one step
longer than Block 6 in the word-flag approach, due to the necessary
inclusion of the TBFU command which sets the MARS6 Write Tags.
The percentage is also higher due to the reduction in the number of
fetches (a three cycle operation) by a factor of four.

Block 5, the block which had the second highest number of itera-
tions, only consumes 8.4 percent of the total execution time, since
each iteration takes only one clock cycle. The Increment Prime
Number Count block increases from 5.5 percent of total execution
time in the word-flag approach to twenty percent due to the more
complex control needed for the byte-flag approach. This control
function includes the determination of whether a new memory word
must be fetched when a word boundary is reached but no overflow occurs.

Program Optimization

Program optimization is largely achieved using the same techniques
described above for the word-flag approach. All of the blocks except
for Block 7 were, in fact, easily reduced to their present, optimized
form. The primary hurdle presented by Block 7 was the need to
retrieve a new memory word if the ADDR pointer had reached a word
boundary and a prime number simultaneously.

This problem was handled by using the SRB30 command. This
command skips a step based on the value of a bit pair in the least
significant byte of any register. Since a word boundary is indicated
when the two low order bits of ADDR are both zero, the LFA and RCV
commands are skipped if either of these bits is set. See Figure 12,
lines 83-86.

NCR/32 PERFORMANCE RESULTS

Figure 16 illustrates the execution performance of four versions of
the Sieve algorithm. Versions 0 and 1 utilize the word-flag approach,
and Version 1 also uses the algorithm improvement mentioned earlier
in this text. Similarly, Versions 2 and 3 use the byte-flag approach,
and Version 3 uses the algorithm improvement.

The effectiveness of the algorithm improvement is shown in
Figure 17. For the word-flag approach the improvement is 28 percent,
while for the byte-flag approach it is 35 percent.

1-21

Block 1:

Block 2:

Block 3:

Block 4:

Block 5:

Block 6:

Block 7:

Block 8:

1-22

.002%

.009%

5.4%

5.4%

8.4%

8.3%

19.9%

52.7%

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

Figure 15.

% of Execution Time

Percentage of execution time.

Version Cycles Characteristics
0 1,976,000 Word-flag, factor ceiling not used
1 1,545,000 Word-flag, factor ceiling used
2 1,600,000 Byte-flag, factor ceiling not used
3 1,187,000 Byte-flag, factor ceiling used

Figure 16. Number of execution cycles.

1.0

!

1.28

1.23

1.66

—_—

.25 .50 .75 1.0 1.5 2.0
Performance relative to Version 0.

Figure 17. Program Performance.

Processor Clock Speed Execution Time
6809 * 5.1 seconds
68000 8 MHz 0.49 seconds
8086 8 MHz 1.90 seconds
8088 5 MHz 4.0 seconds
NCR/32 13.3 MHz 0.18 seconds
TM-16 .
(bit slice) 1.98 seconds
Z80 * 6.8 seconds
Z8001 * 1.73 seconds

*denotes information not published in the Juanary 1983 BYTE Magazine article.

Figure 18. Comparative performance table.

1-23

Z80:

6809:

8088:

8086:

Z8001:

T™M-16:

68000:

NCR/32;

1-24

N =
o

o]

w ©

9

w

o
>
o]

=
o

=
)
w

=
©
©

3.88

10.67

L] T T T
10 20 30 40 50 60 70 80 90 100 11.0
Performance relative to 8086.

Figure 19. Processor Performance Comparison.

With a 150 nanosecond clock cycle, the fastest version of the
Sieve runs on the NCR/32 in 0.178 seconds. Figure 18 compares
this result with those published in BYTE magazine for other com-
mercial microprocessors. This comparison is illustrated graphically
in Figure 19. As shown in the histogram, the NCR/32 is 2.75 times
faster than the second fastest processor.

REFERENCES

The following documents were used in the development of this appli-
cation note:

“Eratosthenes Revisited: Once More through the Sieve.” Jim
Gilbreath, BYTE Magazine, January, 1983.

NCR/32 General Information Manual. NCR Corporation, Colorado
Springs, 1983.

NCR/32-000 32-Bit Microprogrammable Microprocessor Data Sheet.
NCR Corporation, Colorado Springs, 1983.

1-25

CODE LISTINGS

Below are the code listings for versions 1 and 3 of the Sieve program.
Version 1 uses the word-flag approach, and Version 38 uses the byte-
flag approach. Both versions include the algorithm improvement.

For complete definitions of the instructions and the chip itself,
refer to the NCR/32 General Information Manual and the NCR/32-000
Central Processor Chip data sheet.

—_

— ok
00N AWN

—_
wN

—_
[N

16

30
31

32

33
34

1-26

00200
00200

00201
00202

00203
00204

00205

00206
00207

START:

BASE:
SZE:

FLG:
LAST:

WORD:
FLAG

PRIME

COUNT:

ITER:

EXOUT:

SIZE:
ADDR:

SIEVE:

PROGRAM:
PROGRAMMER:
DATE:
UPDATED:

EQU H#200

EQU START+H#100

EQU BASE+D#32760

EQU H#FFFF

EQU D#65

EQU R11

EQU R9

EQU R13

EQU R2

EQU R3

EQU R4

EQU R8

EQU R7

EQU R12

ORG START

LRHC SIZE

LIT SZE

LRHC ITER

LIT D#11

LRHC R5

LIT LAST

LRHC FLAG

LIT FLG

SIEVE OF ERATOSTHENES
BENCHMARK

JOHN BEEKLEY
OCTOBER 18, 1983

JANUARY 3, 1984

; STARTING ADDRESS OF
SUBROUTINE
: BASE ADDRESS FOR ARRAY
; END ADDRESS OF ARRAY
(8190+4)
: FLAG FOR FACTORS
: CEILING ON FACTORS:
SQR(16361)/2
: CURRENT BYTES BEING
CHECKED
. FLAG CONSTANT
: CURRENT BYTE NUMBER
; VALUE OF CURRENT PRIME
NUMBER
;NUMBER OF PRIMES FOUND
: NUMBER OF ITERATIONS
: NONPRIME FACTOR
ELIMINATION
: SIZE CONSTANT FOR
ENDPOINT CHECK
: MEMORY ADDRESS POINTER

; START OF ROUTINE

; INIT. SIZE CONSTANT
REGISTER

; SIZE END ADDRESS

; SET TOTAL NUMBER OF
ITERATIONS +1

; 10 ITERATIONS

; LOAD R5 WITH LAST, WHICH
IS A CEILING

; ON THE HIGHEST PRIME
FACTOR

; LOAD FLAG REGISTER

; WITH FLAG CHARACTER

00208

00209
0020A
00208

0020C
0020D
0020E
0020F
00210
00211

00212

00213
00214
00215
00216
00217
00218
00219

0021A
0021B
0021C
0021D
0021E
0021F

00220

00221
00222
00223

00224
00225
00226
00227
00228
00229
0022A

00228
0022C

LOOP1:

LOOP2:

LOOPS:
LOOP4:

LOOPS:

END

LRHC

LIT
TOI
SWL

RIBO
LRHC
LIT
BEW
BEW
cwu

DJIBOM

SA
Cwu
LRHC
LIT
LFA

DJIBOM

AWL
SWL
LFD

SWLL
AWL
SWLL
SWLL
CWu
RIBO
DJRM

AW

LOOP3
J1,l
ITER H#1

Jo,Zz

ADDR

BASE
COUNT,COUNT
i

ADDR,SIZE

LT,($-LOOP2)

H#FADDR
ADDR,SIZE
ADDR

BASE
ADDR,ADDR
ADDR,SIZE
WORD

GT,($-LOOP1)
WORD,FLAG
EQ,($-LOOP4)
I, H#1
ADDR,ADDR
I,R5

GT,($-LOOP3)

COUNTH#1
ADDR,H#4
EXOUTADDR

I,PRIME
PRIME,H#1
PRIME,PRIME
PRIME,PRIME
EXOUTSIZE
J1,.GT
($-LOOPS)

H#FEXOUT
EXOUTPRIME

; LOAD J1 WITH LOOP3
FOR LONG
; CONDITIONAL JUMP

; DECREMENT ITERATION
COUNT

;RETURN IFTEN ITERATIONS

; INIT. MEMORY POINTER

; BASE ADDRESS OF ARRAY

; CLEAR COUNT

; CLEAR |

; SET IA FLAGS FOR LOOP
ENTRY

; LOOP UNTIL ALL FLAGS
ARE CLEARED

; CLEAR MEMORY LOCATION

; SET IA FLAGS

; RESET ADDR POINTER

; TO BASE VALUE.

; RETRIEVE LOCATION ADDR

; LOOK FOR END OF ARRAY

; RETRIEVE WORD FROM P-M
BUS

; EXIT IF ADDR>SIZE

; SEE IF WORD=FLAG

; LOOP IF EQUAL

; INCREMENT |

; FETCH NEXT WORD

; LOOK FOR PRIME FACTOR
CEILING

; IF CEILING, DON'T BOTHER

; TRYING TO CROSS
ANYTHING OUT

; LOOK FOR NEXT PRIME.

; INCREMENT PRIME
NUMBER COUNT.

; COMPENSATE FOR EXTRA
AUGMENT.

;LOAD DECREMENTED ADDR
INTO EXOUT

; PRIME =21 + 1

MULTIPLY PRIME BY FOUR

; CHECK FOR END OF ARRAY

; EXIT IFEND

; LOOP UNTIL ALL FLAGS
ARE SET

; SAVE FLAG IN MEMORY

; AUGMENT EXOUT BY
4«PRIME

1-27

[é)] SO =

©CoOo~N®

10
12
13
14
16
17
18
19
20
21
22

23

36
37
38
39
40
41 00200
42 00200

43 00201

1-28

LAST:
WORD:

FLAG:
FLAG2:

I:
IBYTES:
PRIME:

TSTBYT:

COUNT:
ITER:
EXOUT:
SIZE:

ADDR:

TSTORE:
FLDFLG:

SIEVE:

SIEVE OF ERATOSTHENES BENCHMARK, V.3

PROGRAM
PROGRAMMER:
DATE:
UPDATED:

EQU H#200

EQU D#8191

EQU H#0000

EQU BASE+DIM+1

EQU H#FFFF

EQU DIM-D#65

EQU RS

EQU Ri

EQU RO

EQU Ri3

EQU Ri

EQU RIB3

EQU R2

EQU R2B3

EQU Ri5

EQU R4

EQU R12

EQU R7

EQU R10

EQU RO

EQU R3

ORG START

LRHC ITER

LT D#11

SIEVE OF ERATOSTHENES
BENCHMARK

VERSION 3: USING FIELD
COMMANDS

AND FACTOR CEILING

JOHN BEEKLEY
DECEMBER 1, 1983

JUNE 1, 1984

: STARTING ADDRESS OF
SUBROUTINE

: DIMENSION OF MEMORY
ARRAY

: BASE ADDRESS FOR ARRAY

: END ADDRESS OF ARRAY

: FLAG FOR FACTORS

; LAST FACTOR WHICH
WILL CAUSE

; NON-PRIMES TO BE
CROSSED

: OUT. D#65 IS AN
APPROXIMATION

; OF SQR(16361)/2

; STORE LST IN R5

; CURRENT BYTES BEING
CHECKED

: FLAG CONSTANT

: FLAG FOR STORAGE IN
MEMORY

: CURRENT BYTE NUMBER

:I'S LEAST SIGNIFICANT BYTE

; VALUE OF CURRENT
PRIME NUMBER

: TEST BYTE

:NUMBER OF PRIMES FOUND

: NUMBER OF ITERATIONS

: NONPRIME FACTOR
ELIMINATION

: SIZE CONSTANT FOR
ENDPOINT CHECK

; MEMORY ADDRESS POINTER

: TALLY REGISTER STORAGE

: FLAG BYTE FOR WRITE TAG
GENERATION

; START OF ROUTINE

; SET TOTAL NUMBER OF
ITERATIONS +1

; 10 ITERATIONS

00202

00203
00204
00205
00206
00207

00208

00209
0020A
0020B

0020C
0020D
0020E
0020F
00210
00211

00212
00213

00214
00215

00216
00217
00218
00219
0021A
0021B
0021C

0021D

0021E
0021F
00220
00221
00222
00223
00224

00225

00226
00227
00228
00229
0022A
0022B
0022C
0022D

0022E
0022F

LOOP1:

LOOP2:

LOOP3:
LOOP4:

LSTCHK:

LRHC

LIT
LRHC
LIT
TRHLH
™

LRHC

LIT
LRHC
LIT

TOI
LRHC
LIT
TOI
LRHC
LIT
TOI
SWL

RIBO
LRHC

LIT
TOI
LRHC
LIT
BEW
BEW
CWuU

DJIBOM

SA
cwu
LRHC
LIT
LFA
RCV
CBFU

JFA

TH
BAW
RIBO
SRB30
LFA
SRB30O
RCV
cwu

DJIBOM
AWL

SIZE

SZE

FLAG

FLG
FLAG,FLAG
FLAG,FLDFLG

LAST

LST
1
H#300

J7.1

|

LOOP4
Jil

|

LOOP1
J2,1
ITER,H#1

Jo,2
TSTORE

DIM
TALLY,STORE
ADDR

BASE+1
COUNT,COUNT
WORD,WORD
ADDR,SIZE

LT,($-LOOP2)

H#FADDR
ADDR,SIZE
ADDR
BASE+1
ADDR,ADDR
WORD

TALLY,|

Ll

J2,z
H#0,ADDR
ADDR,ADDR
H#0,ADDR
WORD
I,LAST

LT,($-LOOP4)
COUNTH#1

; INIT. SIZE CONSTANT
REGISTER

; SIZE END ADDRESS

; LOAD FLAG REGISTER

; WITH FLAG CHARACTER

; LOAD AUXILLIARY FLAG
REGISTER

; LOAD LAST FACTOR
REGISTER

; WITH LST

; LOAD J7 FOR FIELD
ARRAY JUMPS

; LOAD J1 WITH LOOP4

; LOAD J2 WITH LOOP1

; DECREMENT ITERATION
COUNT

;RETURN IF TEN ITERATIONS

; LOAD TALLY REGISTER
WITH DIM

; INIT. MEMORY POINTER

; BASE ADDRESS OF ARRAY

; CLEAR COUNT

; CLEAR WORD

; SET IAFLAGS FOR LOOP
ENTRY

; LOOP UNTIL ALL FLAGS
ARE CLEARED

; CLEAR MEMORY LOCATION

; SET IAFLAGS

; RESET ADDR POINTER

; TO BASE VALUE.

; RETRIEVE LOCATION ADDR

; AND STORE IN WORD.

; COMPARE WORD TO
FLAG BYTE

; JUMP TO ROUTINE IF
OVERFLOW

; RETRIEVE TALLY VALUE

; SEE IF TALLY=0

; IF SO, NEXT ITERATION

; LOAD ONLY IF NECESSARY

; RCV ONLY IF NECESSARY

; LOOK FOR LAST FACTOR
WHICH

; WILL EX OUT NON-PRIMES.

; IF FOUND, FIELD COMPARE

; INCREMENT PRIME COUNT

I-29

91
93
94

95
96

97

98
99
100
101

102
103
104
105
106
107
108
109

110
111

00230
00231
00232

00233

00234
00235

00236

00237
00238
00239
0023A

0023B
0023C

00310
00310
00311
00312
00313

00314

I-30

LOOPS:

MS5OVF:

LIT H#AAAA
Sw I,TSTORE
BIW Ll
SWLL 1,PRIME
AWL PRIME,H#3
™ ADDR,EXOUT
SwL EXOUTH#5
AW EXOUTPRIME
cwu EXOUTSIZE
DJIBOM LT,($-LOOPS)
TBF R3B3
S H#0,EXOUT
JRM ($-LOOP4)

» MARS5 OVERFLOW ROUTINE
ORG H#310
BEW Ll
TOI STREG,|
DRIBZ J1,UN
LFA ADDR,ADDR
RCV WORD

END

; NO-OP

; CALCULATE BYTE NUMBER

; CONTINUE CALCULATING
BYTE #

; CALCULATE PRIME
NUMBER VALUE

; PRIME = 21+1 = 2(1-1)+3

; LOAD ADDR-5 INTO EXOUT
AND BEGIN

; XING OUT MULTIPLES OF
PRIME.

; AUGMENT EXOUT BY PRIME

; CHECK FOR END OF ARRAY

; LOOP IF NOT END

; SET MARS6 WRITE TAG
REGISTER

; SAVE FLAG IN MEMORY

; RETURN TO FIELD COMPARE

; OVERFLOW ROUTINE

; CLEAR OVERFLOW FLAGS
; DLY'D RETURN TO LOOP4
; FETCH NEW WORD

AND RETURN

N CR

VLSI Processor Products
NCR Microelectronics Division
Colorado Springs, Colorado
(303) 596-5612
(800) 525-2252
Telex 452457

RM-0480

ST-2104-23

0984

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-001
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	3-001
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-001
	4-002
	4-003
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	5-001
	5-002
	5-003
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	6-0001
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	6-115
	6-116
	6-117
	6-118
	6-119
	6-120
	6-121
	6-122
	6-123
	6-124
	6-125
	6-126
	6-127
	6-128
	6-129
	6-130
	6-131
	6-132
	6-133
	6-134
	6-135
	6-136
	6-137
	6-138
	6-139
	6-140
	6-141
	6-142
	6-143
	6-144
	6-145
	6-146
	6-147
	6-148
	6-149
	6-150
	6-151
	6-152
	6-153
	6-154
	6-155
	6-156
	6-157
	6-158
	6-159
	6-160
	6-161
	6-162
	6-163
	6-164
	6-165
	6-166
	6-167
	6-168
	6-169
	6-170
	6-171
	6-172
	6-173
	6-174
	6-175
	6-176
	6-177
	6-178
	6-179
	6-180
	6-181
	6-182
	6-183
	6-184
	6-185
	6-186
	6-187
	6-188
	6-189
	6-190
	6-191
	6-192
	6-193
	6-194
	6-195
	6-196
	6-197
	6-198
	6-199
	6-200
	6-201
	6-202
	6-203
	6-204
	6-205
	6-206
	6-207
	6-208
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	F-01
	G-01
	H-01
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24
	I-25
	I-26
	I-27
	I-28
	I-29
	I-30
	xBack

